請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8094完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭智馨(Chih-Hsin Cheng) | |
| dc.contributor.author | Yi-Hao Chu | en |
| dc.contributor.author | 朱毅豪 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:48:52Z | - |
| dc.date.available | 2025-10-01 | |
| dc.date.available | 2021-05-20T00:48:52Z | - |
| dc.date.copyright | 2020-10-27 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-10-21 | |
| dc.identifier.citation | 方新政(1991)。發泡煉石之製造。臺南區農業改良場研究彙報,(27),32-36。 王才義(1994)。設施環境管理技術-栽培介質。亞熱帶地區花卉設施栽培技術。 江康鈺、簡光勵、黃淑貞、陳宜晶(2005)。水庫淤泥燒結製磚之可行性研究。環境保護,28(1),1-13。 行政院農業委員會(2019)。綠色國民所得帳編製報告。行政院農業委員會。 何緒生、張樹清、佘雕、耿增超、高海英(2011)。生物炭對土壤肥料的作用及未來研究。中國農學通報,27,16-25。 李明銳、沙麗清(2002)。雲南保山西莊河流域森林土壤磷吸附特性。山地學報,(3)。 卓家榮(2005)。柑桔土壤肥力檢測及營養診斷技術。合理化施肥專刊。 俞偉、關慶偉(2014)。種植屋面 5 種不同排蓄水材料性能分析。中國城市林業,12(4),18-22。 夏漢平、高子勤(1992)。無機磷在白漿土中的吸附與解吸機制。中國科學院研究生院學報,(4),9。 張采依(2012)。薄層屋頂綠化植物選擇與應用之研究。臺灣大學園藝學研究所學位論文,1-159。 張惠娟(2016)。屋頂可食地景之降溫研究。東海大學景觀學系碩士論文。 連深(1980)。作物營養障礙徵狀。 作物需肥診斷技術。 陳明義、林昭遠、呂金誠(1988)。土壤有機質對木麻黃林地磷肥吸附之影響。中華水土保持學報,19(1),80-88。 陳震菖(2016)。鄰近火成岩與沉積岩母質化育土壤之性質與碳儲存量差異。臺灣大學森林環境暨資源學研究所學位論文,1-102。 陳鴻堂(1992)。臺灣中部設施栽培土壤鹽分累積之特性及改良。國立中興大學土壤學研究所碩士論文。 彭一弘(2012)。植栽在不同混合比例輕量介質之生長差異。成功大學建築學系碩士在職專班學位論文,1-134。 黃春翔(2007)。具保水性顆粒介質之燒製與物理性質。成功大學土木工程學系學位論文,1-85。 楊昆憲(2008)。不同粒徑與保水性顆粒介質之物理性質。成功大學土木工程學系學位論文,1-86。 楊純明(2003)。由葉綠素測計估測和追蹤稻株之葉綠素及氮素狀態。水稻精準農業體系,2003,89-96。 經濟部水利署(2020)。台灣地區民國107年蓄水設施水量營運統計報告。經濟部水利署。 經濟部水利署北區水資源局(2008)。石門水庫淤泥多元化處置方案評估規劃綜合報告。 經濟部水利署北區水資源局(2018)。107-108年度石門水庫排洪排砂對下游河道生態及沖淤影響研究。經濟部水利署北區水資源局。 經濟部水利署北區水資源局(2020)。石門水庫淤積情形及清淤工作執行現況。經濟部水利署北區水資源局。取自 https://www.wranb.gov.tw/3452/3486/3487/12592/ 劉東憲、蔡正賢(2019)。氮磷鉀合理施用對蔬果影響之案例分享。苗栗區農業專訊,(85),14-22。 蔡佳儒、吳耿東。(2013)。木質材料製備之生物炭應用對植物生長機制之探討。林產工業,32(3),169-178。 譚龍、韋昌富、田慧會、王卉、張芹(2017)。土體持水特性及孔隙水分佈特性的試驗研究。工程地質學報,25(1),73-79。 Beck, D. A., Johnson, G. R., Spolek, G. A. (2011). Amending greenroof soil with biochar to affect runoff water quantity and quality. Environmental Pollution, 159(8-9), 2111-2118. Berndtsson, J. C., Emilsson, T., Bengtsson, L. (2006). The influence of extensive vegetated roofs on runoff water quality. Science of the Total Environment, 355(1-3), 48-63. Bilderback, T. E., Warren, S. L., Owen, J. S., Albano, J. P. (2005). Healthy substrates need physicals too!. HortTechnology, 15(4), 747-751. Bliss, D. J., Neufeld, R. D., Ries, R. J. (2009). Storm water runoff mitigation using a green roof. Environmental Engineering Science, 26(2), 407-418. Bragg, N. C., Chambers, B. J. (1987, September). Interpretation and advisory applications of compost air-filled porosity (AFP) measurements. In Symposium on Horticultural Substrates and their Analysis 221 (pp. 35-44). Cao, C. T., Farrell, C., Kristiansen, P. E., Rayner, J. P. (2014). Biochar makes green roof substrates lighter and improves water supply to plants. Ecological Engineering, 71, 368-374. Casierra-Posada, F., Cortés-Bayona, J. D., Cutler, J. (2017). Effect of Iron Excess on Growth of Sisal Plants (Furcraea hexapetala). Gesunde Pflanzen, 69(3), 123-129. Celi, L., Prati, M., Magnacca, G., Santoro, V., Martin, M. (2020). Role of crystalline iron oxides on stabilization of inositol phosphates in soil. Geoderma, 374, 114442. Chen, C. F. (2013). Performance evaluation and development strategies for green roofs in Taiwan: A review. Ecological Engineering, 52, 51-58. Chen, H., Ma, J., Wang, X., Xu, P., Zheng, S., Zhao, Y. (2018). Effects of biochar and sludge on carbon storage of urban green roofs. Forests, 9(7), 413. Fink, J. R., Inda, A. V., Tiecher, T., Barrón, V. (2016). Iron oxides and organic matter on soil phosphorus availability. Ciencia e Agrotecnologia, 40(4), 369-379. Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e.V. (FLL) (2018). Guidelines for the planning, construction and maintenance of green roofs: Green Roof Guidelines. Forschungsgesellschaft Landschaftsentwickung Landschaftsbau. Gaskin, J. W., Speir, R. A., Harris, K., Das, K. C., Lee, R. D., Morris, L. A., Fisher, D. S. (2010). Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102(2), 623-633. Getter, K. L., Rowe, D. B. (2006). The role of extensive green roofs in sustainable development. HortScience, 41(5), 1276-1285. Gregorich, E. G., Carter, M. R. (2007). Soil sampling and methods of analysis. CRC Press. Hallin, I. L., Douglas, P., Doerr, S. H., Bryant, R. (2015). The effect of addition of a wettable biochar on soil water repellency. European Journal of Soil Science, 66(6), 1063-1073. James, G., Sabatini, D. A., Chiou, C. T., Rutherford, D., Scott, A. C., Karapanagioti, H. K. (2005). Evaluating phenanthrene sorption on various wood chars. Water Research, 39(4), 549-558. Kinney, T. J., Masiello, C. A., Dugan, B., Hockaday, W. C., Dean, M. R., Zygourakis, K., Barnes, R. T. (2012). Hydrologic properties of biochars produced at different temperatures. Biomass and Bioenergy, 41, 34-43. Kodama, H., Ross, G. J. (1991). Tiron dissolution method used to remove and characterize inorganic components in soils. Soil Science Society of America Journal, 55(4), 1180-1187. Koide, R. T., Nguyen, B. T., Skinner, R. H., Dell, C. J., Peoples, M. S., Adler, P. R., Drohan, P. J. (2015). Biochar amendment of soil improves resilience to climate change. Gcb Bioenergy, 7(5), 1084-1091. Kuoppamäki, K., Lehvävirta, S. (2016). Mitigating nutrient leaching from green roofs with biochar. Landscape and Urban Planning, 152, 39-48. Liu, R., Coffman, R. (2016). Lightweight aggregate made from dredged material in green roof construction for stormwater management. Materials, 9(8), 611. Liu, Y., Naidu, R., Ming, H., Dharmarajan, R., Du, J. (2016). Effects of thermal treatments on the characterisation and utilisation of red mud with sawdust additive. Waste Management Research, 34(6), 518-526. McKeague, J., Day, J. (1966). Dithionite-and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science, 46(1), 13-22. Mehlich A. (1984) Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis 15:12-1409-1416. Mehra, O. P., Jackson, M. L. (1960). Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. In Proceedings 7th nat. Conf. Clays (Vol. 5, pp. 317-327). Moran, A., Hunt, B., Smith, J. (2005, May). Hydrologic and water quality performance from greenroofs in Goldsboro and Raleigh, North Carolina. In Third Annual Greening Rooftops for Sustainable Communities Conference, Awards and Trade Show (pp. 4-6). Nagase, A., Dunnett, N. (2011). The relationship between percentage of organic matter in substrate and plant growth in extensive green roofs. Landscape and Urban Planning, 103(2), 230-236. Nigussie, A., Kissi, E., Misganaw, M., Ambaw, G. (2012). Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. American-Eurasian Journal of Agriculture and Environmental Science, 12(3), 369-376. Nishita, H., Haug, R. M. (1971). Some physical and chemical characteristics of heated soils (No. UCLA-12-819). California Univ., Los Angeles. Lab. of Nuclear Medicine and Radiation Biology. Olszewski, M. W., Eisenman, S. W. (2017). Influence of biochar amendment on herb growth in a green roof substrate. Horticulture, Environment, and Biotechnology, 58(4), 406-413. Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., Lehmann, J. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48(3), 271-284. Savi, T., Dal Borgo, A., Love, V. L., Andri, S., Tretiach, M., Nardini, A. (2016). Drought versus heat: What's the major constraint on Mediterranean green roof plants?. Science of the Total Environment, 566, 753-760. Sun, F., Lu, S. (2014). Biochars improve aggregate stability, water retention, and pore‐space properties of clayey soil. Journal of Plant Nutrition and Soil Science, 177(1), 26-33. Tsiotsiopoulou, P., Nektarios, P. A., Chronopoulos, I. (2003). Substrate temperature fluctuation and dry-weight partitioning of Lantana grown in four green roof growing media. The Journal of Horticultural Science and Biotechnology, 78(6), 904-910. United States Salinity Laboratory Staff. (1954). Diagnosis and improvement of saline and alkali soils. US Department of Agriculture, Agricultural Handbook No. 60. Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., Joseph, S., Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327(1-2), 235-246. Wang, H., Lin, K., Hou, Z., Richardson, B., Gan, J. (2010). Sorption of the herbicide terbuthylazine in two New Zealand forest soils amended with biosolids and biochars. Journal of Soils and Sediments, 10(2), 283-289. Wang, T., Stewart, C. E., Sun, C., Wang, Y., Zheng, J. (2018). Effects of biochar addition on evaporation in the five typical Loess Plateau soils. Catena, 162, 29-39. Yu, X. Y., Ying, G. G., Kookana, R. S. (2006). Sorption and desorption behaviors of diuron in soils amended with charcoal. Journal of Agricultural and Food Chemistry, 54(22), 8545-8550. Yuristy, G. (2013). Considering a green roof substrate for northern climates (Doctoral dissertation). Zhang, L., Sun, X. Y., Tian, Y., Gong, X. Q. (2014). Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Scientia Horticulturae, 176, 70-78. Zhang, W., Faulkner, J. W., Giri, S. K., Geohring, L. D., Steenhuis, T. S. (2010). Effect of soil reduction on phosphorus sorption of an organic‐rich silt loam. Soil Science Society of America Journal, 74(1), 240-249. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8094 | - |
| dc.description.abstract | 本研究利用採自石門水庫第四和第五沉澱池的水庫底泥以及花生殼粉以不同比例混合,經800 ℃溫度絕氧燒結,製成一種具保水性的新型生物炭陶粒介質,並與傳統工法製成的水庫底泥陶粒及兩種市售無土栽培介質(發泡煉石、火山岩)進行比較,探討生物炭陶粒與傳統陶粒或市售介質在物理、化學與栽培性質上的差異。實驗結果顯示生物炭陶粒具有良好的保水能力,其田間容水量約為20~25 %,高於兩種商用介質的6.1和9.7 %,維持介質從飽和含水至枯萎點的可利用水分時間也高於商用介質的兩倍以上,且隨混合生物炭含量增加而增加。在養分方面,生物炭陶粒保留豐富植物可利用營養元素,如有機碳與無機銨態氮及硝酸態氮,為其他介質所缺乏;生物炭陶粒吸附磷的能力也較其他種介質好,具有能減少磷肥釋放到都市中造成汙染的能力。在為期四個月的萬壽菊(Tagetes erecta)及香蜂草(Melissa officinalis)種植盆栽試驗中,生物炭陶粒盆栽的乾重、苗高以及綠覆蓋面積皆顯著高於商用介質。在限制供水處理中,萬壽菊綠覆蓋面積隨陶粒生物炭含量越高,植物表現也越好。綜合以上結果顯示生物炭陶粒具有作為栽培介質的潛力,然而對其使用的長期穩定性及對植物以及環境的長遠影響仍需更多研究。 | zh_TW |
| dc.description.abstract | This study developed a novel growing medium—biochar ceramsite—contented with high water retention and fertile ability. We made the biochar ceramsite by mixing the Shimen Reservoir and peanut shell at different ratios and sintering the mixtures under the anaerobic atmosphere at 800 ℃. The physiochemical and cultivated properties between the biochar ceramsite and two other commercial soilless cultivation media were accessed. The results showed that the biochar ceramsite contented with higher water holding capacity. Its field capacity was about 20 - 25%, higher than two commercial media (6.1% and 9.7%, respectively). The effective water retention time from the saturation to the wilting point is twice higher than commercial media and increased with the biochar content. The biochar ceramsite also contained higher organic carbon and inorganic ammonium and nitrate nitrogen than the commercial media, which were almost absent. The carbon and inorganic nitrogen concentrations increased with the biochar content. The four-month pot experiments showed that the Tagetes erecta and Melissa officinalis growth was better in the biochar ceramsite than other media, with higher dry mass weight, shoot height, and green coverage area. The results suggest that the biochar ceramsite has the potential as a cultivation medium; however, more research is necessary on the long-term stability of the biochar ceramsite and their long-term effects on both plant and environment. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:48:52Z (GMT). No. of bitstreams: 1 U0001-1910202015442000.pdf: 3262999 bytes, checksum: 234d8687ab91a5552fcec3f243ae5b34 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 謝誌 i 摘要 ii Abstract iii 目錄 iv 表目錄 vi 圖目錄 vii 一、 前言 1 1.1. 水庫底泥 1 1.2. 綠屋頂 2 1.3. 生物炭 3 1.4. 研究目的 5 二、 材料與方法 6 2.1. 陶粒材料與製作 6 2.2. 性質分析 6 2.3. 盆栽試驗 11 2.4. 統計分析 13 三、 實驗結果 14 3.1. 陶粒基本性質 14 3.2. 盆栽試驗 18 四、 討論 22 4.1. 生物炭陶粒與傳統介質之性質比較 22 4.2. 盆栽試驗 27 五、 結論與建議 31 5.1. 結論 31 5.2. 建議 32 六、 參考文獻 34 附錄 53 | |
| dc.language.iso | zh-TW | |
| dc.title | 生物炭陶粒作為無土栽培介質之研究 | zh_TW |
| dc.title | Study of Biochar-based Ceramsite as the Growing Substrate for Soilless Cultivation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳耿東(Keng-Tung Wu),陳建德(Chien-Teh Chen) | |
| dc.subject.keyword | 水庫底泥,生物炭,綠屋頂,保水力,養分吸附, | zh_TW |
| dc.subject.keyword | reservoir sediment,biochar,green roof,water retention,nutrient adsorption, | en |
| dc.relation.page | 57 | |
| dc.identifier.doi | 10.6342/NTU202004290 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-10-22 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-10-01 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1910202015442000.pdf | 3.19 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
