請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80936完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李建國(Chien-Kuo Lee) | |
| dc.contributor.author | Chan-Yu Chang | en |
| dc.contributor.author | 張展瑜 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:22:40Z | - |
| dc.date.available | 2021-11-08 | |
| dc.date.available | 2022-11-24T03:22:40Z | - |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-15 | |
| dc.identifier.citation | Amon, L., Lehmann, C.H.K., Baranska, A., Schoen, J., Heger, L., and Dudziak, D. (2019). Transcriptional control of dendritic cell development and functions. Int Rev Cel Mol Bio 349, 55-151. Assali, A., Harrington, A.J., and Cowan, C.W. (2019). Emerging roles for MEF2 in brain development and mental disorders. Curr Opin Neurobiol 59, 49-58. Black, B.L., and Olson, E.N. (1998). Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14, 167-196. Bosteels, C., and Scott, C.L. (2020). Transcriptional regulation of DC fate specification. Mol Immunol 121, 38-46. Brown, C.C., Gudjonson, H., Pritykin, Y., Deep, D., Lavallee, V.P., Mendoza, A., Fromme, R., Mazutis, L., Ariyan, C., Leslie, C., et al. (2019). Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity. Cell 179, 846-863 e824. Cante-Barrett, K., Pieters, R., and Meijerink, J.P. (2014). Myocyte enhancer factor 2C in hematopoiesis and leukemia. Oncogene 33, 403-410. Chen, Y.L., Chen, T.T., Pai, L.M., Wesoly, J., Bluyssen, H.A., and Lee, C.K. (2013). A type I IFN-Flt3 ligand axis augments plasmacytoid dendritic cell development from common lymphoid progenitors. J Exp Med 210, 2515-2522. Chen, Y.T., Su, Y.C., and Kung, J.T. (2018). B Cell Development sans B Cell Receptor Responsiveness Due to Unfolded Protein Response-Triggered Mef2c Protein Degradation. Journal of Immunology 201, 2885-2898. Cheng, H., Zheng, Z., and Cheng, T. (2020). New paradigms on hematopoietic stem cell differentiation. Protein Cell 11, 34-44. Chopin, M., Lun, A.T., Zhan, Y., Schreuder, J., Coughlan, H., D'Amico, A., Mielke, L.A., Almeida, F.F., Kueh, A.J., Dickins, R.A., et al. (2019). Transcription Factor PU.1 Promotes Conventional Dendritic Cell Identity and Function via Induction of Transcriptional Regulator DC-SCRIPT. Immunity 50, 77-90 e75. Chopin, M., Preston, S.P., Lun, A.T.L., Tellier, J., Smyth, G.K., Pellegrini, M., Belz, G.T., Corcoran, L.M., Visvader, J.E., Wu, L., et al. (2016). RUNX2 Mediates Plasmacytoid Dendritic Cell Egress from the Bone Marrow and Controls Viral Immunity. Cell Rep 15, 866-878. Dhavan, R., and Tsai, L.H. (2001). A decade of CDK5. Nat Rev Mol Cell Biol 2, 749-759. Durai, V., Bagadia, P., Granja, J.M., Satpathy, A.T., Kulkarni, D.H., Davidson, J.T., Wu, R., Patel, S.J., Iwata, A., Liu, T.T., et al. (2019). Cryptic activation of an Irf8 enhancer governs cDC1 fate specification. Nat Immunol 20, 1161-+. Edmondson, D.G., Lyons, G.E., Martin, J.F., and Olson, E.N. (1994). Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 120, 1251-1263. Eguchi, M., Minami, Y., Kuzume, A., and Chi, S. (2020). Mechanisms Underlying Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia. Biomedicines 8. Ghosh, H.S., Ceribelli, M., Matos, I., Lazarovici, A., Bussemaker, H.J., Lasorella, A., Hiebert, S.W., Liu, K., Staudt, L.M., and Reizis, B. (2014). ETO family protein Mtg16 regulates the balance of dendritic cell subsets by repressing Id2. J Exp Med 211, 1623-1635. Gossett, L.A., Kelvin, D.J., Sternberg, E.A., and Olson, E.N. (1989). A New Myocyte-Specific Enhancer-Binding Factor That Recognizes a Conserved Element Associated with Multiple Muscle-Specific Genes. Mol Cell Biol 9, 5022-5033. Grafone, T., Palmisano, M., Nicci, C., and Storti, S. (2012). An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: biology and treatment. Oncol Rev 6, e8. Grajkowska, L.T., Ceribelli, M., Lau, C.M., Warren, M.E., Tiniakou, I., Nakandakari Higa, S., Bunin, A., Haecker, H., Mirny, L.A., Staudt, L.M., et al. (2017). Isoform-Specific Expression and Feedback Regulation of E Protein TCF4 Control Dendritic Cell Lineage Specification. Immunity 46, 65-77. Hakim, N.H., Kounishi, T., Alam, A.H., Tsukahara, T., and Suzuki, H. (2010). Alternative splicing of Mef2c promoted by Fox-1 during neural differentiation in P19 cells. Genes Cells 15, 255-267. Han, J., Jiang, Y., Li, Z., Kravchenko, V.V., and Ulevitch, R.J. (1997). Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386, 296-299. He, Z., Zhu, X., Shi, Z., Wu, T., and Wu, L. (2019). Metabolic Regulation of Dendritic Cell Differentiation. Front Immunol 10, 410. Herglotz, J., Unrau, L., Hauschildt, F., Fischer, M., Kriebitzsch, N., Alawi, M., Indenbirken, D., Spohn, M., Muller, U., Ziegler, M., et al. (2016). Essential control of early B-cell development by Mef2 transcription factors. Blood 127, 572-581. Hettinger, J., Richards, D.M., Hansson, J., Barra, M.M., Joschko, A.C., Krijgsveld, J., and Feuerer, M. (2013). Origin of monocytes and macrophages in a committed progenitor. Nat Immunol 14, 821-830. Hildner, K., Edelson, B.T., Purtha, W.E., Diamond, M., Matsushita, H., Kohyama, M., Calderon, B., Schraml, B.U., Unanue, E.R., Diamond, M.S., et al. (2008). Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097-1100. Hohaus, S., Petrovick, M.S., Voso, M.T., Sun, Z., Zhang, D.E., and Tenen, D.G. (1995). PU.1 (Spi-1) and C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating factor receptor alpha gene. Mol Cell Biol 15, 5830-5845. Homminga, I., Pieters, R., Langerak, A.W., de Rooi, J.J., Stubbs, A., Verstegen, M., Vuerhard, M., Buijs-Gladdines, J., Kooi, C., Klous, P., et al. (2011). Integrated Transcript and Genome Analyses Reveal NKX2-1 and MEF2C as Potential Oncogenes in T Cell Acute Lymphoblastic Leukemia. Cancer Cell 19, 484-497. Honda, T., Obara, Y., Yamauchi, A., Couvillon, A.D., Mason, J.J., Ishii, K., and Nakahata, N. (2015). Phosphorylation of ERK5 on Thr732 Is Associated with ERK5 Nuclear Localization and ERK5-Dependent Transcription. Plos One 10. Huang, B., Wang, J.S., Zhang, X.Y., Xie, Z.A., Wu, H., Liu, J.H., Jie, Z.W., Zhao, X.D., Qin, A., Fan, S.W., et al. (2019). Administration of SB239063 Ameliorates Ovariectomy-Induced Bone Loss via Suppressing Osteoclastogenesis in Mice. Front Pharmacol 10. Jegalian, A.G., Facchetti, F., and Jaffe, E.S. (2009). Plasmacytoid Dendritic Cells Physiologic Roles and Pathologic States. Adv Anat Pathol 16, 392-404. Kang, J., Gocke, C.B., and Yu, H. (2006). Phosphorylation-facilitated sumoylation of MEF2C negatively regulates its transcriptional activity. BMC Biochem 7, 5. Karsunky, H., Merad, M., Cozzio, A., Weissman, I.L., and Manz, M.G. (2003). Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo. J Exp Med 198, 305-313. Kawane, T., Komori, H., Liu, W.G., Moriishi, T., Miyazaki, T., Mori, M., Matsuo, Y., Takada, Y., Izumi, S., Jiang, Q., et al. (2014). Dlx5 and Mef2 Regulate a Novel Runx2 Enhancer for Osteoblast-Specific Expression. J Bone Miner Res 29, 1960-1969. Khiem, D., Cyster, J.G., Schwarz, J.J., and Black, B.L. (2008). A p38 MAPK-MEF2C pathway regulates B-cell proliferation. P Natl Acad Sci USA 105, 17067-17072. Kiyoi, H., Kawashima, N., and Ishikawa, Y. (2020). FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci 111, 312-322. Lee, C.K., Bluyssen, H.A., and Levy, D.E. (1997). Regulation of interferon-alpha responsiveness by the duration of Janus kinase activity. J Biol Chem 272, 21872-21877. Leenaars, M., and Hendriksen, C.F. (2005). Critical steps in the production of polyclonal and monoclonal antibodies: evaluation and recommendations. ILAR J 46, 269-279. Liu, K., Victora, G.D., Schwickert, T.A., Guermonprez, P., Meredith, M.M., Yao, K., Chu, F.F., Randolph, G.J., Rudensky, A.Y., and Nussenzweig, M. (2009). In vivo analysis of dendritic cell development and homeostasis. Science 324, 392-397. Liu, Q., Wen, W., Tang, L., Qin, C.J., Lin, Y., Zhang, H.L., Wu, H., Ashton, C., Wu, H.P., Ding, J., et al. (2016). Inhibition of SIRPalpha in dendritic cells potentiates potent antitumor immunity. Oncoimmunology 5, e1183850. Machado Cde, V., Telles, P.D., and Nascimento, I.L. (2013). Immunological characteristics of mesenchymal stem cells. Rev Bras Hematol Hemoter 35, 62-67. Mastio, J., Simand, C., Cova, G., Kastner, P., Chan, S., and Kirstetter, P. (2018). Ikaros cooperates with Notch activation and antagonizes TGF beta signaling to promote pDC development. Plos Genet 14. McKenna, K., Beignon, A.S., and Bhardwaj, N. (2005). Plasmacytoid dendritic cells: linking innate and adaptive immunity. J Virol 79, 17-27. McKinsey, T.A., Zhang, C.L., Lu, J., and Olson, E.N. (2000). Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106-111. McKinsey, T.A., Zhang, C.L., and Olson, E.N. (2001). Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol Cell Biol 21, 6312-6321. Molkentin, J.D., Li, L., and Olson, E.N. (1996). Phosphorylation of the MADS-box transcription factor MEF2C enhances its DNA binding activity. J Biol Chem 271, 17199-17204. Nutt, S.L., and Chopin, M. (2020). Transcriptional Networks Driving Dendritic Cell Differentiation and Function. Immunity 52, 942-956. Onai, N., Obata-Onai, A., Tussiwand, R., Lanzavecchia, A., and Manz, M.G. (2006). Activation of the Flt3 signal transduction cascade rescues and enhances type I interferon-producing and dendritic cell development. J Exp Med 203, 227-238. Pon, J.R., and Marra, M.A. (2016). MEF2 transcription factors: developmental regulators and emerging cancer genes. Oncotarget 7, 2297-2312. Sasaki, I., Hoshino, K., Sugiyama, T., Yamazaki, C., Yano, T., Iizuka, A., Hemmi, H., Tanaka, T., Saito, M., Sugiyama, M., et al. (2012). Spi-B is critical for plasmacytoid dendritic cell function and development. Blood 120, 4733-4743. Sathaliyawala, T., O'Gorman, W.E., Greter, M., Bogunovic, M., Konjufca, V., Hou, Z.E., Nolan, G.P., Miller, M.J., Merad, M., and Reizis, B. (2010). Mammalian target of rapamycin controls dendritic cell development downstream of Flt3 ligand signaling. Immunity 33, 597-606. Scott, C.L., Soen, B., Martens, L., Skrypek, N., Saelens, W., Taminau, J., Blancke, G., Van Isterdael, G., Huylebroeck, D., Haigh, J., et al. (2016). The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. J Exp Med 213, 897-911. Sekiyama, Y., Suzuki, H., and Tsukahara, T. (2012). Functional gene expression analysis of tissue-specific isoforms of Mef2c. Cell Mol Neurobiol 32, 129-139. Simoes, A.E.S., Rodrigues, C.M.P., and Borralho, P.M. (2016). The MEK5/ERK5 signalling pathway in cancer: a promising novel therapeutic target. Drug Discov Today 21, 1654-1663. Steelman, L.S., Chappell, W.H., Abrams, S.L., Kempf, R.C., Long, J., Laidler, P., Mijatovic, S., Maksimovic-Ivanic, D., Stivala, F., Mazzarino, M.C., et al. (2011). Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY) 3, 192-222. Steinman, R.M., and Cohn, Z.A. (1973). Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137, 1142-1162. Takagi, H., Fukaya, T., Eizumi, K., Sato, Y., Sato, K., Shibazaki, A., Otsuka, H., Hijikata, A., Watanabe, T., Ohara, O., et al. (2011). Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo. Immunity 35, 958-971. Toka, F.N., Szulc-Dąbrowska, L., Koper, M., Struzik, J., and Gierynska, M. (2020). Classical splenic dendritic cell subsets, cDC1 and cDC2, from C57BL/6 mice are more potent in stimulating the Th1 immune response than those from BALB/c mice during mousepox. The Journal of Immunology 204, 140.120-140.120. Verzi, M.P., Agarwal, P., Brown, C., McCulley, D.J., Schwarz, J.J., and Black, B.L. (2007). The transcription factor MEF2C is required for craniofacial development. Dev Cell 12, 645-652. Wang, Y.P., Liu, L.D., and Xia, Z.G. (2007). Brain-derived neurotrophic factor stimulates the transcriptional and neuroprotective activity of myocyte-enhancer factor 2C through an ERK1/2-RSK2 signaling cascade. J Neurochem 102, 957-966. Weber, J., Peng, H., and Rader, C. (2017). From rabbit antibody repertoires to rabbit monoclonal antibodies. Exp Mol Med 49, e305. Wu, L., and Liu, Y.J. (2007). Development of dendritic-cell lineages. Immunity 26, 741-750. Wu, W.W., de Folter, S., Shen, X., Zhang, W.Q., and Tao, S.H. (2011). Vertebrate Paralogous MEF2 Genes: Origin, Conservation, and Evolution. Plos One 6. Yin, Y., She, H., Li, W., Yang, Q., Guo, S., and Mao, Z. (2012). Modulation of Neuronal Survival Factor MEF2 by Kinases in Parkinson's Disease. Front Physiol 3, 171. Zarubin, T., and Han, J.H. (2005). Activation and signaling of the p38 MAP kinase pathway. Cell Res 15, 11-18. Zhang, D.E., Hetherington, C.J., Chen, H.M., and Tenen, D.G. (1994). The Macrophage Transcription Factor Pu.1 Directs Tissue-Specific Expression of the Macrophage-Colony-Stimulating Factor-Receptor. Mol Cell Biol 14, 373-381. Zhu, B.M., and Gulick, T. (2004). Phosphorylation and alternative Pre-mRNA splicing converge to regulate myocyte enhancer factor 2C activity. Mol Cell Biol 24, 8264-8275. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80936 | - |
| dc.description.abstract | 樹突細胞是連結先天性和適應性免疫系統的重要抗原呈現細胞,樹突細胞可以分化成傳統型樹突細胞(cDC)和漿狀樹突細胞(pDC),其表面有不同的抗原並擁有不同的生理功能。然而,對於cDC和pDC的轉錄調控大部分仍未清楚。我們先前的研究指出Mef2c的表現在pDC高於cDC,且條件基因剔除Mef2c會使pDC發育受損。Flt3配體已知對於樹突細胞的發育調控是重要的。然而,Flt3訊息傳遞路徑以及磷酸化酶級聯如何調控Mef2c的活性仍不清楚。在此,我們的結果顯示在脾臟內的樹突細胞表現六號同功型Mef2c。我們用含有Mef2c結合位的klf2和α-catenin 螢光素酶報導質體來研究Flt3訊息傳遞路徑的下游是如何調控Mef2c的活性。當過度表達Flt3受體和Mef2c時,螢光速酶活性會隨著FL配體的加入而增加。此外,p38和ERK5已知會磷酸化Mef2c,在Ba/F3細胞株過度表達p38和ERK5會使螢光速酶活性上升,並隨著FL配體的刺激而有更顯著地增加。除此之外,加入p38抑制物可以降低螢光素酶的活性,顯示p38可能為Flt3訊息傳遞路徑下游中可以調節Mef2c活性的主要磷酸化酶。Mef2c的T293、T300、S387位點已知會被p38或ERK5磷酸化,在293T或Ba/F3中,磷酸模擬(S/TE/D)或磷酸失活(S/TA)突變並不會改變顯著地改變Mef2c活性。我們也找到另一個在S3962的磷酸化位點,其並不受p38所調控,不過這個位點在樹突細胞發育之中所扮演的角色仍然不清楚。Mef2c不足在永生化的造血前驅及幹細胞株中,會導致runx2和tcf4調控pDC發育重要的基因表現量下降。利用含Mef2c結合位的runx2增強子的螢光速酶活性分析實驗說明FL訊息傳遞路徑也會透過調控Mef2c活性來調控runx2的表現。統整上述結果,Flt3訊號可透過p38磷酸酶上調Mef2c活性進而調控runx2來控制pDC的發育。此外,我們也用Mef2c多肽鏈作為致免疫物並生產出高親和力的大鼠多株抗體,提供高靈敏度的工具以偵測某些細胞中低表現量的Mef2c。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:22:40Z (GMT). No. of bitstreams: 1 U0001-1309202112142300.pdf: 4857281 bytes, checksum: 0ed33c6a45ea327feec65f7085447e23 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "致謝………………………………………………………………...…......i 摘要……………………………………………………………...……….ii Abstract………………………………………………………………... iii Abbreviation……………………………………………………………..v Contents……………………………………………………………..…vii Chapter I Introduction……………………………...…………………. 1 1.1 Dendritic cells………………….……………..………………….2 1.2 Fms-like tyrosine kinase 3 (Flt3), a key cytokine receptor supporting DC development……………………………………..4 1.3 Transcriptional networks regulating DC development…………..5 1.4 Myocyte enhancer factor 2C (Mef2c) ....………......….…………7 1.5 Regulation of Mef2c activity……………………….…………….8 1.6 Rationale………………………………………………………..10 Chapter II Materials and Methods…………………….……..……….12 2.1 Cell line culture……………………………….……………...…13 2.2 DNA constructs for luciferase assay……………………………14 2.3 Antibodies, and inhibitors………………………...…………….15 2.4 Midi preparations…………………………...…………………..16 2.5 Transfection of cells…………………………………………….17 2.6 Flow cytometry………………….……………………………...18 2.7 Luciferase reporter assay…………………………………….....18 2.8 In vitro culture and differentiation of iHSPC…………………..19 2.9 RT-QPCR……………………………………………………….19 2.10 Immunoprecipitation and western blot analysis……………….19 2.11 Statistical analysis……………………………………………..20 2.12 Rabbit polyclonal antibody production………………………..21 2.13 Rat polyclonal antibody production…………………...………22 Chapter III Results……………………….……………………………23 3.1 Expression of Mef2c isoform in primary spleen cells…….…….24 3.2 Flt3 signaling pathway regulates Mef2c activity in HEK 293T cells and Ba/F3………………………………………………………..24 3.3 Flt3 signaling pathway upregulates Mef2c activity through p38 in Ba/F3 cell line……………………………………………...……25 3.4 phosphorylation of S59, T293, T300 and S387 of Mef2c activity is not involved in FL-regulated Mef2c activity…………………26 3.5 Flt3 signaling pathway induces S396 phosphorylation in Mef2c.27 3.6 Mef2c has six potential tyrosine phosphorylation sites…….…..27 3.7 Mef2c deficiency downregulates runx2 and tcf4 expression in vitro…...………………………………………………………28 3.8 Mef2c regulate Runx2 reporter activity…………………………29 3.9 Antigen preparation for Mef2c antibody production……………29 3.10 Rabbit Mef2c polyclonal antibody production………………..30 3.11 Rat Mef2c polyclonal antibody production……………………31 Chapter IV Discussion………………………………………………....33 4.1 Mef2c isoform expression in immune cells…………………….34 4.2 p38 and ERK5 regulate Mef2c activity…………………………34 4.3 Flt3 signaling pathway induces Mef2c S396 phosphorylation…36 4.4 Rabbit and rat Mef2c polyclonal antibody production………….37 Chapter V Figures………………………………….…………………..38 5.1 Expression of Mef2c isoforms in different splenocytes…………39 5.2 Flt3 signaling pathway regulates Mef2c activity in HEK 293T cells and Ba/F3 cells………………………………………………..41 5.3 p38 MAPK regulates mef2c dependent reporter activity in HEK 293T cells and Ba/F3 cells……………………………………43 5.4 p38 inhibitor reduces Mef2c dependent reporter activity in Ba/F3 cells………………………………………...…………………45 5.5 The effects of Mef2c phosphorylation on mef2c activity in HEK 293T cells and Ba/F3 cells……………………………………47 5.6 Flt3 signaling pathway induces phosphorylation of p38 and Mef2c of S396 in mouse Ba/F3 cell line……………………………..50 5.7 Flt3 signaling pathway induces Mef2c S396 phosphorylation and translocation into nuclear in human Reh cell line…………….51 5.8 potential tyrosine phosphorylation sites in Mef2c are highly conserved among different species……………………………52 5.9 Mef2c deficiency downregulates tcf4 and runx2 expression in vitro……………………………………………………...……54. 5.10 Flt3 signaling pathway upregulates a Runx2 reporter activity through p38 MAPK in 293T and Ba/F3 cell line………………55 5.11 The effects of Mef2c phosphorylation on mef2c activeity under Runx2 reporter system in Ba/F3 cell line……………………..59 5.12 Working model in controlling FL-regulated Mef2c phosphorylation for pDC development……………………….60 5.13 Immunogenicity prediction, GST-fusion construction, overexpression and purification of Mef2c-GST fusion protein for generating anti-Mef2c antibody………………………………61 5.14 Analysis of Mef2c rabbit polyclonal antibodies………………66 5.15 Production and analysis of rat polyclonal antibody against Mef2c…………………………………………………………70 Chapter VI References…………………………..….………………….73" | |
| dc.language.iso | en | |
| dc.subject | Flt3配體 | zh_TW |
| dc.subject | ERK5磷酸化酶 | zh_TW |
| dc.subject | 漿狀樹突細胞 | zh_TW |
| dc.subject | Mef2c | zh_TW |
| dc.subject | p38磷酸化酶 | zh_TW |
| dc.subject | Mef2c | en |
| dc.subject | ERK5 kinase | en |
| dc.subject | p38 kinase | en |
| dc.subject | Flt3 ligand | en |
| dc.subject | plasmacytoid dendritic cell | en |
| dc.title | Mef2c的磷酸化在FL調控的漿狀樹突細胞發育中所扮演的角色 | zh_TW |
| dc.title | The Role of Mef2c Phosphorylation in FL-Regulated DC Development | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 嚴仲陽(Hsin-Tsai Liu),徐嘉琳(Chih-Yang Tseng) | |
| dc.subject.keyword | 漿狀樹突細胞,Mef2c,Flt3配體,p38磷酸化酶,ERK5磷酸化酶, | zh_TW |
| dc.subject.keyword | plasmacytoid dendritic cell,Mef2c,Flt3 ligand,p38 kinase,ERK5 kinase, | en |
| dc.relation.page | 78 | |
| dc.identifier.doi | 10.6342/NTU202103141 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-09-16 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1309202112142300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
