請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80896完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝雅萍(Ya-Ping Hsieh),謝馬利歐(Mario Hofmann) | |
| dc.contributor.author | Ying-Yu Wang | en |
| dc.contributor.author | 王英育 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:20:58Z | - |
| dc.date.available | 2021-11-06 | |
| dc.date.available | 2022-11-24T03:20:58Z | - |
| dc.date.copyright | 2021-11-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-24 | |
| dc.identifier.citation | [1] Lendlein, A.; Trask, R. S. Multifunctional materials: concepts, function-structure relationships, knowledge-based design, translational materials research. Multifunctional Materials 2018, 1 (1), 010201. [2] Gupta, P.; Mnnit, R. K. S., Overview of Multi Functional Materials. In New Trends in Technologies: Devices, Computer, Communication and Industrial Systems, IntechOpen: Rijeka, 2010. [3] Wu, S.; Hu, W.; Ze, Q.; Sitti, M.; Zhao, R. Multifunctional magnetic soft composites: a review. Multifunctional Materials 2020, 3 (4), 042003. [4] Ferreira, A. D. B. L.; Nóvoa, P. R. O.; Marques, A. T. Multifunctional Material Systems: A state-of-the-art review. Composite Structures 2016, 151, 3-35. [5] Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499 (7459), 419-425. [6] Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, Z. F.; Fleurial, J. P.; Gogna, P. New Directions for Low-Dimensional Thermoelectric Materials. Advanced Materials 2007, 19 (8), 1043-1053. [7] Toprak, M. S.; Stiewe, C.; Platzek, D.; Williams, S.; Bertini, L.; Müller, E.; Gatti, C.; Zhang, Y.; Rowe, M.; Muhammed, M. The Impact of Nanostructuring on the Thermal Conductivity of Thermoelectric CoSb3. Advanced Functional Materials 2004, 14 (12), 1189-1196. [8] Pollock, D. D., Thermoelectricity - theory, thermometry, tool. ASTM,Philadelphia, PA: United States, 1985. [9] Purcell, E. M., Electricity and magnetism. 1985. [10] Pollock, D. D., Physics of engineering materials. Prentice Hall: Englewood Cliffs, N.J, 1990. [11] Zhou, J.; Gu, Y.; Fei, P.; Mai, W.; Gao, Y.; Yang, R.; Bao, G.; Wang, Z. L. Flexible Piezotronic Strain Sensor. Nano Letters 2008, 8 (9), 3035-3040. [12] Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnology 2011, 6 (12), 788-792. [13] Le, C.; Song, L.; Luan, P.; Zhang, Q.; Zhang, N.; Gao, Q.; Zhao, D.; Zhang, X.; Tu, M.; Yang, F.; Zhou, W.; Fan, Q.; Luo, J.; Zhou, W.; Ajayan, P. M.; Xie, S. Correction: Corrigendum: Super-stretchable, Transparent Carbon Nanotube-Based Capacitive Strain Sensors for Human Motion Detection. Scientific Reports 2013, 3 (1), 3402. [14] Tian, H.; Shu, Y.; Cui, Y.-L.; Mi, W.-T.; Yang, Y.; Xie, D.; Ren, T.-L. Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 2014, 6 (2), 699-705. [15] Smith, A. D.; Niklaus, F.; Paussa, A.; Vaziri, S.; Fischer, A. C.; Sterner, M.; Forsberg, F.; Delin, A.; Esseni, D.; Palestri, P.; Östling, M.; Lemme, M. C. Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes. Nano Letters 2013, 13 (7), 3237-3242. [16] Bajpai, P., Process Control. In Biermann's Handbook of Pulp and Paper (Third Edition), Bajpai, P., Ed. Elsevier: 2018; pp 483-492. [17] Bao, M.-H., Piezoresistive sensing. In Handbook of Sensors and Actuators, Bao, M.-H., Ed. Elsevier Science B.V.: 2000; Vol. 8, pp 199-239. [18] Beeby, S. P.; Ensel, G.; Kraft, M.; Whita, N. M. MEMS Mechanical Sensors. Sensor Review 2004, 24 (3), 319-320. [19] Ekinci, K. L.; Roukes, M. L. Nanoelectromechanical systems. Review of Scientific Instruments 2005, 76 (6), 061101. [20] Bryzek, J.; Roundy, S.; Bircumshaw, B.; Chung, C.; Castellino, K.; Stetter, J. R.; Vestel, M. Marvelous MEMS. IEEE Circuits and Devices Magazine 2006, 22 (2), 8-28. [21] Lassagne, B.; Garcia-Sanchez, D.; Aguasca, A.; Bachtold, A. Ultrasensitive Mass Sensing with a Nanotube Electromechanical Resonator. Nano Letters 2008, 8 (11), 3735-3738. [22] Hsieh, Y.-P.; Hofmann, M.; Kong, J. Promoter-assisted chemical vapor deposition of graphene. Carbon 2014, 67, 417-423. [23] Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry 2011, 21 (10), 3324-3334. [24] Hsieh, Y.-P.; Shih, C.-H.; Chiu, Y.-J.; Hofmann, M. High-Throughput Graphene Synthesis in Gapless Stacks. Chemistry of Materials 2016, 28 (1), 40-43. [25] Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S. Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene. ACS Nano 2011, 5 (7), 6069-6076. [26] Suk, J. W.; Kitt, A.; Magnuson, C. W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A. K.; Goldberg, B. B.; Ruoff, R. S. Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates. ACS Nano 2011, 5 (9), 6916-6924. [27] Wang, M.; Yang, E. H.; Vajtai, R.; Kono, J.; Ajayan, P. M. Effects of etchants in the transfer of chemical vapor deposited graphene. Journal of Applied Physics 2018, 123 (19), 195103. [28] Zhou, X.; Gan, L.; Tian, W.; Zhang, Q.; Jin, S.; Li, H.; Bando, Y.; Golberg, D.; Zhai, T. Ultrathin SnSe2 Flakes Grown by Chemical Vapor Deposition for High-Performance Photodetectors. Advanced Materials 2015, 27 (48), 8035-8041. [29] Shao, X.; Li, S.; Tang, D.-M. Flaky nano-crystalline SnSe2 thin films for photoelectrochemical current generation. RSC Advances 2018, 8 (56), 32157-32163. [30] Su, G.; Hadjiev, V. G.; Loya, P. E.; Zhang, J.; Lei, S.; Maharjan, S.; Dong, P.; M. Ajayan, P.; Lou, J.; Peng, H. Chemical Vapor Deposition of Thin Crystals of Layered Semiconductor SnS2 for Fast Photodetection Application. Nano Letters 2015, 15 (1), 506-513. [31] Shimada, T.; Ohuchi, F. S.; Parkinson, B. A. Thermal decomposition of SnS2 and SnSe2: Novel molecular‐beam epitaxy sources for sulfur and selenium. Journal of Vacuum Science Technology A 1992, 10 (3), 539-542. [32] Heyne, M. H.; Chiappe, D.; Meersschaut, J.; Nuytten, T.; Conard, T.; Bender, H.; Huyghebaert, C.; Radu, I. P.; Caymax, M.; de Marneffe, J. F.; Neyts, E. C.; De Gendt, S. Multilayer MoS2 growth by metal and metal oxide sulfurization. Journal of Materials Chemistry C 2016, 4 (6), 1295-1304. [33] Saito, R.; Hofmann, M.; Dresselhaus, G.; Jorio, A.; Dresselhaus, M. S. Raman spectroscopy of graphene and carbon nanotubes. Advances in Physics 2011, 60 (3), 413-550. [34] Giubileo, F.; Di Bartolomeo, A. The role of contact resistance in graphene field-effect devices. Progress in Surface Science 2017, 92 (3), 143-175. [35] Martin, J.; Tritt, T.; Uher, C. High temperature Seebeck coefficient metrology. Journal of Applied Physics 2010, 108 (12), 121101. [36] Heikes, R. R.; Ure, R. W.; Angello, S. J., Thermoelectricity : science and engineering. Interscience publ.: New York, 1961. [37] Guan, A.; Wang, H.; Jin, H.; Chu, W.; Guo, Y.; Lu, G. An experimental apparatus for simultaneously measuring Seebeck coefficient and electrical resistivity from 100 K to 600 K. Review of Scientific Instruments 2013, 84 (4), 043903. [38] Jiang, P.; Qian, X.; Yang, R. Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. Journal of Applied Physics 2018, 124 (16), 161103. [39] Capinski, W. S.; Maris, H. J.; Ruf, T.; Cardona, M.; Ploog, K.; Katzer, D. S. Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Physical Review B 1999, 59 (12), 8105-8113. [40] Ge, Z.; Cahill, D. G.; Braun, P. V. Thermal Conductance of Hydrophilic and Hydrophobic Interfaces. Physical Review Letters 2006, 96 (18), 186101. [41] Losego, M. D.; Grady, M. E.; Sottos, N. R.; Cahill, D. G.; Braun, P. V. Effects of chemical bonding on heat transport across interfaces. Nature Materials 2012, 11 (6), 502-506. [42] Hohensee, G. T.; Wilson, R. B.; Cahill, D. G. Thermal conductance of metal–diamond interfaces at high pressure. Nature Communications 2015, 6 (1), 6578. [43] Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Review of Scientific Instruments 2004, 75 (12), 5119-5122. [44] Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters 2006, 97 (18), 187401. [45] Yoon, D.; Son, Y.-W.; Cheong, H. Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy. Nano Letters 2011, 11 (8), 3227-3231. [46] Lysenko, V.; Perichon, S.; Remaki, B.; Barbier, D.; Champagnon, B. Thermal conductivity of thick meso-porous silicon layers by micro-Raman scattering. Journal of Applied Physics 1999, 86 (12), 6841-6846. [47] Rasmussen, F. A.; Thygesen, K. S. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. The Journal of Physical Chemistry C 2015, 119 (23), 13169-13183. [48] Mattinen, M.; King, P. J.; Khriachtchev, L.; Meinander, K.; Gibbon, J. T.; Dhanak, V. R.; Räisänen, J.; Ritala, M.; Leskelä, M. Low-Temperature Wafer-Scale Deposition of Continuous 2D SnS2 Films. Small 2018, 14 (21), 1800547. [49] Mukhokosi, E. P.; Krupanidhi, S. B.; Nanda, K. K. Band Gap Engineering of Hexagonal SnSe2 Nanostructured Thin Films for Infra-Red Photodetection. Scientific Reports 2017, 7 (1), 15215. [50] Wagner, S.; Yim, C.; McEvoy, N.; Kataria, S.; Yokaribas, V.; Kuc, A.; Pindl, S.; Fritzen, C.-P.; Heine, T.; Duesberg, G. S.; Lemme, M. C. Highly Sensitive Electromechanical Piezoresistive Pressure Sensors Based on Large-Area Layered PtSe2 Films. Nano Letters 2018, 18 (6), 3738-3745. [51] Zhang, Y.; Shi, Y.; Wu, M.; Zhang, K.; Man, B.; Liu, M. Synthesis and Surface-Enhanced Raman Scattering of Ultrathin SnSe2 Nanoflakes by Chemical Vapor Deposition. Nanomaterials 2018, 8 (7). [52] Saha, S.; Banik, A.; Biswas, K. Few-Layer Nanosheets of n-Type SnSe2. Chemistry – A European Journal 2016, 22 (44), 15634-15638. [53] Lee, M.-J.; Ahn, J.-H.; Sung, J. H.; Heo, H.; Jeon, S. G.; Lee, W.; Song, J. Y.; Hong, K.-H.; Choi, B.; Lee, S.-H.; Jo, M.-H. Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity. Nature Communications 2016, 7 (1), 12011. [54] De, S.; Coleman, J. N. Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films? ACS Nano 2010, 4 (5), 2713-2720. [55] Chang, K.-W.; Hsieh, Y.-P.; Ting, C.-C.; Su, Y.-H.; Hofmann, M. Increasing the doping efficiency by surface energy control for ultra-transparent graphene conductors. Scientific Reports 2017, 7 (1), 9052. [56] Lee, J. E.; Ahn, G.; Shim, J.; Lee, Y. S.; Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nature Communications 2012, 3 (1), 1024. [57] Babichev, A. V.; Gasumyants, V. E.; Butko, V. Y. Resistivity and thermopower of graphene made by chemical vapor deposition technique. Journal of Applied Physics 2013, 113 (7), 076101. [58] Pham, A.-T.; Vu, T. H.; Cheng, C.; Trinh, T. L.; Lee, J.-E.; Ryu, H.; Hwang, C.; Mo, S.-K.; Kim, J.; Zhao, L.-d.; Duong, A.-T.; Cho, S. High-Quality SnSe2 Single Crystals: Electronic and Thermoelectric Properties. ACS Applied Energy Materials 2020, 3 (11), 10787-10792. [59] Malekpour, H.; Balandin, A. A. Raman-based technique for measuring thermal conductivity of graphene and related materials. Journal of Raman Spectroscopy 2018, 49 (1), 106-120. [60] An, B.; Ma, Y.; Zhang, G.; You, C.; Zhang, Y. Controlled synthesis of few-layer SnSe2 by chemical vapor deposition. RSC Advances 2020, 10 (69), 42157-42163. [61] Pawbake, A. S.; Date, A.; Jadkar, S. R.; Late, D. J. Temperature Dependent Raman Spectroscopy and Sensing Behavior of Few Layer SnSe2 Nanosheets. ChemistrySelect 2016, 1 (16), 5380-5387. [62] Ong, Z.-Y.; Pop, E. Effect of substrate modes on thermal transport in supported graphene. Physical Review B 2011, 84 (7), 075471. [63] Lindsay, L.; Broido, D. A.; Mingo, N. Flexural phonons and thermal transport in graphene. Physical Review B 2010, 82 (11), 115427. [64] Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X.; Yao, Z.; Huang, R.; Broido, D.; Mingo, N.; Ruoff, R. S.; Shi, L. Two-Dimensional Phonon Transport in Supported Graphene. Science 2010, 328 (5975), 213. [65] Bae, S.-H.; Lee, Y.; Sharma, B. K.; Lee, H.-J.; Kim, J.-H.; Ahn, J.-H. Graphene-based transparent strain sensor. Carbon 2013, 51, 236-242. [66] Manzeli, S.; Allain, A.; Ghadimi, A.; Kis, A. Piezoresistivity and Strain-induced Band Gap Tuning in Atomically Thin MoS2. Nano Letters 2015, 15 (8), 5330-5335. [67] Yao, H.; Hempel, M.; Hsieh, Y.-P.; Kong, J.; Hofmann, M. Characterizing percolative materials by straining. Nanoscale 2019, 11 (3), 1074-1079. [68] Kang, D.; Pikhitsa, P. V.; Choi, Y. W.; Lee, C.; Shin, S. S.; Piao, L.; Park, B.; Suh, K.-Y.; Kim, T.-i.; Choi, M. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 2014, 516 (7530), 222-226. [69] Lee, T.; Choi, Y. W.; Lee, G.; Pikhitsa, P. V.; Kang, D.; Kim, S. M.; Choi, M. Transparent ITO mechanical crack-based pressure and strain sensor. Journal of Materials Chemistry C 2016, 4 (42), 9947-9953. [70] Khadyko, M.; Marioara, C. D.; Ringdalen, I. G.; Dumoulin, S.; Hopperstad, O. S. Deformation and strain localization in polycrystals with plastically heterogeneous grains. International Journal of Plasticity 2016, 86, 128-150. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80896 | - |
| dc.description.abstract | 為因應日趨複雜之挑戰,積極研發具有不同功能的材料勢在必行。由二硒化錫和石墨烯所組成的原子級厚度之薄層異質接面,其界面交互作用力相當大且具備了多功能特性。在生長實驗中,我們設計了一套輔以石墨烯的化學氣相沉積方法。透過此法,能於 100 ℃ 極低溫的情況下長出大面積且高品質的二硒化錫在石墨烯上。藉由這直接生長方法,在二硒化錫與石墨烯之間的磊晶排列展現出熱電及機電性能,且兩者共同組成所展現之能力比單一材料更顯效果。石墨烯的高載子傳導率強化了薄層異質接面的電學特性,而界面介導抑制的影響使得它的熱導率降低。兩種情況同時發生成就了熱電優值的上升。再者,空間上的界面不均勻作用會讓應力於二硒化錫的晶界處局部化,進而產生一套新穎的裂紋輔助應變感測機制,其靈敏度優於任何二維材料。上述材料特性與元件性能可達成自主供能感測器如何於小溫度梯度上提供快速且可靠的應變感測,而我們對於材料多功能在原子尺度上的初步理解可以讓薄層異質接面在智能設備的應用上更加完善適當。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:20:58Z (GMT). No. of bitstreams: 1 U0001-2209202113013700.pdf: 11464166 bytes, checksum: daf718912c91247d4b1a1a24c0967dcb (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員會審定書 i 致謝 ii 中文摘要 iv ABSTRACT v CONTENTS vii LIST OF FIGURES x LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Thermoelectric materials 2 1.1.1 Seebeck effect 3 1.1.2 Peltier effect 5 1.1.3 Thomson effect 7 1.1.4 Figure of merit for thermoelectric materials, ZT 9 1.2 Strain gauges 11 Chapter 2 Experimental 15 2.1 Synthesizing experiment 15 2.1.1 Synthesis of graphene 16 2.1.2 Wet-transfer procedure 19 2.1.3 Synthesis of tin diselenide 21 2.2 Apparatus and analyses 23 2.2.1 Raman spectroscopy 23 2.2.2 Transmission line method 26 2.2.3 Temperature differential method 33 2.2.4 Thermal conductivity measurement 37 Chapter 3 Result and discussion 43 3.1 Characterization of material 43 3.1.1 AFM Characterization 44 3.1.2 Raman characterization 46 3.1.3 Structure characterization 50 3.1.4 Stoichiometric composition 53 3.2 Device performance 56 3.2.1 Thermoelectric performance 57 3.2.2 Strain performance 68 Chapter 4 Conclusions 76 BIBLIOGRAPHY 77" | |
| dc.language.iso | en | |
| dc.subject | 應力感測器 | zh_TW |
| dc.subject | 二硒化錫 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 熱電材料 | zh_TW |
| dc.subject | 多功能材料 | zh_TW |
| dc.subject | graphene | en |
| dc.subject | thermoelectric material | en |
| dc.subject | multifunctional material | en |
| dc.subject | tin diselenide | en |
| dc.subject | strain sensor | en |
| dc.title | 二維機械熱電異質接面用於自主供能感測器 | zh_TW |
| dc.title | Two-Dimensional Mechano-Thermoelectric Heterojunctions for Self-Powered Sensors | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳永芳(Hsin-Tsai Liu),張顏暉(Chih-Yang Tseng),黃斯衍 | |
| dc.subject.keyword | 多功能材料,二硒化錫,石墨烯,熱電材料,應力感測器, | zh_TW |
| dc.subject.keyword | multifunctional material,tin diselenide,graphene,thermoelectric material,strain sensor, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU202103283 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-09-27 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2209202113013700.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 11.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
