Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80949
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃韻如(Yun-Ju Huang)
dc.contributor.authorPei-Yu Chuen
dc.contributor.author朱沛羽zh_TW
dc.date.accessioned2022-11-24T03:23:16Z-
dc.date.available2021-11-03
dc.date.available2022-11-24T03:23:16Z-
dc.date.copyright2021-11-03
dc.date.issued2021
dc.date.submitted2021-09-28
dc.identifier.citation1. Takano, M., et al., Clear cell carcinoma of the ovary: a retrospective multicentre experience of 254 patients with complete surgical staging. Br J Cancer, 2006. 94(10): p. 1369-74. 2. Coburn, S.B., et al., International patterns and trends in ovarian cancer incidence, overall and by histologic subtype. Int J Cancer, 2017. 140(11): p. 2451-2460. 3. Hwang, J.Y., et al., Ovarian Cancer Incidence in the Multi-Ethnic Asian City-State of Singapore 1968-2012. Asian Pac J Cancer Prev, 2019. 20(12): p. 3563-3569. 4. Kim, S.I., et al., Incidence of epithelial ovarian cancer according to histologic subtypes in Korea, 1999 to 2012. J Gynecol Oncol, 2016. 27(1): p. e5. 5. Chiang, Y.C., et al., Trends in incidence and survival outcome of epithelial ovarian cancer: 30-year national population-based registry in Taiwan. J Gynecol Oncol, 2013. 24(4): p. 342-51. 6. Yahata, T., et al., Histology-specific long-term trends in the incidence of ovarian cancer and borderline tumor in Japanese females: a population-based study from 1983 to 2007 in Niigata. J Obstet Gynaecol Res, 2012. 38(4): p. 645-50. 7. Mackay, H.J., et al., Prognostic relevance of uncommon ovarian histology in women with stage III/IV epithelial ovarian cancer. Int J Gynecol Cancer, 2010. 20(6): p. 945-52. 8. Chan, J.K., et al., Do clear cell ovarian carcinomas have poorer prognosis compared to other epithelial cell types? A study of 1411 clear cell ovarian cancers. Gynecol Oncol, 2008. 109(3): p. 370-6. 9. Sampson, J.A., Endometrial carcinoma of the ovary, arising in endometrial tissue in that organ. Archives of Surgery, 1925. 10(1): p. 1-72. 10. Pearce, C.L., et al., Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case-control studies. Lancet Oncol, 2012. 13(4): p. 385-94. 11. King, C.M., et al., Models of endometriosis and their utility in studying progression to ovarian clear cell carcinoma. J Pathol, 2016. 238(2): p. 185-96. 12. Maeda, D. and I.M. Shih, Pathogenesis and the Role of ARID1A Mutation in Endometriosis-related Ovarian Neoplasms. Advances in Anatomic Pathology, 2013. 20(1): p. 45-52. 13. Yamaguchi, K., et al., Contents of endometriotic cysts, especially the high concentration of free iron, are a possible cause of carcinogenesis in the cysts through the iron-induced persistent oxidative stress. Clinical Cancer Research, 2008. 14(1): p. 32-40. 14. Poleszczuk, J., P. Hahnfeldt, and H. Enderling, Therapeutic implications from sensitivity analysis of tumor angiogenesis models. PLoS One, 2015. 10(3): p. e0120007. 15. DeLair, D., et al., Morphologic Spectrum of Immunohistochemically Characterized Clear Cell Carcinoma of the Ovary: A Study of 155 Cases. American Journal of Surgical Pathology, 2011. 35(1): p. 36-44. 16. Uekuri, C., et al., Toward an understanding of the pathophysiology of clear cell carcinoma of the ovary (Review). Oncology Letters, 2013. 6(5): p. 1163-1173. 17. Wiegand, K.C., et al., ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med, 2010. 363(16): p. 1532-43. 18. Jones, S., et al., Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science, 2010. 330(6001): p. 228-31. 19. Maeda, D., et al., Clinicopathological significance of loss of ARID1A immunoreactivity in ovarian clear cell carcinoma. Int J Mol Sci, 2010. 11(12): p. 5120-8. 20. Samartzis, E.P., et al., ARID1A mutations and PI3K/AKT pathway alterations in endometriosis and endometriosis-associated ovarian carcinomas. Int J Mol Sci, 2013. 14(9): p. 18824-49. 21. Kuo, K.T., et al., Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am J Pathol, 2009. 174(5): p. 1597-601. 22. Jones, S., et al., Somatic Mutations in the Chromatin Remodeling Gene ARID1A Occur in Several Tumor Types. Human Mutation, 2012. 33(1): p. 100-103. 23. Cho, K.R. and I.M. Shih, Ovarian Cancer. Annual Review of Pathology-Mechanisms of Disease, 2009. 4: p. 287-313. 24. Tang, H., et al., Clear cell carcinoma of the ovary: Clinicopathologic features and outcomes in a Chinese cohort. Medicine (Baltimore), 2018. 97(21): p. e10881. 25. Machida, H., et al., Trends and characteristics of epithelial ovarian cancer in Japan between 2002 and 2015: A JSGO-JSOG joint study. Gynecologic Oncology, 2019. 153(3): p. 589-596. 26. Sugiyama, T., et al., Clinical characteristics of clear cell carcinoma of the ovary - A distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy. Cancer, 2000. 88(11): p. 2584-2589. 27. Shu, C.A., et al., Ovarian clear cell carcinoma, outcomes by stage: The MSK experience. Gynecologic Oncology, 2015. 139(2): p. 236-241. 28. Liu, H., et al., Prognosis of ovarian clear cell cancer compared with other epithelial cancer types: A population-based analysis. Oncology Letters, 2020. 19(3): p. 1947-1957. 29. Tan, T.Z., et al., Analysis of gene expression signatures identifies prognostic and functionally distinct ovarian clear cell carcinoma subtypes. EBioMedicine, 2019. 50: p. 203-210. 30. Goff, B.A., et al., Clear cell carcinoma of the ovary: A distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy in stage III disease. Gynecologic Oncology, 1996. 60(3): p. 412-417. 31. Mabuchi, S., T. Sugiyama, and T. Kimura, Clear cell carcinoma of the ovary: molecular insights and future therapeutic perspectives. Journal of Gynecologic Oncology, 2016. 27(3). 32. Itamochi, H., et al., Low proliferation activity may be associated with chemoresistance in clear cell carcinoma of the ovary. Obstet Gynecol, 2002. 100(2): p. 281-7. 33. Cai, K.Q., et al., Microsatellite instability and alteration of the expression of hMLH1 and hMSH2 in ovarian clear cell carcinoma. Hum Pathol, 2004. 35(5): p. 552-9. 34. Fujimura, M., T. Hidaka, and S. Saito, Selective inhibition of the epidermal growth factor receptor by ZD1839 decreases the growth and invasion of ovarian clear cell adenocarcinoma cells. Clin Cancer Res, 2002. 8(7): p. 2448-54. 35. Itamochi, H., J. Kigawa, and N. Terakawa, Mechanisms of chemoresistance and poor prognosis in ovarian clear cell carcinoma. Cancer Sci, 2008. 99(4): p. 653-8. 36. Zaletaev, D.V., et al., [Structural and functional analysis of tumor genomes and the development of test systems for early diagnosis, prognosis and cancer therapy optimization]. Vestn Ross Akad Med Nauk, 2013(9): p. 7-14. 37. Thiery, J.P., Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2002. 2(6): p. 442-54. 38. Grunert, S., M. Jechlinger, and H. Beug, Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol, 2003. 4(8): p. 657-65. 39. Ikenouchi, J., et al., Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci, 2003. 116(Pt 10): p. 1959-67. 40. Canel, M., et al., E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci, 2013. 126(Pt 2): p. 393-401. 41. Khalil, A.A., et al., Collective invasion in ductal and lobular breast cancer associates with distant metastasis. Clin Exp Metastasis, 2017. 34(6-7): p. 421-429. 42. Dongre, A. and R.A. Weinberg, New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol, 2019. 20(2): p. 69-84. 43. Nieto, M.A., et al., Emt: 2016. Cell, 2016. 166(1): p. 21-45. 44. Tam, W.L. and R.A. Weinberg, The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med, 2013. 19(11): p. 1438-49. 45. Huang, R.Y., et al., An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis, 2013. 4: p. e915. 46. Zadran, S., et al., Surprisal analysis characterizes the free energy time course of cancer cells undergoing epithelial-to-mesenchymal transition. Proc Natl Acad Sci U S A, 2014. 111(36): p. 13235-40. 47. Tan, T.Z., et al., Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med, 2014. 6(10): p. 1279-93. 48. Aiello, N.M., et al., EMT Subtype Influences Epithelial Plasticity and Mode of Cell Migration. Dev Cell, 2018. 45(6): p. 681-695 e4. 49. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-90. 50. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8. 51. Lamouille, S., et al., Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Curr Opin Cell Biol, 2013. 25(2): p. 200-7. 52. Bray, S.J. and F.C. Kafatos, Developmental function of Elf-1: an essential transcription factor during embryogenesis in Drosophila. Genes Dev, 1991. 5(9): p. 1672-83. 53. Ostrowski, S., H.A. Dierick, and A. Bejsovec, Genetic control of cuticle formation during embryonic development of Drosophila melanogaster. Genetics, 2002. 161(1): p. 171-82. 54. Cieply, B., et al., Suppression of the epithelial-mesenchymal transition by Grainyhead-like-2. Cancer Res, 2012. 72(9): p. 2440-53. 55. Chung, V.Y., et al., GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep, 2016. 6: p. 19943. 56. Frisch, S.M., J.C. Farris, and P.M. Pifer, Roles of Grainyhead-like transcription factors in cancer. Oncogene, 2017. 36(44): p. 6067-6073. 57. Chung, V.Y., et al., The role of GRHL2 and epigenetic remodeling in epithelial-mesenchymal plasticity in ovarian cancer cells. Commun Biol, 2019. 2: p. 272. 58. Werner, S., et al., Dual roles of the transcription factor grainyhead-like 2 (GRHL2) in breast cancer. J Biol Chem, 2013. 288(32): p. 22993-3008. 59. Xiang, X., et al., Correction: grhl2 determines the epithelial phenotype of breast cancers and promotes tumor progression. PLoS One, 2013. 8(4). 60. Chen, W., et al., Grainyhead-like 2 regulates epithelial plasticity and stemness in oral cancer cells. Carcinogenesis, 2016. 37(5): p. 500-10. 61. Werth, M., et al., The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex. Development, 2010. 137(22): p. 3835-45. 62. Senga, K., et al., Grainyhead-like 2 regulates epithelial morphogenesis by establishing functional tight junctions through the organization of a molecular network among claudin3, claudin4, and Rab25. Mol Biol Cell, 2012. 23(15): p. 2845-55. 63. Nishino, H., et al., Grainyhead-like 2 (GRHL2) regulates epithelial plasticity in pancreatic cancer progression. Cancer Med, 2017. 6(11): p. 2686-2696. 64. Paltoglou, S., et al., Novel Androgen Receptor Coregulator GRHL2 Exerts Both Oncogenic and Antimetastatic Functions in Prostate Cancer. Cancer Res, 2017. 77(13): p. 3417-3430. 65. Pan, X., et al., GRHL2 suppresses tumor metastasis via regulation of transcriptional activity of RhoG in non-small cell lung cancer. Am J Transl Res, 2017. 9(9): p. 4217-4226. 66. Xiang, J., et al., Grhl2 reduces invasion and migration through inhibition of TGFbeta-induced EMT in gastric cancer. Oncogenesis, 2017. 6(1): p. e284. 67. Pawlak, M., et al., Potential protective role of Grainyhead-like genes in the development of clear cell renal cell carcinoma. Mol Carcinog, 2017. 56(11): p. 2414-2423. 68. Tanaka, Y., et al., Gain of GRHL2 is associated with early recurrence of hepatocellular carcinoma. J Hepatol, 2008. 49(5): p. 746-57. 69. Yang, Z., et al., GRHL2 inhibits colorectal cancer progression and metastasis via oppressing epithelial-mesenchymal transition. Cancer Biol Ther, 2019. 20(9): p. 1195-1205. 70. Faddaoui, A., et al., Suppression of the grainyhead transcription factor 2 gene (GRHL2) inhibits the proliferation, migration, invasion and mediates cell cycle arrest of ovarian cancer cells. Cell Cycle, 2017. 16(7): p. 693-706. 71. Yang, J., et al., Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 2004. 117(7): p. 927-39. 72. Qin, Q., et al., Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res, 2012. 22(1): p. 90-106. 73. Zhu, Q.Q., et al., The role of TWIST1 in epithelial-mesenchymal transition and cancers. Tumour Biol, 2016. 37(1): p. 185-97. 74. Lovly, C.M., A.K. Salama, and R. Salgia, Tumor Heterogeneity and Therapeutic Resistance. Am Soc Clin Oncol Educ Book, 2016. 35: p. e585-93. 75. Inoue-Yamauchi, A. and H. Oda, EMT-inducing transcription factor ZEB1-associated resistance to the BCL-2/BCL-X(L) inhibitor is overcome by BIM upregulation in ovarian clear cell carcinoma cells. Biochem Biophys Res Commun, 2020. 526(3): p. 612-617. 76. Takai, M., et al., The EMT (epithelial-mesenchymal-transition)-related protein expression indicates the metastatic status and prognosis in patients with ovarian cancer. J Ovarian Res, 2014. 7: p. 76. 77. Loret, N., et al., The Role of Epithelial-to-Mesenchymal Plasticity in Ovarian Cancer Progression and Therapy Resistance. Cancers (Basel), 2019. 11(6). 78. Chu, P.Y., et al., Applications of the Chick Chorioallantoic Membrane as an Alternative Model for Cancer Studies. Cells Tissues Organs, 2021: p. 1-16. 79. Veinotte, C.J., G. Dellaire, and J.N. Berman, Hooking the big one: the potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era. Dis Model Mech, 2014. 7(7): p. 745-54. 80. Jung, J., H.S. Seol, and S. Chang, The Generation and Application of Patient-Derived Xenograft Model for Cancer Research. Cancer Res Treat, 2018. 50(1): p. 1-10. 81. Xu, C., et al., Patient-derived xenograft mouse models: A high fidelity tool for individualized medicine. Oncol Lett, 2019. 17(1): p. 3-10. 82. Ribatti, D., The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mech Dev, 2016. 141: p. 70-77. 83. Tufan, K., et al., Dorsolumbar junction spinal tuberculosis in an infant: case report. J Neurosurg, 2005. 102(4 Suppl): p. 431-5. 84. Hincke, M.T., et al., Dynamics of Structural Barriers and Innate Immune Components during Incubation of the Avian Egg: Critical Interplay between Autonomous Embryonic Development and Maternal Anticipation. J Innate Immun, 2019. 11(2): p. 111-124. 85. Folkman, J., Tumor angiogenesis: therapeutic implications. N Engl J Med, 1971. 285(21): p. 1182-6. 86. Jin, X., et al., A metastasis map of human cancer cell lines. Nature, 2020. 588(7837): p. 331-336. 87. Zijlstra, A., et al., A quantitative analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. Cancer Res, 2002. 62(23): p. 7083-92. 88. Dobin, A., et al., STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 2013. 29(1): p. 15-21. 89. Li, B. and C.N. Dewey, RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 2011. 12: p. 323. 90. Gil-Bazo, I., et al., 1634P - Inhibitor of Differentiation-1 (Id1) and Id3 Expression Correlates with Epithelial-Mesenchymal Transition (Emt)-Related Proteins (Emtrp) in Non-Small Cell Lung Carcinoma (Nsclc). Annals of Oncology, 2014. 25: p. iv565. 91. Lien, H.C., et al., Fibrillin-1, a novel TGF-beta-induced factor, is preferentially expressed in metaplastic carcinoma with spindle sarcomatous metaplasia. Pathology, 2019. 51(4): p. 375-383. 92. Davis, M.R. and K.M. Summers, Structure and function of the mammalian fibrillin gene family: implications for human connective tissue diseases. Mol Genet Metab, 2012. 107(4): p. 635-47. 93. Tanaka, M. and A. Miyajima, Oncostatin M, a multifunctional cytokine. Rev Physiol Biochem Pharmacol, 2003. 149: p. 39-52. 94. Mehner, C., et al., Targeting an autocrine IL-6-SPINK1 signaling axis to suppress metastatic spread in ovarian clear cell carcinoma. Oncogene, 2020. 39(42): p. 6606-6618. 95. Yang, J., et al., An iron delivery pathway mediated by a lipocalin. Mol Cell, 2002. 10(5): p. 1045-56. 96. Yamada, Y., et al., Lipocalin 2 attenuates iron-related oxidative stress and prolongs the survival of ovarian clear cell carcinoma cells by up-regulating the CD44 variant. Free Radic Res, 2016. 50(4): p. 414-25. 97. Rehwald, C., et al., The iron load of lipocalin-2 (LCN-2) defines its pro-tumour function in clear-cell renal cell carcinoma. Br J Cancer, 2020. 122(3): p. 421-433. 98. Pitteri, S.J., et al., Plasma proteome profiling of a mouse model of breast cancer identifies a set of up-regulated proteins in common with human breast cancer cells. J Proteome Res, 2008. 7(4): p. 1481-9. 99. Bauer, M., et al., Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res Treat, 2008. 108(3): p. 389-97. 100. Yang, J., et al., Lipocalin 2 promotes breast cancer progression. Proc Natl Acad Sci U S A, 2009. 106(10): p. 3913-8. 101. Hu, C., et al., Lipocalin 2: a potential therapeutic target for breast cancer metastasis. Onco Targets Ther, 2018. 11: p. 8099-8106. 102. Ryckman, C., et al., Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J Immunol, 2003. 170(6): p. 3233-42. 103. Zha, H., et al., S100A9 promotes the proliferation and migration of cervical cancer cells by inducing epithelialmesenchymal transition and activating the Wnt/betacatenin pathway. Int J Oncol, 2019. 55(1): p. 35-44. 104. Yin, C., et al., RAGE-binding S100A8/A9 promotes the migration and invasion of human breast cancer cells through actin polymerization and epithelial-mesenchymal transition. Breast Cancer Res Treat, 2013. 142(2): p. 297-309. 105. Liu, Y., et al., EMP1 Promotes the Proliferation and Invasion of Ovarian Cancer Cells Through Activating the MAPK Pathway. Onco Targets Ther, 2020. 13: p. 2047-2055. 106. Jo, A., et al., The versatile functions of Sox9 in development, stem cells, and human diseases. Genes Dis, 2014. 1(2): p. 149-161. 107. Guo, W., et al., Slug and Sox9 cooperatively determine the mammary stem cell state. Cell, 2012. 148(5): p. 1015-28. 108. Chen, W., et al., Grainyhead-like 2 regulates epithelial plasticity and stemness in oral cancer cells. Carcinogenesis, 2016. 37(5): p. 500-510. 109. He, J., et al., Grainyhead-like 2 as a double-edged sword in development and cancer. Am J Transl Res, 2020. 12(2): p. 310-331. 110. Stemmler, M.P., et al., Non-redundant functions of EMT transcription factors. Nat Cell Biol, 2019. 21(1): p. 102-112. 111. Aiello, N.M. and Y. Kang, Context-dependent EMT programs in cancer metastasis. J Exp Med, 2019. 216(5): p. 1016-1026. 112. Saxena, K., M.K. Jolly, and K. Balamurugan, Hypoxia, partial EMT and collective migration: Emerging culprits in metastasis. Transl Oncol, 2020. 13(11): p. 100845. 113. Tran, D.D., et al., Temporal and spatial cooperation of Snail1 and Twist1 during epithelial-mesenchymal transition predicts for human breast cancer recurrence. Mol Cancer Res, 2011. 9(12): p. 1644-57. 114. Liu, Z.H., X.M. Dai, and B. Du, Hes1: a key role in stemness, metastasis and multidrug resistance. Cancer Biol Ther, 2015. 16(3): p. 353-9. 115. Silva, F., A. Felix, and J. Serpa, Functional redundancy of the Notch pathway in ovarian cancer cell lines. Oncol Lett, 2016. 12(4): p. 2686-2691. 116. Patel, I.S., et al., Cadherin switching in ovarian cancer progression. Int J Cancer, 2003. 106(2): p. 172-7. 117. Hudson, L.G., R. Zeineldin, and M.S. Stack, Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clin Exp Metastasis, 2008. 25(6): p. 643-55. 118. Ahmed, N., et al., Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer. Curr Cancer Drug Targets, 2010. 10(3): p. 268-78. 119. Bhattacharya, R., et al., Mesenchymal splice isoform of CD44 (CD44s) promotes EMT/invasion and imparts stem-like properties to ovarian cancer cells. J Cell Biochem, 2018. 119(4): p. 3373-3383. 120. Davidson, B., C.G. Trope, and R. Reich, Epithelial-mesenchymal transition in ovarian carcinoma. Front Oncol, 2012. 2: p. 33. 121. Boac, B.M., et al., Micro-RNAs associated with the evolution of ovarian cancer cisplatin resistance. Gynecol Oncol, 2016. 140(2): p. 259-63. 122. Huang, R.Y., V.Y. Chung, and J.P. Thiery, Targeting pathways contributing to epithelial-mesenchymal transition (EMT) in epithelial ovarian cancer. Curr Drug Targets, 2012. 13(13): p. 1649-53. 123. Haslehurst, A.M., et al., EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer, 2012. 12: p. 91. 124. Baribeau, S., et al., Resveratrol inhibits cisplatin-induced epithelial-to-mesenchymal transition in ovarian cancer cell lines. PLoS One, 2014. 9(1): p. e86987. 125. Kobayashi, H., et al., Novel biomarker candidates for the diagnosis of ovarian clear cell carcinoma. Oncol Lett, 2015. 10(2): p. 612-618. 126. Kajiyama, H., et al., Twist expression predicts poor clinical outcome of patients with clear cell carcinoma of the ovary. Oncology, 2006. 71(5-6): p. 394-401. 127. Inoue-Yamauchi, A. and H. Oda, EMT-inducing transcription factor ZEB1-associated resistance to the BCL-2/BCL-XL inhibitor is overcome by BIM upregulation in ovarian clear cell carcinoma cells. Biochem Biophys Res Commun, 2020. 526(3): p. 612-617. 128. Wu, X., et al., MicroRNA-424 inhibits cell migration, invasion, and epithelial mesenchymal transition by downregulating doublecortin-like kinase 1 in ovarian clear cell carcinoma. Int J Biochem Cell Biol, 2017. 85: p. 66-74. 129. Matsumoto, T., et al., TGF-beta-mediated LEFTY/Akt/GSK-3beta/Snail axis modulates epithelial-mesenchymal transition and cancer stem cell properties in ovarian clear cell carcinomas. Mol Carcinog, 2018. 57(8): p. 957-967. 130. Ho, C.M., et al., Prognostic and predictive values of E-cadherin for patients of ovarian clear cell adenocarcinoma. Int J Gynecol Cancer, 2010. 20(9): p. 1490-7. 131. Schneider, D., M. Tarantola, and A. Janshoff, Dynamics of TGF-beta induced epithelial-to-mesenchymal transition monitored by electric cell-substrate impedance sensing. Biochim Biophys Acta, 2011. 1813(12): p. 2099-107. 132. Meyer-Schaller, N., et al., A Hierarchical Regulatory Landscape during the Multiple Stages of EMT. Dev Cell, 2019. 48(4): p. 539-553 e6. 133. Xu, J., S. Lamouille, and R. Derynck, TGF-beta-induced epithelial to mesenchymal transition. Cell Res, 2009. 19(2): p. 156-72. 134. Gonzalez, D.M. and D. Medici, Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal, 2014. 7(344): p. re8. 135. Toba-Ichihashi, Y., et al., Up-regulation of Syndecan-4 contributes to TGF-beta1-induced epithelial to mesenchymal transition in lung adenocarcinoma A549 cells. Biochem Biophys Rep, 2016. 5: p. 1-7. 136. Tang, L., et al., Correlation of LAMA3 with onset and prognosis of ovarian cancer. Oncol Lett, 2019. 18(3): p. 2813-2818. 137. Borradori, L. and A. Sonnenberg, Structure and function of hemidesmosomes: more than simple adhesion complexes. J Invest Dermatol, 1999. 112(4): p. 411-8. 138. Nelson, A.R., et al., Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol, 2000. 18(5): p. 1135-49. 139. Egeblad, M. and Z. Werb, New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer, 2002. 2(3): p. 161-74. 140. Wang, F.Q., et al., Matrilysin (MMP-7) promotes invasion of ovarian cancer cells by activation of progelatinase. Int J Cancer, 2005. 114(1): p. 19-31. 141. Gialeli, C., A.D. Theocharis, and N.K. Karamanos, Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J, 2011. 278(1): p. 16-27. 142. Llano, E., et al., Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase a overexpressed in brain tumors. Cancer Res, 1999. 59(11): p. 2570-6. 143. Gruenbacher, G. and M. Thurnher, Mevalonate metabolism in cancer. Cancer Lett, 2015. 356(2 Pt A): p. 192-6. 144. Wang, I.H., et al., Mevalonate Pathway Enzyme HMGCS1 Contributes to Gastric Cancer Progression. Cancers (Basel), 2020. 12(5). 145. Ashida, S., C. Kawada, and K. Inoue, Stromal regulation of prostate cancer cell growth by mevalonate pathway enzymes HMGCS1 and HMGCR. Oncol Lett, 2017. 14(6): p. 6533-6542. 146. Fernando, R.I., et al., IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res, 2011. 71(15): p. 5296-306. 147. David, J.M., et al., The IL-8/IL-8R Axis: A Double Agent in Tumor Immune Resistance. Vaccines (Basel), 2016. 4(3). 148. Feliciano, P., CXCL1 and CXCL2 link metastasis and chemoresistance. Nature Genetics, 2012. 44(8): p. 840-840. 149. Zhang, F., et al., Over-expression of CXCL2 is associated with poor prognosis in patients with ovarian cancer. Medicine (Baltimore), 2021. 100(4): p. e24125. 150. Balkwill, F., Cancer and the chemokine network. Nat Rev Cancer, 2004. 4(7): p. 540-50. 151. Cebria-Costa, J.P., et al., The Epithelial-to-Mesenchymal Transition (EMT), a Particular Case. Mol Cell Oncol, 2014. 1(2): p. e960770. 152. Sun, L. and J. Fang, Epigenetic regulation of epithelial-mesenchymal transition. Cell Mol Life Sci, 2016. 73(23): p. 4493-4515. 153. Lavin, D.P. and V.K. Tiwari, Unresolved Complexity in the Gene Regulatory Network Underlying EMT. Front Oncol, 2020. 10: p. 554. 154. Langst, G. and L. Manelyte, Chromatin Remodelers: From Function to Dysfunction. Genes (Basel), 2015. 6(2): p. 299-324. 155. Johnson, K.S., et al., Gene expression and chromatin accessibility during progressive EMT and MET linked to dynamic CTCF engagement. bioRxiv, 2020: p. 2020.05.11.089110. 156. Wang, L.T., et al., TIP60-dependent acetylation of the SPZ1-TWIST complex promotes epithelial-mesenchymal transition and metastasis in liver cancer. Oncogene, 2019. 38(4): p. 518-532. 157. Shi, J., et al., Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell, 2014. 25(2): p. 210-25. 158. Mori-Akiyama, Y., et al., Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc Natl Acad Sci U S A, 2003. 100(16): p. 9360-5. 159. Pritchett, J., et al., Understanding the role of SOX9 in acquired diseases: lessons from development. Trends Mol Med, 2011. 17(3): p. 166-74. 160. Richardson, N., et al., Sox8 and Sox9 act redundantly for ovarian-to-testicular fate reprogramming in the absence of R-spondin1 in mouse sex reversals. Elife, 2020. 9. 161. Morais da Silva, S., et al., Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet, 1996. 14(1): p. 62-8. 162. Irving-Rodgers, H.F. and R.J. Rodgers, Extracellular matrix of the developing ovarian follicle. Semin Reprod Med, 2006. 24(4): p. 195-203. 163. Aguilar-Medina, M., et al., SOX9 Stem-Cell Factor: Clinical and Functional Relevance in Cancer. J Oncol, 2019. 2019: p. 6754040. 164. Raspaglio, G., et al., Sox9 and Hif-2alpha regulate TUBB3 gene expression and affect ovarian cancer aggressiveness. Gene, 2014. 542(2): p. 173-81. 165. Huang, J.Q., et al., SOX9 drives the epithelial-mesenchymal transition in non-small-cell lung cancer through the Wnt/beta-catenin pathway. J Transl Med, 2019. 17(1): p. 143. 166. Zhang, Z., et al., Sox9 promotes renal tubular epithelialmesenchymal transition and extracellular matrix aggregation via the PI3K/AKT signaling pathway. Mol Med Rep, 2020. 22(5): p. 4017-4030. 167. Zhou, H., et al., SOX9 promotes epithelial-mesenchymal transition via the Hippo-YAP signaling pathway in gastric carcinoma cells. Oncol Lett, 2019. 18(1): p. 599-608. 168. Li, T., et al., TGF-beta1-SOX9 axis-inducible COL10A1 promotes invasion and metastasis in gastric cancer via epithelial-to-mesenchymal transition. Cell Death Dis, 2018. 9(9): p. 849. 169. Ma, Y., et al., SOX9 Is Essential for Triple-Negative Breast Cancer Cell Survival and Metastasis. Mol Cancer Res, 2020. 18(12): p. 1825-1838. 170. Chaffer, C.L. and R.A. Weinberg, A Perspective on Cancer Cell Metastasis. Science, 2011. 331(6024): p. 1559-1564. 171. Turajlic, S. and C. Swanton, Metastasis as an evolutionary process. Science, 2016. 352(6282): p. 169-175. 172. Valastyan, S. and R.A. Weinberg, Tumor Metastasis: Molecular Insights and Evolving Paradigms. Cell, 2011. 147(2): p. 275-292. 173. Wan, L.L., K. Pantel, and Y.B. Kang, Tumor metastasis: moving new biological insights into the clinic. Nature Medicine, 2013. 19(11): p. 1450-1464. 174. Jacob, L.S., et al., Metastatic Competence Can Emerge with Selection of Preexisting Oncogenic Alleles without a Need of New Mutations. Cancer Research, 2015. 75(18): p. 3713-3719. 175. Smith, H.A. and Y.B. Kang, Determinants of Organotropic Metastasis. Annual Review of Cancer Biology, Vol 1, 2017. 1: p. 403-423. 176. Bakir, B., et al., EMT, MET, Plasticity, and Tumor Metastasis. Trends in Cell Biology, 2020. 30(10): p. 764-776. 177. Kimbung, S., et al., Transcriptional Profiling of Breast Cancer Metastases Identifies Liver Metastasis-Selective Genes Associated with Adverse Outcome in Luminal A Primary Breast Cancer. Clin Cancer Res, 2016. 22(1): p. 146-57. 178. Riihimaki, M., et al., Patterns of metastasis in colon and rectal cancer. Sci Rep, 2016. 6: p. 29765. 179. Costa-Silva, B., et al., Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol, 2015. 17(6): p. 816-26. 180. Nielsen, S.R., et al., Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat Cell Biol, 2016. 18(5): p. 549-60. 181. Van den Eynden, G.G., et al., The multifaceted role of the microenvironment in liver metastasis: biology and clinical implications. Cancer Res, 2013. 73(7): p. 2031-43. 182. Guth, U., et al., Metastatic patterns at autopsy in patients with ovarian carcinoma. Cancer, 2007. 110(6): p. 1272-1280. 183. Deng, K., et al., Sites of distant metastases and overall survival in ovarian cancer: A study of 1481 patients. Gynecologic Oncology, 2018. 150(3): p. 460-465. 184. Zhao, H.Y., et al., A Population-Based Study on Liver Metastases in Women With Newly Diagnosed Ovarian Cancer. Frontiers in Oncology, 2020. 10. 185. Nan, X., et al., Epithelial-Mesenchymal Plasticity in Organotropism Metastasis and Tumor Immune Escape. Journal of Clinical Medicine, 2019. 8(5). 186. Reichert, M., et al., Regulation of Epithelial Plasticity Determines Metastatic Organotropism in Pancreatic Cancer. Dev Cell, 2018. 45(6): p. 696-711 e8. 187. Zhou, J., et al., Notch and TGFbeta form a positive regulatory loop and regulate EMT in epithelial ovarian cancer cells. Cell Signal, 2016. 28(8): p. 838-49. 188. Yuan, R., et al., HES1 promotes metastasis and predicts poor survival in patients with colorectal cancer. Clin Exp Metastasis, 2015. 32(2): p. 169-79. 189. Li, W.J., et al., Increased expression of miR-1179 inhibits breast cancer cell metastasis by modulating Notch signaling pathway and correlates with favorable prognosis. Eur Rev Med Pharmacol Sci, 2018. 22(23): p. 8374-8382. 190. Pastushenko, I., et al., Identification of the tumour transition states occurring during EMT. Nature, 2018. 556(7702): p. 463-468. 191. Pastushenko, I. and C. Blanpain, EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol, 2019. 29(3): p. 212-226. 192. Kohrman, A.Q. and D.Q. Matus, Divide or Conquer: Cell Cycle Regulation of Invasive Behavior. Trends Cell Biol, 2017. 27(1): p. 12-25. 193. Gallaher, J.A., J.S. Brown, and A.R.A. Anderson, The impact of proliferation-migration tradeoffs on phenotypic evolution in cancer. Sci Rep, 2019. 9(1): p. 2425. 194. Koster, J.J., et al., The sub-cellular localization of annexin V in cultured chick-embryo fibroblasts. Biochem J, 1993. 291………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80949-
dc.description.abstract"卵巢癌於女性十大死因中位居第五名,且晚期病人之遠距離轉移被發現與其存活率極為相關。於上皮性卵巢癌中,卵巢亮細胞癌為一種於亞洲女性中好發率高的亞型,且被發現常因其對化療物之抗藥性相對較嚴重而有較不良的預後。上皮-間質可塑性為一已知廣泛影響癌細胞侵略性及轉移的過程。先前於卵巢癌亮細胞癌的研究指出:上皮性與間質性基因表現之細胞亞型與病人的疾病分期及預後具相關性。為研究卵巢亮細胞癌之上皮間-質可塑性,本篇研究中利用TAYA級RMG2兩種細胞株,藉由降低維持細胞上皮性的轉錄因子GRHL2的表現或過度表現幫助上皮-間質轉移的轉錄因子TWIST1來建立卵巢癌亮細胞在早期上皮-間質轉移的模型,其中降低GRHL2表現造成了部分上皮-間質轉移,而過度表現TWIST1則造成部分間質-上皮轉移。我們利用RNA定序進行基因差異表現量分析,並以雞胚尿囊絨毛膜模型觀察細胞的轉移特性。在基因轉錄部分,我們發現一由GRHL2, GRHL1, SOX9, HES1和OVOL1共同調控之迴路。而在細胞功能部分,GRHL2表現降低使得細胞增生能力沿著上皮-間質轉移的梯度輕微提升;TWIST1過度表現則使得細胞改變轉移時的特性,其中整體轉移能力並為提升,但肝器官趨性上升。本研究提供一個卵巢癌量細胞早期上皮-間質可塑性的細胞研究模型,並提出雞胚尿囊絨毛膜模型是為一適合研究卵巢亮細胞癌器官趨性之模型。此研究亦顯示在部分上皮-間質及部分間質-上皮轉移過程中,腫瘤細胞之生長及轉移趨性能在細胞形態產生變化前發生。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:23:16Z (GMT). No. of bitstreams: 1
U0001-1009202114300500.pdf: 19209104 bytes, checksum: b977c8acede10c8c26ec299c3e1ac50f (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"Acknowledgement i 中文摘要 ii Abstract iii Table of Contents v Chapter 1: Introduction 1 1.1 Ovarian clear cell carcinoma (OCCC) 1 1.2 Epithelial-mesenchymal plasticity (EMP) 3 1.3 EMP in OCCC 6 1.4 The chick chorioallantoic membrane (CAM) model [78] 7 1.5 Hypothesis and specific aims 9 Chapter 2: Materials and Methods 11 Chapter 3: Results 17 3.1 Establishment of EMT spectrum in OCCC: GRHL2 17 3.1.1 Knocking down of GRHL2 induced slight partial EMT within the EMT spectrum, and showed subtle morphology, molecular and functional changes. 17 3.1.2 Knocking down of GRHL2 altered the expression of genes involved in Interleukin-4 regulation of apoptosis, TGF-beta regulation of extracellular matrix and Oncostatin M pathways. 18 3.1.3 Identification of GRHL2 targets in OCCC 22 3.1.4 Knocking down of GRHL2 slightly increased tumor growth and altered metastatic pattern in vivo 24 3.2 Establishment of EMT spectrum in OCCC: TWIST1 26 3.2.1 Overexpressing TWIST1 induced partial MET with minor changes in morphology and functions. 26 3.2.2 Identification of SOX9 and HES1 as the transcription factors for early phase transition. 27 3.2.3 The EMT gradient during early transition showed increased tumor growth and altered metastatic organotropism in vivo 28 Chapter 4: Discussions 30 Chapter 5: Conclusions 40 Figures 42 Tables 75 References 82 Appendix 100"
dc.language.isoen
dc.subject器官趨性zh_TW
dc.subject卵巢亮細胞癌zh_TW
dc.subjectGRHL2zh_TW
dc.subjectTWIST1zh_TW
dc.subject上皮-間質可塑性zh_TW
dc.subject早期上皮-間質轉移zh_TW
dc.subjectearly epithelial-mesenchymal transitionen
dc.subjectEMPen
dc.subjectorganotropismen
dc.subjectGRHL2en
dc.subjectOCCCen
dc.subjectTWIST1en
dc.subjectOvarian clear cell carcinomaen
dc.subjectepithelial-mesenchymal plasticityen
dc.title卵巢亮細胞癌之早期上皮-間質可塑性調控zh_TW
dc.titleRegulation of early epithelial-mesenchymal plasticity (EMP) in ovarian clear cell carcinoma (OCCC)en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.coadvisor蔡丰喬(Feng-Chiao Tsai)
dc.contributor.oralexamcommittee楊慕華(Hsin-Tsai Liu),賴鴻政(Chih-Yang Tseng)
dc.subject.keyword卵巢亮細胞癌,GRHL2,TWIST1,上皮-間質可塑性,早期上皮-間質轉移,器官趨性,zh_TW
dc.subject.keywordOvarian clear cell carcinoma,OCCC,GRHL2,TWIST1,epithelial-mesenchymal plasticity,EMP,early epithelial-mesenchymal transition,organotropism,en
dc.relation.page100
dc.identifier.doi10.6342/NTU202103106
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
U0001-1009202114300500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
18.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved