請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80886完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹長權(Chang-Chuan Chan) | |
| dc.contributor.author | Hung-Chien Lin | en |
| dc.contributor.author | 林宏謙 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:20:30Z | - |
| dc.date.available | 2021-11-08 | |
| dc.date.available | 2022-11-24T03:20:30Z | - |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-29 | |
| dc.identifier.citation | 1. Hoek, G., et al., Long-term air pollution exposure and cardio- respiratory mortality: a review. Environmental Health, 2013. 12. 2. Kim, K.H., E. Kabir, and S. Kabir, A review on the human health impact of airborne particulate matter. Environment International, 2015. 74: p. 136-143. 3. Lelieveld, J., et al., The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 2015. 525(7569): p. 367-+. 4. Xing, Y.F., et al., The impact of PM2.5 on the human respiratory system. Journal of Thoracic Disease, 2016. 8(1): p. E69-E74. 5. Rovira, J., M. Nadal, and M. Schuhmacher, Environmental impact and human health risks of air pollutants near a large chemical/petrochemical complex: Case study in Tarragona, Spain. Science of The Total Environment, 2021: p. 147550. 6. Somarin, A.P. and S. Peyghambarzadeh, Hazardous air pollutants emission characteristic and environmental effect of typical petrochemical incinerators. International Journal of Environmental Science and Technology, 2020. 17(8): p. 3771-3784. 7. Thawonkaew, A., et al., Assimilative capacity of air pollutants in an area of the largest petrochemical complex in Thailand. International Journal of GEOMATE, 2016. 11(23): p. 2162-9. 8. Xu, Y.-X., et al., Pollution characteristics and health risk assessment of hazardous air pollutants in the surroundings of three petrochemical industries in northwest China. Huan jing ke xue= Huanjing kexue, 2017. 38(7): p. 2707-2717. 9. Sonnemans, P., P. Körvers, and H. Pasman, Accidents in “normal” operation–Can you see them coming? Journal of loss prevention in the process industries, 2010. 23(2): p. 351-366. 10. Organization, W.H., Manual for the public health management of chemical incidents. 2009. 11. Razak, S., S. Hignett, and J. Barnes, Emergency department response to chemical, biological, radiological, nuclear, and explosive events: a systematic review. Prehospital and disaster medicine, 2018. 33(5): p. 543-549. 12. Tomassoni, A.J., R.N. French, and F.G. Walter, Toxic industrial chemicals and chemical weapons: exposure, identification, and management by syndrome. Emergency Medicine Clinics, 2015. 33(1): p. 13-36. 13. 雲林縣政府計劃處. 大事紀. 2021 [cited 2021 0824]; Available from: https://planning.yunlin.gov.tw/cp.aspx?n=1141. 14. 張聰秋, 六輕爆炸起火》彰化空污瞬間如火箭直線上衝破表, in 自由時報. 2020. 15. 林芊妤. 六輕又爆 環保署:確認非化學災害 為工廠起火事故. 2020 2021/07/15 [cited 2021 0824]; Available from: https://e-info.org.tw/node/225720. 16. 魏嘉良, 台塑六輕火災事故原因出爐 雲縣府祭加重裁罰45萬元, in 蘋果新聞網. 2021. 17. 孫文臨. 六輕又氣爆 十年16起事故 環署:無毒化物外洩. 2019 2019/04/08 [cited 2021 0824]; Available from: https://e-info.org.tw/node/217348. 18. 毒物及化學物質局危害控制組, 六輕台化芳香烴三廠LPG管線破裂氣爆處理相關事宜說明, 行政院環境保護署, Editor. 2019. 19. 謝瑞豪, 六輕石化工業區營運及意外排放對於周遭社區空氣品質的影響評估, in 職業醫學與工業衛生研究所. 2014, 國立臺灣大學: 台北市. p. 111. 20. A.Gelencser, K.Siszler, and J.Hlavay, Toluene−Benzene Concentration Ratio as a Tool for Characterizing the Distance from Vehicular Emission Sources. Environmental Science Technology, 1997(31): p. 2869-2872. 21. Bruno, P., et al., High spatial resolution monitoring of benzene and toluene in the Urban Area of Taranto (Italy). Journal of Atmospheric Chemistry, 2006. 54(2): p. 177-187. 22. Heeb, N.V., et al., A comparison of benzene, toluene and C2-benzenes mixing ratios in automotive exhaust and in the suburban atmosphere during the introduction of catalytic converter technology to the Swiss Car Fleet.pdf>. Atmospheric Environment, 2000. 34: p. 3103-3116. 23. Draxler, R. and G. Rolph, HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY website (http://ready. arl. noaa. gov/HYSPLIT. php), NOAA Air Resources Laboratory. Silver Spring, MD, 2010. 25. 24. Rolph, G., Real-time environmental applications and display system (READY) website. http://www. arl. noaa. gov/ready. php, 2003. 25. 台塑企業廠區空汙事件管制資訊網. 台化海豐廠(ARO-3)廢氣燃燒塔使用計畫書. 2018 2018/03/29 [cited 2020 10/31]; Available from: http://crm.fpg.com.tw/j2she/cus/art/Cc1a08.do. 26. 台塑企業廠區空汙事件管制資訊網. 塑化麥寮一廠(輕油廠)廢氣燃燒塔使用計畫書. 2021/01/26 [cited 2020 11/3]; Available from: http://crm.fpg.com.tw/j2she/cus/art/Cc1a08.do. 27. Book, G., Compendium of chemical terminology. International Union of Pure and Applied Chemistry, 2014. 528. 28. Cosemans, G., J. Kretzschmar, and C. Mensink, Pollutant roses for daily averaged ambient air pollutant concentrations. Atmospheric Environment, 2008. 42(29): p. 6982-6991. 29. Ratto, G., et al., Study of meteorological aspects and urban concentration of SO 2 in atmospheric environment of La Plata, Argentina. Environmental monitoring and assessment, 2006. 121(1): p. 327-342. 30. Shie, R.H., T.H. Yuan, and C.C. Chan, Using pollution roses to assess sulfur dioxide impacts in a township downwind of a petrochemical complex. J Air Waste Manag Assoc, 2013. 63(6): p. 702-11. 31. Elangasinghe, M., et al., A simple semi-empirical technique for apportioning the impact of roadways on air quality in an urban neighbourhood. Atmospheric Environment, 2014. 83: p. 99-108. 32. Malby, A.R., J.D. Whyatt, and R.J. Timmis, Conditional extraction of air-pollutant source signals from air-quality monitoring. Atmospheric Environment, 2013. 74: p. 112-122. 33. 詹長權, et al., 雲林六輕化學災害影響地區農漁業影響調查和環境管理系統建置計畫. 2019, 國立臺灣大學. 34. 詹長權, et al., 建構農漁生產環境緊急事件公害調查標準作業流程-以雲林六輕化學災害為例. 2020, 國立臺灣大學. 35. USEPA, Compendium Method TO-15. Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS). Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, 1999. 36. 行政院環境保護署環境檢驗所, 空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒/氣相層析質譜儀法(NIEA A715.16B), 行政院環境保護署環境檢驗所, Editor. 2021, 行政院環境保護署環境檢驗所 37. 許展溢, 彰化大城測站達最危險「褐爆」 環保署揭露關鍵原因, in ETtoday新聞雲. 2019. 38. Samia, C., R. Hamzi, and M. Chebila, Contribution of the lessons learned from oil refining accidents to the industrial risks assessment. Management of Environmental Quality: An International Journal, 2018. 39. Tram, L.T.B., Development of a procedure for evaluating the impacts of the accidental emission of hazardous chemicals, case study in Ho Chi Minh City, Vietnam. Environmental management, 2019. 63(4): p. 486-494. 40. Zhao, Y., et al., Effects of oil pipeline explosion on ambient particulate matter and their associated polycyclic aromatic hydrocarbons. Environmental Pollution, 2015. 196: p. 440-449. 41. ZONG, Z., et al., Impact of an accidental explosion in Tianjin Port on enhanced atmospheric nitrogen deposition over the Bohai Sea inferred from aerosol nitrate dual isotopes. Atmospheric and Oceanic Science Letters, 2020. 13(3): p. 195-201. 42. 邊瑋緒, 六輕離島工業區周界之懸浮微粒及附近居民尿中重金屬濃度之評估研究, in 職業醫學與工業衛生研究所. 2011, 國立臺灣大學: 台北市. p. 98. 43. Organization., W.H., Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. 2006: World Health Organization. 44. Cohen, A.J., et al., Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet, 2017. 389(10082): p. 1907-1918. 45. Agency for Toxic Substances and Disease Registry. Available from: https://www.atsdr.cdc.gov/. 46. Zereini, F., et al., Concentration and distribution of heavy metals in urban airborne particulate matter in Frankfurt am Main, Germany. Environmental science technology, 2005. 39(9): p. 2983-2989. 47. Amster, E.D., et al., Contribution of nitrogen oxide and sulfur dioxide exposure from power plant emissions on respiratory symptom and disease prevalence. Environmental pollution, 2014. 186: p. 20-28. 48. Chen, T.M., et al., Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. Am J Med Sci, 2007. 333(4): p. 249-56. 49. French, J.G., et al., The effect of sulfur dioxide and suspended sulfates on acute respiratory disease. Archives of Environmental Health: An International Journal, 1973. 27(3): p. 129-133. 50. Li, J., et al., The burden of sulfur dioxide pollution on years of life lost from chronic obstructive pulmonary disease: A nationwide analysis in China. Environ Res, 2021. 194: p. 110503. 51. World Health Organization. Available from: https://www.who.int/. 52. IARC, World Health Organization. Available from: https://www.iarc.who.int/. 53. Bates, M.N., et al., Hexane exposure and persistent peripheral neuropathy in automotive technicians. Neurotoxicology, 2019. 75: p. 24-29. 54. Guimarães-Costa, R., et al., N-hexane exposure: a cause of small fiber neuropathy. J Peripher Nerv Syst, 2018. 23(2): p. 143-146. 55. Li, F., et al., An outbreak of n-hexane poisoning associated with employer's lack of legal awareness at a family-run clothing workshop. Clin Toxicol (Phila), 2020. 58(11): p. 1072-1073. 56. Galbraith, D., S.A. Gross, and D. Paustenbach, Benzene and human health: A historical review and appraisal of associations with various diseases. Crit Rev Toxicol, 2010. 40 Suppl 2: p. 1-46. 57. Goldstein, B.D., Benzene toxicity. Occup Med, 1988. 3(3): p. 541-54. 58. Jacobs, A., Benzene and leukaemia. Br J Haematol, 1989. 72(2): p. 119-21. 59. Nordberg, G.F., B.A. Fowler, and M. Nordberg, Handbook on the Toxicology of Metals. 2014: Academic press. 60. Allegra, A., et al., Formaldehyde Exposure and Acute Myeloid Leukemia: A Review of the Literature. Medicina (Kaunas), 2019. 55(10). 61. Ge, J., et al., Combined exposure to formaldehyde and PM(2.5): Hematopoietic toxicity and molecular mechanism in mice. Environ Int, 2020. 144: p. 106050. 62. Kwak, K., D. Paek, and J.T. Park, Occupational exposure to formaldehyde and risk of lung cancer: A systematic review and meta-analysis. Am J Ind Med, 2020. 63(4): p. 312-327. 63. Loomis, T.A., Formaldehyde toxicity. Arch Pathol Lab Med, 1979. 103(7): p. 321-4. 64. McLaughlin, J.K., Formaldehyde and cancer: a critical review. Int Arch Occup Environ Health, 1994. 66(5): p. 295-301. 65. Heppel, L.A., P.A. Neal, and et al., The Toxicology of 1,2-dichloroethane (ethylene dichloride); the effects of daily inhalations. J Ind Hyg Toxicol, 1946. 28: p. 113-20. 66. Repko, J.D. and S.M. Lasley, Behavioral, neurological, and toxic effects of methyl chloride: a review of the literature. CRC Crit Rev Toxicol, 1979. 6(4): p. 283-302. 67. Thordarson, O., et al., [METHYL CHLORIDE POISONING]. Nord Med, 1965. 73: p. 150-4. 68. Yodaiken, R.E. and J.R. Babcock, 1,2-Dichloroethane poisoning. Arch Environ Health, 1973. 26(5): p. 281-4. 69. Zhu, X.H., et al., [Two cases of occupational subacute dichloroethane poisoning]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2021. 39(3): p. 224-225. 70. Phenol. IARC Monogr Eval Carcinog Risks Hum, 1999. 71 Pt 2(Pt 2): p. 749-68. 71. Brancato, D.J., Recognizing potential toxicity of phenol. Vet Hum Toxicol, 1982. 24(1): p. 29-30. 72. Park, J.S., M.T. Brown, and T. Han, Phenol toxicity to the aquatic macrophyte Lemna paucicostata. Aquat Toxicol, 2012. 106-107: p. 182-8. 73. Cyclohexanone. IARC Monogr Eval Carcinog Risks Hum, 1989. 47: p. 157-69. 74. Buckpitt, A., et al., Naphthalene-induced respiratory tract toxicity: metabolic mechanisms of toxicity. Drug Metab Rev, 2002. 34(4): p. 791-820. 75. Karagiannis, T.C., et al., Molecular model of naphthalene-induced DNA damage in the murine lung. Hum Exp Toxicol, 2012. 31(1): p. 42-50. 76. 行政院環境保護署空保處. 雲林縣麥寮鄉台塑石化麥寮一廠煉油部二廠火警事故 環署已全程掌控. 2020 2020/07/15 [cited 2021 0824]; Available from: https://enews.epa.gov.tw/Page/3B3C62C78849F32F/5e0de368-c406-48a3-82bc-c89151c6d8ee. 77. 台灣科技媒體中心. 六輕爆炸空氣污染是否危害人體健康 2019 2019/04/11 [cited 2021 0824]; Available from: https://smctw.tw/5058/. 78. Yuan, T.-H., et al., Liver fibrosis associated with potential vinyl chloride and ethylene dichloride exposure from the petrochemical industry. Science of The Total Environment, 2020. 739: p. 139920. 79. 莊明潔, 彰化縣大城鄉居民慢性腎臟病與六輕工業區距離相關性之研究, in 職業醫學與工業衛生研究所. 2018, 國立臺灣大學: 台北市. p. 76. 80. 陳俊霖, 六輕工業區北鄰之彰化縣大城鄉居民尿中硫代二乙酸與非侵襲性肝纖維指標的關係, in 職業醫學與工業衛生研究所. 2018, 國立臺灣大學: 台北市. p. 75. 81. Shie, R.H. and C.C. Chan, Tracking hazardous air pollutants from a refinery fire by applying on-line and off-line air monitoring and back trajectory modeling. J Hazard Mater, 2013. 261: p. 72-82. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80886 | - |
| dc.description.abstract | 背景: 設置空氣品質監測站是監控地方空氣品質及長期趨勢的主要方法,因臺灣工業區產業集中且排放空氣污染物成分特性複雜,我國環保署還另外針對「特殊性工業區」設置特殊性工業區空氣品質監測站,並自民國104年5月起陸續啟用。雖然政府單位已加強監測工業區空氣污染物的排放狀況,且各工業製程與化學品的使用也已有一定的標準作業流程、相關的指示與法令規範,但仍難以控制工安事故的意外排放,且會對附近環境及居民健康造成影響。即便過往特殊性工業區已有很多工安意外事件的發生,但政府單位、一般民眾及媒體對意外事件相關資訊的認知仍存在落差。過往政府單位在事故現場通常僅會針對和廠區相關的物質做採樣,空氣品質的監控也多以一般空氣品質監測站及距離最近的測站資料為主,但這些資訊可能不足以評估意外事故對周遭環境的影響。 目的: 本研究目的了解特殊性工業區空氣品質監測站對工安意外事件造成的空氣汙染的監控效果,以及其位置、數量、監測項目及監測頻率是否有不足之處,並釐清政府單位、一般民眾及媒體對意外事件特定或相關之空氣汙染物與實際情形的差異。 材料與方法: 本研究以六輕工業區近年兩起重大意外事故所造成之空氣污染排放為研究案例,收集現有的鄰近六輕工業區所有空氣品質監測站資料,並在六輕工業區鄰近區域進行意外事件後現場揮發性有機物採樣。先藉由氣流擴散模式模擬挑選出涵蓋於意外事件煙流內的測站和採樣點,再使用描述性分析、時間風速風向與濃度趨勢變化圖、濃度風向極座標圖和時間與濃度趨勢變化圖的資料統計方法,依照與意外廠址不同的關聯性,逐步分析這些測站和採樣點各種類空氣汙染物資料。 結果: 根據煙流擴散模擬的結果發現,位於六輕工業區東北方的大城站在監測本研究的意外事件上是相對最重要的,而崙背站的重要性則是僅次於大城站,反而距離六輕工業區最近的麥寮站,在本研究兩案例的重要性相對上述兩個測站低。意外發生前後監測到濃度明顯差異的空氣汙染物,案例一為與燃燒相關的懸浮微粒(PM10)和二氧化硫(SO2)、和發生原因相關的非甲烷碳氫化合物(NMHC)、和LPG管線內成份相關的丙烷(Propane)、正丁烷(n-Butane)、異丁烷(Isobutane)和丙烯(Propylene)和PM10中的重金屬;案例二為燃燒相關的懸浮微粒(PM10)、二氧化硫(SO2)、一氧化氮(NO)、二氧化氮(NO2)和氮氧化物(NOx)、和塑化煉二廠產品相關的碳數大於5的烷類、烯烴類和芳香族化合物、氟化物、硫化物、醛、酸等多種化合物。另外,揮發性有機物採樣及分析的結果發現,多種非法定監測項目的物質濃度可能會因為意外事件的發生而上升,包含鹵烷、芳香族、醇、醛、酮、酸、酯、氯化物、硫化物和氰類等化合物。各種類空氣汙染物在意外發生後監測到濃度高峰的時間,除了案例一PM10在大城站的和LPG成份相關的項目在崙背站是在意外發生後短時間內能監測到以外,其餘空氣汙染物皆大多是在意外發生後的一天甚至兩天後才有觀察到。 結論: 特殊性工業區空氣品質監測站對工安意外事件發生時空氣汙染監控具有一定的監控效果,但現有測站的位置、測站數量、監測項目及頻率仍有不足之處。除此之外,工安意外事件排放的空氣汙染物種類多且複雜,影響的時間能長達一週以上,證明實際排放情形和政府單位、一般民眾及媒體對意外事件特定或相關之空氣汙染物確實存在差異。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:20:30Z (GMT). No. of bitstreams: 1 U0001-2309202113213800.pdf: 7947597 bytes, checksum: b33730d0e99e3a25c8cef6821e92c593 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員會審定書 I 誌謝 II 中文摘要 III Abstract VI 目錄 IX 圖目錄 XI 表目錄 XIV 第一章 前言 1 1.1 特殊性工業區空氣品質監測站 1 1.2 六輕工業區簡介及其歷年工安意外事件 3 1.2.1 案例一:六輕工業區於民國108年4月7日發生之氣爆火災意外事件 5 1.2.2 案例二:六輕工業區於民國109年7月15日發生之氣爆火災意外事件 6 1.3 研究目的 7 第二章 材料與方法 8 2.1 研究架構 8 2.2 意外事件氣流擴散模擬 10 2.3 六輕工業區鄰近空氣品質監測網監測資料 11 2.3.1 環保署一般空氣品質監測站 12 2.3.2 特殊性工業區空氣品質監測站 13 2.4 資料統計方法 16 2.4.1 汙染玫瑰圖和極座標圖 17 2.5 六輕工業區周界揮發性有機物採樣及分析 18 第三章 結果 25 3.1 案例一 25 3.1.1 案例一發生後氣流擴散模擬 25 3.1.2 傳統空氣汙染物資料分析結果 28 3.1.3 有機光化前驅物資料分析結果 35 3.1.3.1 與案例一發生原因─液化石油氣(Liquefied petroleum gas, LPG)洩漏相關物質資料分析結果 35 3.1.3.2 與芳香烴三廠相關物質資料分析結果 39 3.1.3.3 案例一其餘有機光化前驅物監測項目資料分析結果 45 3.1.4 人工手動監測有害空氣污染物資料分析結果 47 3.2 案例二 50 3.2.1 案例二發生後氣流擴散模擬 51 3.2.2 傳統空氣汙染物資料分析結果 53 3.2.3 有機光化前驅物資料分析結果 63 3.2.3.1 與塑化煉二廠相關物質資料分析結果 63 3.2.3.2 案例二其餘有機光化前驅物監測項目資料分析結果 66 3.2.4 人工手動監測有害空氣污染物資料分析結果 71 3.2.5 六輕工業區周界揮發性有機物採樣及分析結果 73 第四章 討論 76 4.1 本研究兩案例比較及討論 76 4.2 六輕工業區之特殊性工業區空氣品質監測站與環保署一般空氣品質監測站比較 78 4.3 六輕工業區意外排放空氣汙染物對鄰近區域民眾健康影響 87 4.4 我國工安意外發生後環境調查與監控及特殊性工業區空氣品質監測站相關法規探討 90 4.5 研究限制 96 第五章 結論及建議 99 5.1 結論 99 5.2 建議 100 參考文獻 102 附錄 108 附錄一 特殊性工業區緩衝地帶及空氣品質監測設施設置標準 108 附錄二 蓋於案例二煙流內空氣監測與採樣點揮發性有機物採樣及分析結果 119 附錄三 六輕工業區周界揮發性有機物分析品質保證及管制 129" | |
| dc.language.iso | zh-TW | |
| dc.subject | 石化工業 | zh_TW |
| dc.subject | 特殊性工業區 | zh_TW |
| dc.subject | 空氣品質監測站 | zh_TW |
| dc.subject | 工安意外事件 | zh_TW |
| dc.subject | special purpose industrial park | en |
| dc.subject | air monitoring stations | en |
| dc.subject | industrial accidents | en |
| dc.subject | petrochemical industry | en |
| dc.title | 特殊性工業區空氣品質監測站對工安意外事件發生時空氣汙染監控之效果評估:以六輕工業區為例 | zh_TW |
| dc.title | Effectiveness of Air Monitoring Stations for Special-Purposed Industrial Parks in Monitoring Air Quality during Industrial Accidents: A Case Study on the No.6 Naphtha Complex | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳章甫(Hsin-Tsai Liu),李婉甄(Chih-Yang Tseng),袁子軒 | |
| dc.subject.keyword | 特殊性工業區,空氣品質監測站,工安意外事件,石化工業, | zh_TW |
| dc.subject.keyword | special purpose industrial park,air monitoring stations,industrial accidents,petrochemical industry, | en |
| dc.relation.page | 136 | |
| dc.identifier.doi | 10.6342/NTU202103315 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-09-29 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | zh_TW |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2309202113213800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
