請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80920完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蕭友晉(Yo-Jin Shiau) | |
| dc.contributor.author | Sheng-Wen Pan | en |
| dc.contributor.author | 潘聖文 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:21:59Z | - |
| dc.date.available | 2021-11-08 | |
| dc.date.available | 2022-11-24T03:21:59Z | - |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-16 | |
| dc.identifier.citation | Adams, M. J. (1997). Surveying and monitoring amphibians using aquatic funnel traps. Sampling amphibians in lentic habitats, 47-54. Armitage, P., Moss, D., Wright, J., Furse, M. (1983). The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Research, 17(3), 333-347. Balian, E. V., Segers, H., Martens, K., Lévéque, C. (2007). The freshwater animal diversity assessment: an overview of the results. Freshwater animal diversity assessment, 627-637. Barrett, T. J., Joseph, E. P. (2018). Extreme alteration in an acid-sulphate geothermal field: Sulphur Springs, Saint Lucia. Chemical geology, 500, 103-135. Benmarce, K., Hadji, R., Zahri, F., Khanchoul, K., Chouabi, A., Zighmi, K., Hamed, Y. (2021). Hydrochemical and geothermometry characterization for a geothermal system in semiarid dry climate: The case study of Hamma spring (northeast Algeria). Journal of African Earth Sciences, 104285. Bianchini, K., Alvo, R., Tozer, D. C., Mallory, M. L. (2021). The legacy of regional industrial activity: Is loon productivity still negatively affected by acid rain? Biological Conservation, 255, 108977. Blgham, J., Schwertmann, U., Carlson, L., Murad, E. (1990). A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe (II) in acid mine waters. Geochimica et Cosmochimica Acta, 54(10), 2743-2758. Boudreau, A. E., Lynne, B. Y. (2012). The growth of siliceous sinter deposits around high-temperature eruptive hot springs. Journal of Volcanology and Geothermal Research, 247, 1-8. Braunstein, D., Lowe, D. R. (2001). Relationship between spring and geyser activity and the deposition and morphology of high temperature (> 73 C) siliceous sinter, Yellowstone National Park, Wyoming, USA. Journal of Sedimentary Research, 71(5), 747-763. Brown, M., Roth, J., Smith, B., Boscarino, B. (2017). The light at the end of the funnel?: Using light-based traps for the detection and collection of a nearshore aquatic, invasive invertebrate, Hemimysis anomala. Journal of Great Lakes Research, 43(4), 717-727. Byrne, P., Wood, P., Reid, I. (2012). The impairment of river systems by metal mine contamination: a review including remediation options. Critical Reviews in Environmental Science and Technology, 42(19), 2017-2077. Cairns, J., McCormick, P. V., Niederlehner, B. (1993). A proposed framework for developing indicators of ecosystem health. Hydrobiologia, 263(1), 1-44. Carter, J. L., Resh, V. H., Hannaford, M. J. (2017). Macroinvertebrates as biotic indicators of environmental quality. In Methods in stream ecology (pp. 293-318). Elsevier. Casagrande, D. J., Finkelman, R. B., Caruccio, F. T. (1989). The non-participation of organic sulphur in acid mine drainage generation. Environmental geochemistry and health, 11(3-4), 187-192. Chapman, D. V. (1996). Water quality assessments: a guide to the use of biota, sediments and water in environmental monitoring. CRC Press. Chen, T.-M., Kuschner, W. G., Gokhale, J., Shofer, S. (2007). Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. The American journal of the medical sciences, 333(4), 249-256. Chessman, B. C., McEvoy, P. K. (2012). Insights into human impacts on streams from tolerance profiles of macroinvertebrate assemblages. Water, Air, Soil Pollution, 223(3), 1343-1352. Chinnadurai, S., Campos, C. J., Geethalakshmi, V., Sharma, J., Kripa, V., Mohamed, K. (2020). Microbiological quality of shellfish harvesting areas in the Ashtamudi and Vembanad estuaries (India): environmental influences and compliance with international standards. Marine Pollution Bulletin, 156, 111255. Chou, C.-L. (2012). Sulfur in coals: a review of geochemistry and origins. International journal of coal geology, 100, 1-13. Cummins, K. W. (2016). Combining taxonomy and function in the study of stream macroinvertebrates. Journal of Limnology, 75. Cunningham, W., Cunningham, M. A. (2010). Principles of environmental science. McGraw-Hill Higher Education. Das, A., Justic, D., Inoue, M., Hoda, A., Huang, H., Park, D. (2012). Impacts of Mississippi River diversions on salinity gradients in a deltaic Louisiana estuary: Ecological and management implications. Estuarine, Coastal and Shelf Science, 111, 17-26. Davies, S. P., Tsomides, L. (2002). Methods for biological sampling and analysis of Maine's rivers and streams. Citeseer. Davy-Bowker, J., Murphy, J. F., Rutt, G. P., Steel, J. E. (2005). The development and testing of a macroinvertebrate biotic index for detecting the impact of acidity on streams. Archiv für Hydrobiologie, 383-403. Degens, B. P., Krassoi, R., Galvin, L., Reynolds, B., Micevska, T. (2018). Net acidity indicates the whole effluent toxicity of pH and dissolved metals in metalliferous saline waters. Chemosphere, 198, 492-500. Duffield, W. A., Sass, J. H. (2003). Geothermal energy: Clean power from the earth's heat. US Geological Survey. Eppinger, R. G., Fuge, R. (2009). Natural low-pH environments unaffected by human activity. Applied Geochemistry, 24(2), 189-358. Fakhraee, M., Li, J., Katsev, S. (2017). Significant role of organic sulfur in supporting sedimentary sulfate reduction in low-sulfate environments. Geochimica et Cosmochimica Acta, 213, 502-516. Findley, W. G. (2003). Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press. Finucci, B., Hurst, R., Bagley, N., Al Dhaheri, S., Grandcourt, E. (2019). Diversity, abundance, behaviour, and catchability of fishes from trap catch and underwater video in the Arabian Gulf. Fisheries Research, 220, 105342. Fujii, M., Tanabe, S., Yamada, M., Mishima, T., Sawadate, T., Ohsawa, S. (2017). Assessment of the potential for developing mini/micro hydropower: A case study in Beppu City, Japan. Journal of Hydrology: Regional Studies, 11, 107-116. Gallois, R. (2007). The formation of the hot springs at Bath Spa, UK. Geological Magazine, 144(4), 741-747. Gilbert, G. K., Hunt, C. B. (1988). Geology of the Henry Mountains, Utah, as recorded in the notebooks of GK Gilbert, 1875-76 (Vol. 167). Geological Society of America. Gong, S., Peng, Y., Bao, H., Feng, D., Cao, X., Crockford, P. W., Chen, D. (2018). Triple sulfur isotope relationships during sulfate-driven anaerobic oxidation of methane. Earth and Planetary Science Letters, 504, 13-20. Grasby, S. E., Ferguson, G., Bartier, P., Neville, L. (2019). Seismic induced flow disruption of Gandll K'in Gwaay. yaay thermal springs, Gwaii Haanas National Park Reserve, Canada. Applied Geochemistry, 103, 118-130. Gruhlke, M. C., Slusarenko, A. J. (2012). The biology of reactive sulfur species (RSS). Plant Physiology and Biochemistry, 59, 98-107. Hilsenhoff, W. L. (1982). Using a biotic index to evaluate water quality in streams. Department of Natural Resources Madison, WI. Hogsden, K. L., Harding, J. S. (2012). Anthropogenic and natural sources of acidity and metals and their influence on the structure of stream food webs. Environmental Pollution, 162, 466-474. Holmer, M., Storkholm, P. (2001). Sulphate reduction and sulphur cycling in lake sediments: a review. Freshwater Biology, 46(4), 431-451. Houghton, J. L., Gilhooly III, W. P., Kafantaris, F.-C. A., Druschel, G. K., Lu, G.-S., Amend, J. P., Godelitsas, A., Fike, D. A. (2019). Spatially and temporally variable sulfur cycling in shallow-sea hydrothermal vents, Milos, Greece. Marine Chemistry, 208, 83-94. Huisman, J. L., Schouten, G., Schultz, C. (2006). Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy, 83(1-4), 106-113. Jeelani, G. (2005). Chemical quality of the spring waters of Anantnag, Kashmir. Journal Geological Society of India, 66(4), 453. Joulian, C., Fonti, V., Chapron, S., Bryan, C. G., Guezennec, A.-G. (2020). Bioleaching of pyritic coal wastes: bioprospecting and efficiency of selected consortia. Research in Microbiology, 171(7), 260-270. Jovovic, I., Grossi, V., Adam, P., Simon, L., Antheaume, I., Gelin, F., Ader, M., Cartigny, P. (2020). Quantitative and specific recovery of natural organic and mineral sulfur for (multi-) isotope analysis. Organic Geochemistry, 146, 104055. Karakaya, M. Ç., Bozdağ, A., Ercan, H. Ü., Karakaya, N. (2020). The origin of Miocene evaporites in the Tuz Gölü basin (Central Anatolia, Turkey): Implications from strontium, sulfur and oxygen isotopic compositions of the Ca-Sulfate minerals. Applied Geochemistry, 120, 104682. Karr, J. R. (1981). Assessment of biotic integrity using fish communities. Fisheries, 6(6), 21-27. Kikawada, Y., Kawai, S., Shimada, K., Oi, T. (2006). Origin and fate of dissolved arsenic in acidic rivers in the Kusatsu hot spring area, Gunma, Japan. Geochimica et Cosmochimica Acta, 70(18), A317. Kimmel, W. G., Argent, D. G. (2019). Impacts of point-source Net Alkaline Mine Drainage (NAMD) on stream macroinvertebrate communities. Journal of environmental management, 250, 109484. Kirk, E. J., Perry, S. A. (1994). A comparison of three artificial substrate samplers: macroinvertebrate densities, taxa richness, and ease of use. Water Environment Research, 66(3), 193-198. Kresic, N., Stevanovic, Z. (2010). Groundwater Hydrology of Springs: Engineering, Theory. Management, and Sustainability. Elsevier, 573. Krynak, E. M., Yates, A. G. (2018). Benthic invertebrate taxonomic and trait associations with land use in an intensively managed watershed: Implications for indicator identification. Ecological Indicators, 93, 1050-1059. Kumari, P., Maiti, S. K. (2020). Bioassessment in the aquatic ecosystems of highly urbanized agglomeration in India: An application of physicochemical and macroinvertebrate-based indices. Ecological Indicators, 111, 106053. Lamberti, G., Hauer, F. R. (2017). Methods in stream ecology: volume 2: ecosystem function. Academic Press. Lemley, D. A., Adams, J. B., Taljaard, S., Strydom, N. A. (2015). Towards the classification of eutrophic condition in estuaries. Estuarine, Coastal and Shelf Science, 164, 221-232. Lynch, D. T., Leasure, D. R., Magoulick, D. D. (2019). Flow alteration-ecology relationships in Ozark Highland streams: Consequences for fish, crayfish and macroinvertebrate assemblages. Science of the Total Environment, 672, 680-697. Macenić, M., Kurevija, T., Medved, I. (2020). Novel geothermal gradient map of the Croatian part of the Pannonian Basin System based on data interpretation from 154 deep exploration wells. Renewable and Sustainable Energy Reviews, 132, 110069. Marty, L., Siala, W., Schwarzländer, M., Fricker, M. D., Wirtz, M., Sweetlove, L. J., Meyer, Y., Meyer, A. J., Reichheld, J.-P., Hell, R. (2009). The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proceedings of the National Academy of Sciences, 106(22), 9109-9114. Meinzer, O. E. (1927). Large springs in the United States. Moisan, J. R., Moisan, T. A., Abbott, M. R. (2002). Modelling the effect of temperature on the maximum growth rates of phytoplankton populations. Ecological Modelling, 153(3), 197-215. Nordstrom, D. K. (2015). Baseline and premining geochemical characterization of mined sites. Applied Geochemistry, 57, 17-34. Nordstrom, D. K., Blowes, D. W., Ptacek, C. J. (2015). Hydrogeochemistry and microbiology of mine drainage: An update. Applied Geochemistry, 57, 3-16. O’Callaghan, P., Kelly-Quinn, M. (2013). Performance of selected macroinvertebrate-based biotic indices for rivers draining the Merendon Mountains region of Honduras. UNED Research Journal, 5(1), 45-54. Ogawa, Y., Ishiyama, D., Shikazono, N., Iwane, K., Kajiwara, M., Tsuchiya, N. (2012). The role of hydrous ferric oxide precipitation in the fractionation of arsenic, gallium, and indium during the neutralization of acidic hot spring water by river water in the Tama River watershed, Japan. Geochimica et Cosmochimica Acta, 86, 367-383. Oliveira, F. R., Surendra, K., Jaisi, D. P., Lu, H., Unal-Tosun, G., Sung, S., Khanal, S. K. (2020). Alleviating sulfide toxicity using biochar during anaerobic treatment of sulfate-laden wastewater. Bioresource technology, 301, 122711. Orr, S. E., Buchwalter, D. B. (2020). It’s all about the fluxes: temperature influences ion transport and toxicity in aquatic insects. Aquatic Toxicology, 221, 105405. Pielou, E. C. (1969). An introduction to mathematical ecology. An introduction to mathematical ecology. Pirajno, F. (2020). Subaerial hot springs and near-surface hydrothermal mineral systems past and present, and possible extraterrestrial analogues. Geoscience Frontiers, 11(5), 1549-1569. Sahinoglu, E. (2018). Cleaning of high pyritic sulfur fine coal via flotation. Advanced Powder Technology, 29(7), 1703-1712. Schneider, S. C., Kahlert, M., Kelly, M. G. (2013). Interactions between pH and nutrients on benthic algae in streams and consequences for ecological status assessment and species richness patterns. Science of the Total Environment, 444, 73-84. Shakeri, A., Moore, F., Kompani-Zare, M. (2008). Geochemistry of the thermal springs of Mount Taftan, southeastern Iran. Journal of Volcanology and Geothermal Research, 178(4), 829-836. Shannon, C. E., Weaver, W. (1949). The mathematical theory of communication, 117 pp. Urbana: University of Illinois Press. Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H., Stix, J. (2015). The encyclopedia of volcanoes. Elsevier. Simpson, E. H. (1949). Measurement of diversity. nature, 163(4148), 688-688. Soininen, J., Bartels, P., Heino, J., Luoto, M., Hillebrand, H. (2015). Toward more integrated ecosystem research in aquatic and terrestrial environments. BioScience, 65(2), 174-182. Steyn, M., Oberholster, P., Botha, A., Genthe, B., van den Heever-Kriek, P., Weyers, C. (2019). Treated acid mine drainage and stream recovery: Downstream impacts on benthic macroinvertebrate communities in relation to multispecies toxicity bioassays. Journal of environmental management, 235, 377-388. Sun, Y., Chen, Y., Wei, J., Zhang, X., Zhang, L., Yang, Z., Huang, Y. (2021). Ultraviolet-B radiation stress alters the competitive outcome of algae: Based on analyzing population dynamics and photosynthesis. Chemosphere, 272, 129645. Swift, M. C., Canfield, T. J., La Point, T. W. (1996). Sampling benthic communities for sediment toxicity assessments using grab samplers and artificial substrates. Journal of Great Lakes Research, 22(3), 557-564. Todd, D. K., Mays, L. W. (2004). Groundwater hydrology. John Wiley Sons. Trites, A. W. (2019). Marine Mammal Trophic Levels and Trophic Interactions☆. Encyclopedia of Ocean Sciences, 589-594. Tsang, Y., Infante, D. M., Wang, L., Krueger, D., Wieferich, D. (2021). Conserving stream fishes with changing climate: Assessing fish responses to changes in habitat over a large region. Science of the Total Environment, 755, 142503. Villar-Argaiz, M., Balseiro, E. G., Modenutti, B. E., Souza, M. S., Bullejos, F., Medina-Sánchez, J., Carrillo, P. (2018). Resource versus consumer regulation of phytoplankton: testing the role of UVR in a Southern and Northern hemisphere lake. Hydrobiologia, 816(1), 107-120. White, D., Muffler, L., Truesdell, A. (1971). Vapor-dominated hydrothermal systems compared with hot-water systems. Economic Geology, 66(1), 75-97. White, W. B. (2010). Springwater geochemistry. In Groundwater hydrology of springs (pp. 231-268). Elsevier. Williams-Jones, G., Rymer, H. (2015). Hazards of volcanic gases. In The Encyclopedia of Volcanoes (pp. 985-992). Elsevier. Yamada, M., Shoji, J., Ohsawa, S., Mishima, T., Hata, M., Honda, H., Fujii, M., Taniguchi, M. (2017). Hot spring drainage impact on fish communities around temperate estuaries in southwestern Japan. Journal of Hydrology: Regional Studies, 11, 69-83. Zak, D., Hupfer, M., Cabezas, A., Jurasinski, G., Audet, J., Kleeberg, A., McInnes, R., Kristiansen, S. M., Petersen, R. J., Liu, H. (2020). Sulphate in freshwater ecosystems: A review of sources, biogeochemical cycles, ecotoxicological effects and bioremediation. Earth-Science Reviews, 103446. 宋聖榮、劉佳玟(2003)。臺灣的溫泉。台北縣:遠足文化。. 張永仁(1998)。昆蟲入門。台北市:遠流出版。 林曜松(1999)。生物多樣性保育之省思。環境教育月刊38,1-6。 川合禎次(1985)。日本產水生昆蟲檢索圖說。東京:東海大學出版會。 陳昭男、江妍慧、陳彥傑(2010)。泥漿溫泉美容。科學發展454,34-39。 臺北市政府(2019)。臺北市溫泉區管理計畫(修訂版)。臺北市:臺北市政府。 陳宏宇、劉佳玫(2013)。臺灣地熱潛能之發展。臺灣能源期刊1(1),85-103。 林幸助、于淑芬(2007)。台灣櫻花鉤吻鮭與牠的鄰居-溪流中的藻類。科學發展417。 周璟璇(2020)。溫泉開發取供之施工探討-以北投行義路溫泉為例。國立臺灣海洋大學,碩士論文。 陳文山、俞何興、俞震甫、鍾孫霖、林正洪、林啟文、王國龍(2016)。臺灣地質概論。台北市:中華民國地質學會。. 經濟部水利署(2012-2016)。臺灣溫泉監測季報。(GPN:2010103969)。台北市:經濟部水利署台北辦公區。 林秉石(2003)。淡水螺類在不同流速之機械反應作為生態工程之設計。國立臺灣大學生物環境系統工程學系暨研究所,碩士論文。 宋聖榮(2005)。陽明山溫泉、地熱資源與利用調查。內政部營建署陽明山國家公園管理處委託研究報告。(GRB編號:PG9403-0412)。臺北市:陽明山國家公園管理處。 朱達仁(2004)。台北縣雙溪鄉后番子坑溪應用生態工法整治影響及生態監測評估之研究。第十四屆水利工程研討會論文集,91-98。 吳世昌、湯弘吉(1990)。日本沼蝦生物學初步研究。台灣水產試驗所48,121-126。 林信輝、蔡志偉、李明儒(2007)。生物整合指數之建立與應用-以頭汴坑溪集水區為例,水土保持學報39(1),1-13。 李重義(2009)。陽明山國家公園酸性溫泉物種調查及生存機制之研究。陽明山國家公園管理處委託研究報告。(GRB編號:PG9803-0667)。臺北市:陽明山國家公園管理處。 翁雄隆(2001)。陽明山國家公園全區溫泉水資源利用調查與管理規劃-以龍鳳谷地區為整建示範報告書。內政部營建署陽明山國家公園管理處委託研究報告。(GPN:1009005532)。臺北市:陽明山國家公園管理處。 蕭玉晨(2019)。本土淡水蝦種原保存與繁養殖研究。行政院農業委員會水產試驗所委託研究報告。基隆市:農委會水產試驗所。 鐘遠、樊娟、劉春光、莊源益(2009)。硫酸鹽對淡水浮游藻類群落結構的影響研究。環境科學期刊30(8)。 張甫英、李辛夫(1997)。酸性水對幾種主要淡水魚類的影響。水生生物學報21(1)。 施志昀、李伯雯(2018)。台灣淡水蟹圖鑑。台中市:晨星出版有限公司。 游耀智(2018)。台灣北部金瓜石酸性礦山排水整治及稀土元素富集。國立成功大學地球科學系碩博士班,碩士論文。 潘述元、張尊國(2019)。溫泉廢水排放對水利會灌溉用水之影響評估。財團 法人台北市七星農田水利研究發展基金會,期末報告。 賴玉菁(2014)。國家生技研究園區施工中生態監測委託調查分析第二季報告書。中央研究院委託研究報告。台北市:中央研究院。 王漢泉(2002)。台灣河川水質魚類指標之研究。環境檢驗所環境調查研究年報9,207-236。 王漢泉、張寬敏(1985)。淡水河流域軟體動物調查與水質評估。貝類學報11,91-92。 陳富美、陳弘成、葉信利(2010)。淡水域的指標生物-多齒新米蝦。水試專訊29 (45)。 陳平、劉大綱、陳厚宇(2013)。應用綜合評價法與衛星水色葉綠素濃度分析台灣近岸環境優養化潛勢。國立中山大學第35屆海洋工程研討會論文集。 吳明洋(1992)。台灣河川底棲生物監測手冊—水棲昆蟲。臺北市:行政院環保署環境檢驗所。 沈世傑(1994)。臺灣魚類誌。臺北市:國立臺灣大學動物系。 農業氣象觀測網監測系統。檢自https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp (8/7/2021) 水利署中文版全球資訊網。檢自https://www.wra.gov.tw/cp.aspx?n=3264 dn=3265 (4/20/2021) 內政部戶政司全球資訊網-人口統計資料。檢自https://www.ris.gov.tw/app/portal/346 (4/20/2021)。 內政部國土測繪中心國土測繪圖資服務雲。檢自https://maps.nlsc.gov.tw/ (4/20/2021)。 內政部營建署城鄉發展分署-全國土地使用分區資料查詢系統。檢自 http://luz.tcd.gov.tw/WEB/ (4/20/2021)。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80920 | - |
| dc.description.abstract | 硫是生物及環境最重要的元素之一,在生物體內強化細胞排出毒素,加強抵抗力;在自然界中也負責調節環境能量循環的氧化還原過程。全球大部分的硫元素都是以化合物的型態儲存在地層中,然而人為過度開發容易造成大量硫化物溶於水加速氧化;使得流域中的硫酸鹽濃度過度增加、水質變酸的問題產生,同時在無形中也影響水生生物,這些現象統稱硫酸鹽排水。 本研究旨在於探討硫酸鹽排水對溪流生態的影響,針對長期排入硫酸鹽溫泉的八仙圳及南磺溪流域進行為期一年的水質分析及物種調查,並與未受排水影響的松溪流域比較之差異。分析結果顯示八仙圳因上游流域大量稀釋,水質不受硫酸鹽排水影響;南磺溪則受影響程度較大,解離的硫酸鹽濃度為松溪流域的七倍之多;其他水質檢測結果也顯示南磺溪水體呈現明顯酸化(pH4.9±1.2),部分流域水溫高於周圍環境5-10℃且導電度也都有顯著升高的現象。由於南磺溪水質嚴重受損,連帶造成物種組成之改變,流域僅剩高耐受污染的水棲昆蟲(如:搖蚊科),其餘魚、蝦、貝、蟹類物種幾乎消失。根據香農及辛普森多樣性指數分析顯示松溪流域多樣性程度高、物種個體數分布也較為均勻,皆由高敏感度的生物及原生種組成,營養階層關係錯綜複雜;八仙圳流域環境受人為干擾,高階魚類物種組成改由外來種取代(如:吳郭魚);南磺溪多樣性程度則為最低,且物種個體數差異大;科級生物指標(FBI)及生物監測工作組平均得分(ASPT)針對南磺溪的水棲昆蟲組成進行流域健康程度評估,結果也均顯示為污染至嚴重污染等級;生物整合指標(IBI)則因南磺溪魚類物種消失導致數據過低而無法計算。藉由各項物種生態指標評估結果可知硫酸鹽溫泉排水不只對水質產生強烈影響,同時也對物種組成造成相當的危害。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:21:59Z (GMT). No. of bitstreams: 1 U0001-1609202120255500.pdf: 7101143 bytes, checksum: bfafde6a9f7fc5d04fd11f3b708f9036 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 I 謝誌 II 摘要 III 目錄 VI 圖目錄 X 表目錄 XII 第一章 緒論 1 1.1 計畫緣起 1 1.2 研究目的 3 第二章 文獻探討 4 2.1 自然界硫的重要性 4 2.1.1 環境硫化物成分 4 2.1.2 生物活性硫物種 4 2.1.3 自然界硫循環 5 2.2 人為活動產生硫污染問題 7 2.2.1 大氣中的硫污染 7 2.2.2 水域中的硫污染 8 2.3 硫酸鹽排水之形成因素 10 2.3.1 酸性礦山排水 10 2.3.2 硫酸鹽溫泉排水 13 2.4 溪流生態系統 16 2.4.1 物種營養階層 16 2.4.2 硫酸鹽排水對水生物種之影響 21 2.5 物種生態指標 24 2.5.1 物種多樣性指數 24 2.5.2 物種指標分析 25 2.6 台灣硫酸鹽溫泉形成及規範 30 2.6.1 溫泉之定義 31 2.6.2 天然硫酸鹽溫泉之形成 32 2.6.3 人工氣井硫酸鹽溫泉 41 2.6.4 溫泉排水之規範及管理 43 2.7 南磺溪流域之現況 44 2.7.1 流域、溫泉區概述及周圍土地使用 46 2.7.2 南磺溪硫酸鹽溫泉廢水排放量 50 第三章 研究方法與過程 53 3.1 研究架構 53 3.2 採樣點的選定 54 3.3 環境監測及採樣 57 3.3.1 水質監測 57 3.3.2 環境監測 57 3.3.3 貝類及水棲昆蟲之採集 58 3.3.4 魚類及甲殼類之採集 59 3.4 實驗室分析 61 3.4.1 水中硫酸鹽濃度分析 61 3.4.2 葉綠素a濃度分析 62 3.5 數據分析之處理 64 3.5.1 物種捕捉量計算 64 3.5.2 統計分析 69 第四章 結果與討論 70 4.1 流域環境因子之差異 70 4.1.1 流速之差異 70 4.1.2 日照程度之差異 71 4.2 流域水質之影響 72 4.2.1 酸鹼值之變化 72 4.2.2 水溫之變化 76 4.2.3 水中硫酸鹽濃度之變化 79 4.2.4 導電度之變化 83 4.2.5 水中葉綠素a濃度之變化 86 4.2.6 各項水質之相關性分析 89 4.3 流域水生物種之影響 90 4.3.1 螺貝類之物種組成及數量 90 4.3.2 水棲昆蟲之物種組成及數量 92 4.3.3 淡水蝦之物種組成及數量 94 4.3.4 蟹類之物種組成及數量 97 4.3.5 淡水魚之物種組成及數量 99 4.3.6 各項物種之相關性分析 101 4.4 物種生態指標分析結果及評估 107 4.4.1 香農多樣性指數及均勻度結果之探討 107 4.4.2 辛普森多樣性指數結果之探討 109 4.4.3 科級生物指標(FBI)分析結果之探討 111 4.4.4 生物監測工作組平均得分(ASPT)分析結果之探討 113 4.4.5 生物整合指標(IBI)分析結果之探討 115 4.4.6 各項物種生態指標比較及優缺點說明 117 第五章 結論及建議 119 5.1 結論 119 5.2 建議 121 參考資料 122 附錄 136 | |
| dc.language.iso | zh-TW | |
| dc.subject | 溪流生態系統 | zh_TW |
| dc.subject | 野外採樣 | zh_TW |
| dc.subject | 硫酸鹽溫泉排水 | zh_TW |
| dc.subject | 物種生態指標 | zh_TW |
| dc.subject | 營養階層 | zh_TW |
| dc.subject | Sulfate springs drainage | en |
| dc.subject | Species ecological indicator | en |
| dc.subject | River ecosystem | en |
| dc.subject | Trophic level | en |
| dc.subject | Field sampling | en |
| dc.title | 酸性硫酸鹽排水對溪流生態之影響 | zh_TW |
| dc.title | Impact of Acidic Sulfate Drainage on River Ecology | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡正偉(Hsin-Tsai Liu),潘述元(Chih-Yang Tseng),江莉琦 | |
| dc.subject.keyword | 野外採樣,營養階層,溪流生態系統,物種生態指標,硫酸鹽溫泉排水, | zh_TW |
| dc.subject.keyword | Field sampling,Trophic level,River ecosystem,Species ecological indicator,Sulfate springs drainage, | en |
| dc.relation.page | 160 | |
| dc.identifier.doi | 10.6342/NTU202103218 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-09-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1609202120255500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
