Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80904
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor施庭芳(Tiffany Ting-Fang Shih)
dc.contributor.authorChih-Horng Wuen
dc.contributor.author吳志宏zh_TW
dc.date.accessioned2022-11-24T03:21:18Z-
dc.date.available2021-11-08
dc.date.available2022-11-24T03:21:18Z-
dc.date.copyright2021-11-08
dc.date.issued2021
dc.date.submitted2021-09-23
dc.identifier.citation1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010 Jul;39(4):412–23. 2. Bekfani T, Pellicori P, Morris DA, Ebner N, Valentova M, Steinbeck L, et al. Sarcopenia in patients with heart failure with preserved ejection fraction: Impact on muscle strength, exercise capacity and quality of life. International journal of cardiology. 2016 Nov 1;222:41–6. 3. Prado CMM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008 Jul;9(7):629–35. 4. Hanai T, Shiraki M, Nishimura K, Ohnishi S, Imai K, Suetsugu A, et al. Sarcopenia impairs prognosis of patients with liver cirrhosis. Nutrition. 2015 Jan 1;31(1):193–9. 5. Pereira RA, Cordeiro AC, Avesani CM, Carrero JJ, Lindholm B, Amparo FC, et al. Sarcopenia in chronic kidney disease on conservative therapy: prevalence and association with mortality. Nephrol Dial Transplant. 2015 Oct;30(10):1718–25. 6. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019 Jan 1;48(1):16–31. 7. Evans WJ, Morley JE, Argiles J, Bales C, Baracos V, Guttridge D, et al. Cachexia: a new definition. Clinical nutrition (Edinburgh, Scotland). 2008 Dec;27(6):793–9. 8. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. The Lancet Oncology. 2011 May;12(5):489–95. 9. Sur MD, Namm JP, Hemmerich JA, Buschmann MM, Roggin KK, Dale W. Radiographic Sarcopenia and Self-reported Exhaustion Independently Predict NSQIP Serious Complications After Pancreaticoduodenectomy in Older Adults. Ann Surg Oncol. 2015 Nov;22(12):3897–904. 10. Choi Y, Oh D-Y, Kim T-Y, Lee K-H, Han S-W, Im S-A, et al. Skeletal Muscle Depletion Predicts the Prognosis of Patients with Advanced Pancreatic Cancer Undergoing Palliative Chemotherapy, Independent of Body Mass Index. PLoS One. 2015;10(10):e0139749. 11. Centonze L, Di Sandro S, Lauterio A, De Carlis R, Botta F, Mariani A, et al. The Impact of Sarcopenia on Postoperative Course following Pancreatoduodenectomy: Single-Center Experience of 110 Consecutive Cases. Dig Surg. 2020 Jan 20;1–9. 12. Nishikawa H, Nishijima N, Enomoto H, Sakamoto A, Nasu A, Komekado H, et al. Prognostic significance of sarcopenia in patients with hepatocellular carcinoma undergoing sorafenib therapy. Oncol Lett. 2017 Aug;14(2):1637–47. 13. Antonelli G, Gigante E, Iavarone M, Begini P, Sangiovanni A, Iannicelli E, et al. Sarcopenia is associated with reduced survival in patients with advanced hepatocellular carcinoma undergoing sorafenib treatment. United European Gastroenterology Journal. 2018 31 04/14/received 05/13/accepted;6(7):1039–48. 14. Yamashima M, Miyaaki H, Honda T, Shibata H, Miuma S, Taura N, et al. Significance of psoas muscle thickness as an indicator of muscle atrophy in patients with hepatocellular carcinoma treated with sorafenib. Mol Clin Oncol. 2017 Sep;7(3):449–53. 15. Hiraoka A, Hirooka M, Koizumi Y, Izumoto H, Ueki H, Kaneto M, et al. Muscle volume loss as a prognostic marker in hepatocellular carcinoma patients treated with sorafenib. Hepatology research : the official journal of the Japan Society of Hepatology. 2017 May;47(6):558–65. 16. Isoyama N, Qureshi AR, Avesani CM, Lindholm B, Bàràny P, Heimbürger O, et al. Comparative Associations of Muscle Mass and Muscle Strength with Mortality in Dialysis Patients. Clin J Am Soc Nephrol. 2014 Oct 7;9(10):1720–8. 17. da Silva MZC, Vogt BP, Reis NS do C, Caramori JCT. Update of the European consensus on sarcopenia: what has changed in diagnosis and prevalence in peritoneal dialysis? European Journal of Clinical Nutrition. 2019 Aug;73(8):1209–11. 18. Lee K, Shin Y, Huh J, Sung YS, Lee I-S, Yoon K-H, et al. Recent Issues on Body Composition Imaging for Sarcopenia Evaluation. Korean J Radiol. 2019 Feb;20(2):205–17. 19. Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol. 2016 Dec;65(6):1232–44. 20. Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme. 2008 Oct;33(5):997–1006. 21. Gomez-Perez SL, Haus JM, Sheean P, Patel B, Mar W, Chaudhry V, et al. Measuring Abdominal Circumference and Skeletal Muscle From a Single Cross-Sectional Computed Tomography Image A Step-by-Step Guide for Clinicians Using National Institutes of Health ImageJ. Journal of Parenteral and Enteral Nutrition. 2015;0148607115604149. 22. Fujiwara N, Nakagawa H, Kudo Y, Tateishi R, Taguri M, Watadani T, et al. Sarcopenia, intramuscular fat deposition, and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. Journal of Hepatology. 2015 Jul 1;63(1):131–40. 23. Lausen B, Schumacher M. Maximally Selected Rank Statistics. Biometrics. 1992;48(1):73–85. 24. Matsuzawa Y, Nakamura T, Shimomura I, Kotani K. Visceral fat accumulation and cardiovascular disease. Obes Res. 1995 Dec;3 Suppl 5:645S-647S. 25. Tsujinaka S, Konishi F, Kawamura YJ, Saito M, Tajima N, Tanaka O, et al. Visceral obesity predicts surgical outcomes after laparoscopic colectomy for sigmoid colon cancer. Dis Colon Rectum. 2008 Dec;51(12):1757–65; discussion 1765-1767. 26. Mathur A, Hernandez J, Shaheen F, Shroff M, Dahal S, Morton C, et al. Preoperative computed tomography measurements of pancreatic steatosis and visceral fat: prognostic markers for dissemination and lethality of pancreatic adenocarcinoma. HPB (Oxford). 2011 Jun;13(6):404–10. 27. Müller MJ, Geisler C, Pourhassan M, Glüer C-C, Bosy-Westphal A. Assessment and definition of lean body mass deficiency in the elderly. Eur J Clin Nutr. 2014 Nov;68(11):1220–7. 28. Bhatla B, Moore H, Emerson P, Keshaviah P, Prowant B, Nolph KD, et al. Lean body mass estimation by creatinine kinetics, bioimpedance, and dual energy x-ray absorptiometry in patients on continuous ambulatory peritoneal dialysis. ASAIO J. 1995 Sep;41(3):M442-446. 29. Dong J, Li Y-J, Lu X-H, Gan H-P, Zuo L, Wang H-Y. Correlations of lean body mass with nutritional indicators and mortality in patients on peritoneal dialysis. Kidney Int. 2008 Feb;73(3):334–40. 30. Huang J-W, Lien Y-C, Wu H-Y, Yen C-J, Pan C-C, Hung T-W, et al. Lean Body Mass Predicts Long-Term Survival in Chinese Patients on Peritoneal Dialysis. PLoS One [Internet]. 2013 Jan 25 [cited 2020 Jun 27];8(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3555981/ 31. Mitch WE, Collier VU, Walser M. Creatinine metabolism in chronic renal failure. Clin Sci (Lond). 1980 Apr;58(4):327–35. 32. Kvist H, Sjöström L, Tylén U. Adipose tissue volume determinations in women by computed tomography: technical considerations. Int J Obes. 1986;10(1):53–67. 33. Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol. 1998 Jul;85(1):115–22. 34. Canny J. A computational approach to edge detection. Ieee Transactions on Pattern Analysis and Machine In℡ligence. 1986; 35. Haddad RA, Akansu AN. A class of fast Gaussian binomial filters for speech and image processing. IEEE Trans Signal Process. 1991 Mar;39(3):723–7. 36. Sobel I. An Isotropic 3x3 Image Gradient Operator. Presentation at Stanford AI Project 1968. 2014 Feb 8; 37. Hesamian MH, Jia W, He X, Kennedy P. Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges. J Digit Imaging. 2019 Aug 1;32(4):582–96. 38. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv:150504597 [cs] [Internet]. 2015 May 18 [cited 2020 Apr 28]; Available from: http://arxiv.org/abs/1505.04597 39. Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging. 2008 Sep;28(3):543–58. 40. Springer F, Ehehalt S, Sommer J, Ballweg V, Machann J, Binder G, et al. Predicting volumes of metabolically important whole-body adipose tissue compartments in overweight and obese adolescents by different MRI approaches and anthropometry. European Journal of Radiology. 2012 Jul 1;81(7):1488–94. 41. Bonekamp S, Ghosh P, Crawford S, Solga SF, Horska A, Brancati FL, et al. Quantitative comparison and evaluation of software packages for assessment of abdominal adipose tissue distribution by magnetic resonance imaging. Int J Obes (Lond). 2008 Jan;32(1):100–11. 42. Reeder SB, McKenzie CA, Pineda AR, Yu H, Shimakawa A, Brau AC, et al. Water-fat separation with IDEAL gradient-echo imaging. J Magn Reson Imaging. 2007 Mar;25(3):644–52. 43. Yu H, McKenzie CA, Shimakawa A, Vu AT, Brau AC, Beatty PJ, et al. Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging. 2007 Oct;26(4):1153–61. 44. Wu C-H, Ho M-C, Jeng Y-M, Hsu C-Y, Liang P-C, Hu R-H, et al. Quantification of hepatic steatosis: a comparison of the accuracy among multiple magnetic resonance techniques. J Gastroenterol Hepatol. 2014 Apr;29(4):807–13. 45. Guiu B, Petit JM, Loffroy R, Ben Salem D, Aho S, Masson D, et al. Quantification of liver fat content: comparison of triple-echo chemical shift gradient-echo imaging and in vivo proton MR spectroscopy. Radiology. 2009 Jan;250(1):95–102. 46. Dhillon RJ, Hasni S. Pathogenesis and Management of Sarcopenia. Clin Geriatr Med. 2017 Feb;33(1):17–26. 47. Aversa Z, Costelli P, Muscaritoli M. Cancer-induced muscle wasting: latest findings in prevention and treatment. Ther Adv Med Oncol. 2017 May 1;9(5):369–82. 48. Ruiz Garcia V, López‐Briz E, Carbonell Sanchis R, Gonzalvez Perales JL, Bort‐Martí S. Megestrol acetate for treatment of anorexia‐cachexia syndrome. Cochrane Database Syst Rev [Internet]. 2013 Mar 28 [cited 2021 Mar 16];2013(3). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418472/ 49. Argilés JM, Anguera A, Stemmler B. A new look at an old drug for the treatment of cancer cachexia: Megestrol acetate. Clinical Nutrition. 2013 Jun 1;32(3):319–24. 50. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol. 2014 Mar;14(3):181–94. 51. Garcia-Tsao G, Abraldes JG, Berzigotti A, Bosch J. Portal hypertensive bleeding in cirrhosis: Risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the study of liver diseases. Hepatology. 2017 Jan;65(1):310–35. 52. Planas R, Ballesté B, Alvarez MA, Rivera M, Montoliu S, Galeras JA, et al. Natural history of decompensated hepatitis C virus-related cirrhosis. A study of 200 patients. J Hepatol. 2004 May;40(5):823–30. 53. Bodzin AS, Baker TB. Liver Transplantation Today: Where We Are Now and Where We Are Going. Liver Transpl. 2018 Oct;24(10):1470–5. 54. Bojko M. Causes of Sarcopenia in Liver Cirrhosis. Clinical Liver Disease. 2019;14(5):167–70. 55. Ebadi M, Bhanji RA, Mazurak VC, Montano-Loza AJ. Sarcopenia in cirrhosis: from pathogenesis to interventions. J Gastroenterol. 2019 Oct 1;54(10):845–59. 56. Dasarathy S. Myostatin and beyond in cirrhosis: all roads lead to sarcopenia. J Cachexia Sarcopenia Muscle. 2017 Dec;8(6):864–9. 57. Davuluri G, Welch N, Sekar J, Gangadhariah M, Alchirazi KA, Mohan ML, et al. Activated Protein Phosphatase 2A Disrupts Nutrient Sensing Balance Between Mechanistic Target of Rapamycin Complex 1 and Adenosine Monophosphate–Activated Protein Kinase, Causing Sarcopenia in Alcohol-Associated Liver Disease. Hepatology. 2021;73(5):1892–908. 58. Anand A, Nambirajan A, Kumar V, Agarwal S, Sharma S, Mohta S, et al. Alterations in autophagy and mammalian target of rapamycin (mTOR) pathways mediate sarcopenia in patients with cirrhosis. Journal of Clinical and Experimental Hepatology [Internet]. 2021 May 21 [cited 2021 Jun 15]; Available from: https://www.sciencedirect.com/science/article/pii/S0973688321001067 59. Dasarathy J, Alkhouri N, Dasarathy S. Changes in body composition after transjugular intrahepatic portosystemic stent in cirrhosis: a critical review of literature. Liver International. 2011;31(9):1250–8. 60. Tsien C, Shah SN, McCullough AJ, Dasarathy S. Reversal of sarcopenia predicts survival after a transjugular intrahepatic portosystemic stent. Eur J Gastroenterol Hepatol. 2013 Jan;25(1):85–93. 61. Jahangiri Y, Pathak P, Tomozawa Y, Li L, Schlansky BL, Farsad K. Muscle Gain after Transjugular Intrahepatic Portosystemic Shunt Creation: Time Course and Prognostic Implications for Survival in Cirrhosis. Journal of Vascular and Interventional Radiology. 2019 Jun;30(6):866-872.e4. 62. Romijn JA, Pijl H. The muscle–liver axis: does aerobic fitness induce intrahepatic protection against non-alcoholic fatty liver disease? J Physiol. 2009 Apr 15;587(Pt 8):1637. 63. Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol. 2020 Mar;72(3):558–77. 64. Whittle M, Simões R, Sociedade Brasileira de Genética Médica. Hereditary polycystic kidney disease: genetic diagnosis and counseling. Rev Assoc Med Bras (1992). 2014 Apr;60(2):98–102. 65. Wilson PD. Polycystic Kidney Disease. New England Journal of Medicine. 2004 Jan 8;350(2):151–64. 66. Grantham J, Cook L, Torres V, Bost J, Chapman A, Harris P, et al. Determinants of renal volume in autosomal-dominant polycystic kidney disease. Kidney Int. 2008 Jan;73(1):108–16. 67. Guay-Woodford LM, Henske E, Igarashi P, Perrone RD, Reed-Gitomer B, Somlo S, et al. Filling the Holes in Cystic Kidney Disease Research. CJASN. 2014 Oct 7;9(10):1799–801. 68. Kirkman MA, Dellen D van, Mehra S, Campbell BA, Tavakoli A, Pararajasingam R, et al. Native nephrectomy for autosomal dominant polycystic kidney disease: before or after kidney transplantation? BJU International. 2011;108(4):590–4. 69. Alam A, Perrone RD. Management of ESRD in patients with autosomal dominant polycystic kidney disease. Adv Chronic Kidney Dis. 2010 Mar;17(2):164–72. 70. Gill IS, Kaouk JH, Hobart MG, Sung GT, Schweizer DK, Braun WE. Laparoscopic bilateral synchronous nephrectomy for autosomal dominant polycystic kidney disease: the initial experience. J Urol. 2001 Apr;165(4):1093–8. 71. Martin AD, Mekeel KL, Castle EP, Vaish SS, Martin GL, Moss AA, et al. Laparoscopic bilateral native nephrectomies with simultaneous kidney transplantation. BJU Int. 2012 Dec;110(11 Pt C):E1003-1007. 72. Lipke MC, Bargman V, Milgrom M, Sundaram CP. Limitations of laparoscopy for bilateral nephrectomy for autosomal dominant polycystic kidney disease. J Urol. 2007 Feb;177(2):627–31. 73. Bendavid Y, Moloo H, Klein L, Burpee S, Schlachta CM, Poulin EC, et al. Laparoscopic nephrectomy for autosomal dominant polycystic kidney disease. Surg Endosc. 2004 May;18(5):751–4. 74. Bennett WM, Elzinga L, Golper TA, Barry JM. Reduction of cyst volume for symptomatic management of autosomal dominant polycystic kidney disease. J Urol. 1987 Apr;137(4):620–2. 75. Cornelis F, Couzi L, Le Bras Y, Hubrecht R, Dodré E, Geneviève M, et al. Embolization of polycystic kidneys as an alternative to nephrectomy before renal transplantation: a pilot study. Am J Transplant. 2010 Oct;10(10):2363–9. 76. Hoshino J, Suwabe T, Hayami N, Sumida K, Mise K, Kawada M, et al. Survival after arterial embolization therapy in patients with polycystic kidney and liver disease. J Nephrol. 2015 Jun;28(3):369–77. 77. Bello-Reuss E, Holubec K, Rajaraman S. Angiogenesis in autosomal-dominant polycystic kidney disease. Kidney Int. 2001 Jul;60(1):37–45. 78. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010 Jun;17(6):1471–4. 79. Hsu C-H, Shen Y-C, Lin Z-Z, Chen P-J, Shao Y-Y, Ding Y-H, et al. Phase II study of combining sorafenib with metronomic tegafur/uracil for advanced hepatocellular carcinoma. J Hepatol. 2010 Jul;53(1):126–31. 80. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017 May 24;60(6):84–90. 81. Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:14091556 [cs] [Internet]. 2015 Apr 10 [cited 2020 Dec 1]; Available from: http://arxiv.org/abs/1409.1556 82. VGG16 - Convolutional Network for Classification and Detection [Internet]. 2018 [cited 2020 Apr 28]. Available from: https://neurohive.io/en/popular-networks/vgg16/ 83. Choi KJ, Jang JK, Lee SS, Sung YS, Shim WH, Kim HS, et al. Development and Validation of a Deep Learning System for Staging Liver Fibrosis by Using Contrast Agent-enhanced CT Images in the Liver. Radiology. 2018 Dec;289(3):688–97. 84. Szegedy C, Wei Liu, Yangqing Jia, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [Internet]. Boston, MA, USA: IEEE; 2015 [cited 2021 May 14]. p. 1–9. Available from: http://ieeexplore.ieee.org/document/7298594/ 85. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [Internet]. Las Vegas, NV, USA: IEEE; 2016 [cited 2020 Apr 28]. p. 770–8. Available from: http://ieeexplore.ieee.org/document/7780459/ 86. Srivastava RK, Greff K, Schmidhuber J. Highway Networks. arXiv:150500387 [cs] [Internet]. 2015 Nov 3 [cited 2021 May 16]; Available from: http://arxiv.org/abs/1505.00387 87. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely Connected Convolutional Networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [Internet]. Honolulu, HI: IEEE; 2017 [cited 2021 May 16]. p. 2261–9. Available from: https://ieeexplore.ieee.org/document/8099726/ 88. Noh H, Hong S, Han B. Learning Deconvolution Network for Semantic Segmentation. In: 2015 IEEE International Conference on Computer Vision (ICCV). 2015. p. 1520–8. 89. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017 Dec;39(12):2481–95. 90. Pan SJ, Yang Q. A Survey on Transfer Learning. IEEE Trans Knowl Data Eng. 2010 Oct;22(10):1345–59. 91. Perkins DN, Salomon G, Press P. Transfer Of Learning. In: International Encyclopedia of Education (2nd. Pergamon Press; 1992. 92. Johnson PJ, Berhane S, Kagebayashi C, Satomura S, Teng M, Reeves HL, et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol. 2015 Feb 20;33(6):550–8. 93. Salerno F, Merli M, Cazzaniga M, Valeriano V, Rossi P, Lovaria A, et al. MELD score is better than Child-Pugh score in predicting 3-month survival of patients undergoing transjugular intrahepatic portosystemic shunt. J Hepatol. 2002 Apr;36(4):494–500. 94. Tripathi D, Stanley AJ, Hayes PC, Travis S, Armstrong MJ, Tsochatzis EA, et al. Transjugular intrahepatic portosystemic stent-shunt in the management of portal hypertension. Gut. 2020 Jul;69(7):1173–92. 95. Krajina A, Hulek P, Fejfar T, Valek V. Quality improvement guidelines for Transjugular Intrahepatic Portosystemic Shunt (TIPS). Cardiovasc Intervent Radiol. 2012 Dec;35(6):1295–300. 96. Irazabal MV, Rangel LJ, Bergstralh EJ, Osborn SL, Harmon AJ, Sundsbak JL, et al. Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J Am Soc Nephrol. 2015 Jan;26(1):160–72. 97. Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH. Cancer-associated cachexia. Nature Reviews Disease Primers. 2018 18/online;4:17105. 98. Budczies J, Klauschen F, Sinn BV, Győrffy B, Schmitt WD, Darb-Esfahani S, et al. Cutoff Finder: A Comprehensive and Straightforward Web Application Enabling Rapid Biomarker Cutoff Optimization. PLOS ONE. 2012 Dec 14;7(12):e51862. 99. Li JB, Goldberg AL. Effects of food deprivation on protein synthesis and degradation in rat skeletal muscles. Am J Physiol. 1976 Aug;231(2):441–8. 100. Yip C, Dinkel C, Mahajan A, Siddique M, Cook GJ, Goh V. Imaging body composition in cancer patients: visceral obesity, sarcopenia and sarcopenic obesity may impact on clinical outcome. Insights Imaging. 2015 Aug;6(4):489–97. 101. Schweitzer L, Geisler C, Pourhassan M, Braun W, Gluer CC, Bosy-Westphal A, et al. Estimation of Skeletal Muscle Mass and Visceral Adipose Tissue Volume by a Single Magnetic Resonance Imaging Slice in Healthy Elderly Adults. J Nutr. 2016 Oct;146(10):2143–8. 102. van Dijk DPJ, Bakens MJAM, Coolsen MME, Rensen SS, van Dam RM, Bours MJL, et al. Low skeletal muscle radiation attenuation and visceral adiposity are associated with overall survival and surgical site infections in patients with pancreatic cancer. J Cachexia Sarcopenia Muscle. 2017 Apr;8(2):317–26. 103. Kirihara Y, Takahashi N, Hashimoto Y, Sclabas GM, Khan S, Moriya T, et al. Prediction of pancreatic anastomotic failure after pancreatoduodenectomy: the use of preoperative, quantitative computed tomography to measure remnant pancreatic volume and body composition. Ann Surg. 2013 Mar;257(3):512–9. 104. Tranchart H, Gaujoux S, Rebours V, Vullierme M-P, Dokmak S, Levy P, et al. Preoperative CT scan helps to predict the occurrence of severe pancreatic fistula after pancreaticoduodenectomy. Ann Surg. 2012 Jul;256(1):139–45. 105. Levy I, Sherman M, Liver Cancer Study Group of the University of Toronto. Staging of hepatocellular carcinoma: assessment of the CLIP, Okuda, and Child-Pugh staging systems in a cohort of 257 patients in Toronto. Gut. 2002 Jun;50(6):881–5. 106. Pons F, Varela M, Llovet JM. Staging systems in hepatocellular carcinoma. HPB (Oxford). 2005;7(1):35–41. 107. Gavanier M, Ayav A, Sellal C, Orry X, Claudon M, Bronowicki JP, et al. CT imaging findings in patients with advanced hepatocellular carcinoma treated with sorafenib: Alternative response criteria (Choi, European Association for the Study of the Liver, and modified Response Evaluation Criteria in Solid Tumor (mRECIST)) versus RECIST 1.1. European Journal of Radiology. 85(1):103–12. 108. Derstine BA, Holcombe SA, Ross BE, Wang NC, Su GL, Wang SC. Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Scientific Reports. 2018 Jul 27;8(1):11369. 109. Aoyagi T, Terracina KP, Raza A, Matsubara H, Takabe K. Cancer cachexia, mechanism and treatment. World Journal of Gastrointestinal Oncology. 2015 15 10/21/received 01/17/revised 03/30/accepted;7(4):17–29. 110. Wu CH, Chang MC, Lyadov VK, Liang PC, Chen CM, Shih TT, et al. Comparing Western and Eastern criteria for sarcopenia and their association with survival in patients with pancreatic cancer. Clinical nutrition (Edinburgh, Scotland). 2018 Feb 20; 111. Hiraoka A, Aibiki T, Okudaira T, Toshimori A, Kawamura T, Nakahara H, et al. Muscle atrophy as pre-sarcopenia in Japanese patients with chronic liver disease: computed tomography is useful for evaluation. J Gastroenterol. 2015;50(12):1206–13. 112. Rössner S, Bo WJ, Hiltbrandt E, Hinson W, Karstaedt N, Santago P, et al. Adipose tissue determinations in cadavers--a comparison between cross-sectional planimetry and computed tomography. Int J Obes. 1990 Oct;14(10):893–902. 113. Kim TY, Kim MY, Sohn JH, Kim SM, Ryu JA, Lim S, et al. Sarcopenia as a useful predictor for long-term mortality in cirrhotic patients with ascites. J Korean Med Sci. 2014 Sep;29(9):1253–9. 114. Hamaguchi Y, Kaido T, Okumura S, Kobayashi A, Hammad A, Tamai Y, et al. Proposal for new diagnostic criteria for low skeletal muscle mass based on computed tomography imaging in Asian adults. Nutrition. 2016 Dec;32(11–12):1200–5. 115. Ebadi M, Wang CW, Lai JC, Dasarathy S, Kappus MR, Dunn MA, et al. Poor performance of psoas muscle index for identification of patients with higher waitlist mortality risk in cirrhosis. J Cachexia Sarcopenia Muscle. 2018;9(6):1053–62. 116. Wu C-H, Liang P-C, Hsu C-H, Chang F-T, Shao Y-Y, Ting-Fang Shih T. Total skeletal, psoas and rectus abdominis muscle mass as prognostic factors for patients with advanced hepatocellular carcinoma. Journal of the Formosan Medical Association [Internet]. 2020 Jul 8 [cited 2020 Aug 17]; Available from: http://www.sciencedirect.com/science/article/pii/S0929664620302941 117. Baracos VE. Psoas as a sentinel muscle for sarcopenia: a flawed premise. J Cachexia Sarcopenia Muscle. 2017 Aug;8(4):527–8. 118. Georgiou A, Papatheodoridis GV, Alexopoulou A, Deutsch M, Vlachogiannakos I, Ioannidou P, et al. Validation of cutoffs for skeletal muscle mass index based on computed tomography analysis against dual energy X-ray absorptiometry in patients with cirrhosis: the KIRRHOS study. Ann Gastroenterol. 2020;33(1):80–6. 119. Rutten IJG, Ubachs J, Kruitwagen RFPM, Beets-Tan RGH, Olde Damink SWM, Van Gorp T. Psoas muscle area is not representative of total skeletal muscle area in the assessment of sarcopenia in ovarian cancer. J Cachexia Sarcopenia Muscle. 2017 Aug;8(4):630–8. 120. Popuri K, Cobzas D, Esfandiari N, Baracos V, Jägersand M. Body Composition Assessment in Axial CT Images Using FEM-Based Automatic Segmentation of Skeletal Muscle. IEEE Trans Med Imaging. 2016 Feb;35(2):512–20. 121. Cespedes Feliciano EM, Popuri K, Cobzas D, Baracos VE, Beg MF, Khan AD, et al. Evaluation of automated computed tomography segmentation to assess body composition and mortality associations in cancer patients. J Cachexia Sarcopenia Muscle. 2020 Apr 20; 122. Dodson RM, Firoozmand A, Hyder O, Tacher V, Cosgrove DP, Bhagat N, et al. Impact of sarcopenia on outcomes following intra-arterial therapy of hepatic malignancies. J Gastrointest Surg. 2013 Dec;17(12):2123–32. 123. Harimoto N, Shirabe K, Yamashita Y-I, Ikegami T, Yoshizumi T, Soejima Y, et al. Sarcopenia as a predictor of prognosis in patients following hepatectomy for hepatocellular carcinoma. Br J Surg. 2013 Oct;100(11):1523–30. 124. Chang K-V, Chen J-D, Wu W-T, Huang K-C, Hsu C-T, Han D-S. Association between Loss of Skeletal Muscle Mass and Mortality and Tumor Recurrence in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Liver Cancer. 2018 Mar;7(1):90–103. 125. Chang K-V, Chen J-D, Wu W-T, Huang K-C, Lin H-Y, Han D-S. Is sarcopenia associated with hepatic encephalopathy in liver cirrhosis? A systematic review and meta-analysis. J Formos Med Assoc. 2019 Apr;118(4):833–42. 126. Faron A, Sprinkart AM, Pieper CC, Kuetting DLR, Fimmers R, Block W, et al. Yttrium-90 radioembolization for hepatocellular carcinoma: Outcome prediction with MRI derived fat-free muscle area. Eur J Radiol. 2020 Feb 12;125:108889. 127. Derstine BA, Holcombe SA, Ross BE, Wang NC, Su GL, Wang SC. Optimal body size adjustment of L3 CT skeletal muscle area for sarcopenia assessment. Sci Rep [Internet]. 2021 Jan 11 [cited 2021 Apr 25];11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801425/ 128. Kalafateli M, Karatzas A, Tsiaoussis G, Koutroumpakis E, Tselekouni P, Koukias N, et al. Muscle fat infiltration assessed by total psoas density on computed tomography predicts mortality in cirrhosis. Ann Gastroenterol. 2018;31(4):491–8. 129. Mardian Y, Yano Y, Ratnasari N, Choridah L, Wasityastuti W, Setyawan NH, et al. “Sarcopenia and intramuscular fat deposition are associated with poor survival in Indonesian patients with hepatocellular carcinoma: a retrospective study.” BMC Gastroenterology. 2019 Dec 30;19(1):229. 130. Bian A-L, Hu H-Y, Rong Y-D, Wang J, Wang J-X, Zhou X-Z. A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-α. European Journal of Medical Research. 2017 Jul 12;22(1):25. 131. Rong Y-D, Bian A-L, Hu H-Y, Ma Y, Zhou X-Z. Study on relationship between elderly sarcopenia and inflammatory cytokine IL-6, anti-inflammatory cytokine IL-10. BMC Geriatrics. 2018 Dec 12;18(1):308. 132. Arbanas J, Starcevic Klasan G, Nikolic M, Jerkovic R, Miljanovic I, Malnar D. Fibre type composition of the human psoas major muscle with regard to the level of its origin. J Anat. 2009 Dec;215(6):636–41. 133. Wakabayashi H, Watanabe N, Anraku M, Oritsu H, Shimizu Y. Pre-operative psoas muscle mass and post-operative gait speed following total hip arthroplasty for osteoarthritis. J Cachexia Sarcopenia Muscle. 2016 Mar;7(1):95–6. 134. Park J, Gil JR, Shin Y, Won SE, Huh J, You M-W, et al. Reliable and robust method for abdominal muscle mass quantification using CT/MRI: An explorative study in healthy subjects. PLoS One [Internet]. 2019 Sep 19 [cited 2021 Apr 29];14(9). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752777/ 135. Kim JC, Lee S-U, Jung SH, Lim J-Y, Kim DH, Lee SY. Natural aging course of paraspinal muscle and back extensor strength in community-dwelling older adults (sarcopenia of spine, SarcoSpine): a prospective cohort study protocol. BMJ Open. 2019 Sep 1;9(9):e032443. 136. Khan AI, Reiter DA, Sekhar A, Sharma P, Safdar NM, Patil DH, et al. MRI quantitation of abdominal skeletal muscle correlates with CT-based analysis: implications for sarcopenia measurement. Appl Physiol Nutr Metab. 2019 Aug;44(8):814–9. 137. Desmeules S, Lévesque R, Jaussent I, Leray-Moragues H, Chalabi L, Canaud B. Creatinine index and lean body mass are excellent predictors of long-term survival in haemodiafiltration patients. Nephrol Dial Transplant. 2004 May;19(5):1182–9. 138. Gomez-Perez SL, Haus JM, Sheean P, Patel B, Mar W, Chaudhry V, et al. Measuring Abdominal Circumference and Skeletal Muscle From a Single Cross-Sectional Computed Tomography Image: A Step-by-Step Guide for Clinicians Using National Institutes of Health ImageJ. JPEN J Parenter Enteral Nutr. 2016 Mar;40(3):308–18. 139. Edwards K, Chhabra A, Dormer JD, Jones P, Boutin RD, Lenchik L, et al. Abdominal muscle segmentation from CT using a convolutional neural network. In: Gimi BS, Krol A, editors. Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging [Internet]. Houston, United States: SPIE; 2020 [cited 2020 Aug 17]. p. 20. Available from: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11317/2549406/Abdominal-muscle-segmentation-from-CT-using-a-convolutional-neural-network/10.1117/12.2549406.full 140. Giusto M, Lattanzi B, Albanese C, Galtieri A, Farcomeni A, Giannelli V, et al. Sarcopenia in liver cirrhosis: the role of computed tomography scan for the assessment of muscle mass compared with dual-energy X-ray absorptiometry and anthropometry. Eur J Gastroenterol Hepatol. 2015 Mar;27(3):328–34. 141. Demerath EW, Shen W, Lee M, Choh AC, Czerwinski SA, Siervogel RM, et al. Approximation of total visceral adipose tissue with a single magnetic resonance image. Am J Clin Nutr. 2007 Feb;85(2):362–8. 142. Brennan DD, Whelan PF, Robinson K, Ghita O, O’Brien JM, Sadleir R, et al. Rapid automated measurement of body fat distribution from whole-body MRI. AJR Am J Roentgenol. 2005 Aug;185(2):418–23. 143. Addeman BT, Kutty S, Perkins TG, Soliman AS, Wiens CN, McCurdy CM, et al. Validation of volumetric and single-slice MRI adipose analysis using a novel fully automated segmentation method. J Magn Reson Imaging. 2015 Jan;41(1):233–41. 144. B G, Jm P, R L, S A, D BS, D M, et al. Liver methylene fraction by dual- and t………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80904-
dc.description.abstract"緒論 肌少症一開始主要用於描述老人生理狀況逐漸退化,依照歐洲老年肌少症工作小組定義肌少症包括肌肉量減少、肌肉力氣降低及肌肉表現功能下降。次發性的肌少症和許多慢性疾病有關,包括癌症、肝硬化、慢性腎臟病等等。在過去,營養狀況常以身體質量指數、上臂中圍、血清中白蛋白或生物阻抗分析等來代表。但這些臨床指標在嚴重癌症、肝硬化及慢性腎臟病時會因為皮下水腫及腹水產生的高估的情形。相對來說,斷面影像檢查如電腦斷層及磁振造影,可以對腹部的肌肉及脂肪作準確的分析。腹部肌肉還可分類為腰大肌、豎脊肌、腹壁肌及腹直肌等等。而對於脂肪組織可以分類為臟器脂肪及皮下脂肪。由以上可知使用影像方法來進行肌肉量的計算在肌少症的臨床應用上清楚而客觀。 目前在肌少症的研究有三個未解的問題,一是對肌少症的診斷標準及肌肉量下降的閾值並沒有一致的共識,因此大型及多樣性針對不同性別、種族及疾病族群的肌少症相關研究有其必要性。尤其是早期肌少症的標準由歐洲老年肌少症工作小組所訂,其研究的族群以西方國家為主,西方人的身體組成與東方人有明顯差異,東方國家的研究以日本為主,而且大量使用電腦斷層作為測量腹部肌肉及腰大肌的工具。二是使用斷面影像測量腹部肌肉量的過程對醫師是一項耗時費力的工作,近年來由於機器學習及深度學習在圖形辨識領域的發展,快速且精準的自動切割腹部肌肉及脂肪組織的影像後處理工具變成可能。三是根據以往的經驗及研究,病人的肌少症很難藉由營養的補充或藥物達成,對於生重病的病人使用高強度的鍛鍊也不切實際。因此能否用微創手術的方法來增加食慾並進一步改善病人的肌少症便成為值得探索的話題。 方法 我們以臺大醫院的影像資料庫為材料,收集胰臟癌、晚期肝癌及腹膜透析病人。對胰臟癌的病人我們分別使用西方(俄羅斯研究單位)及東方(臺大醫院)的診斷標準來評估是否為預後的重要因子;對晚期肝癌的病人,我們分別測量腹部肌肉的腰大肌、豎脊肌、腹壁肌及腹直肌,以研究何者為影響存活率的因子;對接受腹膜透析的病人,我們除了測量腹部肌肉及腰大肌的肌肉量,並與淨軟組織量做相關性分析,找出何者較具代表性。然後我們結合前面三個資料集所收集的影像,利用我們已經圈選的遮罩進行機器學習及深度學習訓練自動切割肌肉及脂肪組織的模型。並利用遷移學習的方式將電腦斷層所建立的模型參數轉到磁振造影使用,然後評估兩者的相關性。最後我們利用經頸靜脈肝內門體靜脈支架分流術來治療因肝硬化有靜脈瘤出血及腹水的病人及腎動脈栓塞術來治療多囊腎的病人,並比較治療前及六個月後的影像,能否也同時改善病人肌少症的狀況。 結果 第一部分:經過在俄羅斯的研究單位及臺大醫院對胰臟癌病人進行影像分析後發現對於腹部肌肉、臟器脂肪及皮下脂肪的測量為高度相關(r = 0.974, 0.978, 0.979, p < 0.001)。 但在存活分析中,依照東方的診斷標準才是顯著的存活因子(p = 0.008),西方的診斷標準不是(p = 0.807)。在對晚期肝癌病人進行個別肌肉測量後顯示對於腹部肌肉,僅腰大肌是顯著影響存活率的因子(p = 0.014),豎脊肌、腹壁肌及腹直肌不是。在腹膜透析病人進行淨體重估計及腹部影像分析後發現,腰大肌比起全腹部肌肉的測量與淨軟組織量有較高的相關性(r = 0.775 vs. 0.681, p < 0.001),多因子分析顯示腰大肌是顯著影響全存活率的因子(HR: 2.386, CI: 1.315-4.330)。 第二部分:使用機器學習及深度學習演算法與醫師圈選範圍進行相關性分析,Sobel邊界偵測、AlexNet、VGG、ResNet與基準真相的相關係數分別為0.85, 0.81, 0.91, 0.78 (p < 0.05)。若以VGG的演算法來區分個別腹部肌肉,與豎脊肌、腰大肌、腹壁肌及腹直肌的相關係數分別為(r = 0.85, 0.43, 0.42, 0.02)。接著我們把利用電腦斷層建立的深度模型參數取出,利用遷移學習來對有腹部磁振造影影像的病人進行腹部肌肉自動切割,其精確度相對於隨機參數分別為0.9704及0.9696。最後我們分析使用電腦斷層及磁振造測量腹部肌肉、臟器脂肪及皮下脂肪為高度相關(r = 0.946, 0.969, 0.953)。 第三部分:使用經頸靜脈肝內門體靜脈支架分流術來治療因肝硬化相關的併發症,治療後六個月測量影像上腰大肌的面積明顯大於治療前(15.66±6.99 vs. 13.11±5.47, p = 0.040),病人的食慾變好。使用腎動脈栓塞術來治療多囊腎,比較治療前及治療後六個月的影像,腎臟的體積明顯縮小(2979.8±2069.6 vs. 4019.4±2438.2, p < 0.001),腰大肌的面積明顯增大(13.6±7.7 vs. 11.6±6.7, p < 0.001),病人的腹脹症狀也明顯改善。 結論 肌少症的診斷標準需要依照性別、族群被正確的選擇才能做出正確的診斷。在腹部肌肉當中,腰大肌肌肉量是最重要的預後因子,也是最具代表性的肌肉。對電腦斷層及磁振造影影像,利用深度學習進行肌肉自動切割的正確性高且兩者的值也具一致性。我們可以利用介入放射的方法來治療病人的原始疾病,並有機會同時改善肌少症。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:21:18Z (GMT). No. of bitstreams: 1
U0001-1909202121470900.pdf: 6399537 bytes, checksum: ee3a3f5287b1e2830b7bb65777ff5afa (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"誌謝 ii 中文摘要 iii ABSTRACT vi CONTENTS ix INDEX OF FIGURES xiv INDEX OF TABLES xvi ABBREVIATIONS xviii Chapter 1 Introduction 1 1.1 Sarcopenia in patients with hepato-biliary-pancreatic and renal disease 1 1.1.1 Sarcopenia in patients with pancreatic cancer 2 1.1.2 Sarcopenia in patients with advanced hepatocellular carcinoma 2 1.1.3 Sarcopenia in patients receiving peritoneal dialysis 2 1.2 Imaging diagnosis of sarcopenia 3 1.2.1 Measurement of the abdominal muscle mass with CT 3 1.2.2 Diagnostic criteria for sarcopenia and cut-off values of muscle index 4 1.2.3 Stratification of the abdominal muscle mass with CT 5 1.2.4 Correlation between CT-based abdominal muscle mass assessment with lean soft tissue 5 1.3 Machine and Deep Learning Algorithms for Muscle Segmentation 7 1.3.1 Canny edge detection in image analysis 8 1.3.2 Convolution neural network in image analysis 10 1.3.3 Convolution neural network plus edge detection in image analysis 11 1.3.4 Transfer learning from CT to DIXON-MRI images 11 1.3.5 Correlation between non-enhanced CT and PDFF-MRI images 13 1.4 Interventional procedures to improve sarcopenia 13 1.4.1 Transjugular intrahepatic portosystemic shunt affects muscle mass in patients with liver cirrhosis 14 1.4.2 Renal artery embolization increases muscle mass in patients with polycystic kidney disease. 16 Chapter 2 Materials and Methods 20 2.1 Image datasets 20 2.1.1 Image dataset from patients with pancreatic cancer 20 2.1.2 Image dataset from patients with advanced HCC 21 2.1.3 Image dataset from patients receiving peritoneal dialysis 21 2.2 Preprocessing and Equipment 22 2.2.1 Images preprocessing via Image J 22 2.2.2 Equipment for machine learning and deep learning 23 2.3 Modeling 23 2.3.1 Gaussian smoothing and gradient image processing 23 2.3.2 Convolutional neural network structure 24 2.3.3 AlexNet 26 2.3.4 Visual Geometry Group (VGG) 27 2.3.5 GoogLeNet (Inception) 27 2.3.6 Residual neural network (ResNet) 28 2.3.7 Fully convolutional network (FCN) 28 2.4 Transfer learning 29 2.4.1 Background of transfer learning 29 2.4.2 Imaging processing and modeling of transfer learning 30 2.5 Body composition analysis of CT and PDFF-MRI 31 2.6 Interventional procedures 33 2.6.1 Muscle change after TIPS in patients with liver cirrhosis 33 2.6.2 Muscle change after renal artery embolization in patients with polycystic kidney disease 37 2.7 Statistical analysis 39 2.7.1 Statistical method for patients with pancreatic cancer 39 2.7.2 Statistical method for patients with advanced HCC 40 2.7.3 Statistical method for patients receiving peritoneal dialysis 41 2.7.4 Statistical method for computational medicine 41 2.7.5 Statistical method for correlation between CT and PDFF-MRI 42 2.7.6 Statistical method for the minimally invasive procedure 43 Chapter 3 Results 44 3.1 Results of diagnostic criteria and measurement algorithms establishment 44 3.1.1 Comparing Western and Eastern criteria for sarcopenia and their association with survival in patients with pancreatic cancer 44 3.1.2 Total skeletal, psoas, and rectus abdominis muscle mass as prognostic factors for patients with advanced HCC 47 3.1.3 Computed tomography-based sarcopenia in patients receiving peritoneal dialysis: Correlation with lean soft tissue and survival 51 3.2 Results of semantic segmentation of abdominal muscle using deep learning and transfer leaning 54 3.2.1 Correlation of muscle segmentation results with different machine learning and deep learning algorithms 54 3.2.2 Transferring learning from CT to DIXON-MRI 55 3.2.3 Correlation of body composition between CT and PDFF-MRI 55 3.3 Results of interventional procedures to improve sarcopenia 57 3.3.1 Results of muscle gain after TIPS in decompensated liver cirrhosis 57 3.3.2 Results of renal artery embolization to increase muscle mass in polycystic kidney disease 58 Chapter 4 Discussion 59 4.1 Discussion of diagnostic criteria and measurement algorithms 59 4.1.1 Discussion of comparing Western and Eastern criteria for sarcopenia in patients with pancreatic cancer 59 4.1.2 Discussion of specific muscle mass as prognostic factors for patients with advanced HCC 62 4.1.3 Discussion of correlation between CT images and lean soft tissue and their impact on survival 64 4.2 Discussion semantic segmentation of abdominal muscle using deep learning and transfer learning 69 4.2.1 Discussion of muscle segmentation with different machine learning and deep learning algorithms 69 4.2.2 Discussion of transferring learning from CT to DIXON-MRI 70 4.2.3 Discussion of body composition analysis between CT and PDFF-MRI 70 4.3 Discussion of interventional procedures to improve sarcopenia 72 4.3.1 Discussion of TIPS to increase muscle mass in cirrhotic patients 72 4.3.2 Discussion of renal artery embolization to increase muscle mass in polycystic kidney disease 73 Chapter 5 Perspectives 75 5.1 Future Work 75 5.1.1 Establishment of diagnostic criteria for sarcopenia in the Taiwanese population 75 5.1.2 Development of automatic segmentation program for CT and MRI images for body composition analysis 75 5.1.3 Proton magnetic resonance spectroscopy and PDFF-MRI to analyze intramyocellular lipid droplets and intermuscular adipose tissue 76 5.1.4 Serum biomarkers or muscle biopsy to explore the causal relationship of sarcopenia 76 5.2 The possible problems for future work 77 5.3 Future study directions 77 REFERENCES 79 FIGURES 92 TABLES 120 APPENDIX 140"
dc.language.isoen
dc.subject深度學習zh_TW
dc.subject肝細胞癌zh_TW
dc.subject胰臟癌zh_TW
dc.subject肌少症zh_TW
dc.subject磁振造影zh_TW
dc.subject電腦斷層zh_TW
dc.subject腎衰竭zh_TW
dc.subjectHepatocellular carcinomaen
dc.subjectPancreatic canceren
dc.subjectSarcopeniaen
dc.subjectMagnetic resonance imagingen
dc.subjectComputed tomographyen
dc.subjectRenal failureen
dc.subjectDeep learningen
dc.title以影像為基礎的身體組成分析於肌少症病人的診斷、自動定量及治療反應評估zh_TW
dc.title"Image-Based Body Composition Analysis for the Diagnosis, Automatic Quantification and Treatment Response Evaluation in Patients with Sarcopenia "en
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.author-orcid0000-0002-7498-4183
dc.contributor.advisor-orcid施庭芳(0000-0002-3292-9688)
dc.contributor.coadvisor何明志(Ming-Chih Ho),高嘉宏(Jia-Horng Kao)
dc.contributor.coadvisor-orcid何明志(0000-0003-3660-1062),高嘉宏(0000-0002-2442-7952)
dc.contributor.oralexamcommittee黃凱文(Hsin-Tsai Liu),陳文翔(Chih-Yang Tseng),許駿,周嘉揚,陳慰宗
dc.subject.keyword電腦斷層,磁振造影,肌少症,胰臟癌,肝細胞癌,腎衰竭,深度學習,zh_TW
dc.subject.keywordComputed tomography,Magnetic resonance imaging,Sarcopenia,Pancreatic cancer,Hepatocellular carcinoma,Renal failure,Deep learning,en
dc.relation.page140
dc.identifier.doi10.6342/NTU202103252
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-23
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1909202121470900.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved