請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80872完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉坤輝(Kun-Huei Yeh) | |
| dc.contributor.author | Yi-Hsin Liang | en |
| dc.contributor.author | 梁逸歆 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:19:56Z | - |
| dc.date.available | 2022-02-15 | |
| dc.date.available | 2022-11-24T03:19:56Z | - |
| dc.date.copyright | 2022-02-15 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-09 | |
| dc.identifier.citation | 1. Registry TC: http://tcr.cph.ntu.edu.tw/main.php?Page=N1. Taiwan Cancer Registry, 2022 2. Siegel RL, Miller KD, Jemal A: Cancer statistics, 2016. CA Cancer J Clin 66:7-30, 2016 3. Liang YH, Shao YY, Chen HM, et al: Irinotecan and Oxaliplatin Might Provide Equal Benefit as Adjuvant Chemotherapy for Patients with Resectable Synchronous Colon Cancer and Liver-confined Metastases: A Nationwide Database Study. Anticancer Res 37:7095-7104, 2017 4. Van Cutsem E, Cervantes A, Adam R, et al: ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 27:1386-422, 2016 5. Yoshino T, Arnold D, Taniguchi H, et al: Pan-Asian adapted ESMO consensus guidelines for the management of patients with metastatic colorectal cancer: a JSMO-ESMO initiative endorsed by CSCO, KACO, MOS, SSO and TOS. Ann Oncol 29:44-70, 2018 6. Chen HH, Ke TW, Huang CW, et al: Taiwan Society of Colon and Rectal Surgeons Consensus on mCRC Treatment. Front Oncol 11:764912, 2021 7. Van Cutsem E, Tabernero J, Lakomy R, et al: Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 30:3499-506, 2012 8. Bennouna J, Sastre J, Arnold D, et al: Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial. Lancet Oncol 14:29-37, 2013 9. Tabernero J, Yoshino T, Cohn AL, et al: Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol 16:499-508, 2015 10.Rizvi NA, Mazieres J, Planchard D, et al: Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 16:257-65, 2015 11.Garon EB, Rizvi NA, Hui R, et al: Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018-28, 2015 12.Topalian SL, Hodi FS, Brahmer JR, et al: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443-54, 2012 13.Hodi FS, O'Day SJ, McDermott DF, et al: Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711-23, 2010 14.Eng C, Kim TW, Bendell J, et al: Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol 20:849-861, 2019 15.Morse MA, Overman MJ, Hartman L, et al: Safety of Nivolumab plus Low-Dose Ipilimumab in Previously Treated Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer. Oncologist, 2019 16.Le DT, Uram JN, Wang H, et al: PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 372:2509-20, 2015 17.Grothey A, Tabernero J, Arnold D, et al: Fluoropyrimidine (FP) + bevacizumab (BEV) + atezolizumab vs FP/BEV in BRAFwt metastatic colorectal cancer (mCRC): Findings from Cohort 2 of MODUL – a multicentre, randomized trial of biomarker-driven maintenance treatment following first-line induction therapy. Ann Oncol. 29:Abstract LBA19, 2018 18.Mlecnik B, Bifulco C, Bindea G, et al: Multicenter International Society for Immunotherapy of Cancer Study of the Consensus Immunoscore for the Prediction of Survival and Response to Chemotherapy in Stage III Colon Cancer. J Clin Oncol 38:3638-3651, 2020 19.Becht E, de Reynies A, Giraldo NA, et al: Immune and Stromal Classification of Colorectal Cancer Is Associated with Molecular Subtypes and Relevant for Precision Immunotherapy. Clin Cancer Res, 2016 20.Gamerith G, Auer T, Amann A, et al: Increase in antibody-dependent cellular cytotoxicity (ADCC) in a patient with advanced colorectal carcinoma carrying a KRAS mutation under lenalidomide therapy. Cancer Biol Ther 15:266-70, 2014 21.Grasso CS, Giannakis M, Wells DK, et al: Genetic Mechanisms of Immune Evasion in Colorectal Cancer. Cancer Discov 8:730-749, 2018 22.Turcotte S, Katz SC, Shia J, et al: Tumor MHC class I expression improves the prognostic value of T-cell density in resected colorectal liver metastases. Cancer Immunol Res 2:530-7, 2014 23.Huang R, Zhang D, Li F, et al: Loss of Fas expression and high expression of HLA-E promoting the immune escape of early colorectal cancer cells. Oncol Lett 13:3379-3386, 2017 24.Guo ZY, Lv YG, Wang L, et al: Predictive value of HLA-G and HLA-E in the prognosis of colorectal cancer patients. Cell Immunol 293:10-6, 2015 25.McGilvray RW, Eagle RA, Watson NF, et al: NKG2D ligand expression in human colorectal cancer reveals associations with prognosis and evidence for immunoediting. Clin Cancer Res 15:6993-7002, 2009 26.Watson NF, Spendlove I, Madjd Z, et al: Expression of the stress-related MHC class I chain-related protein MICA is an indicator of good prognosis in colorectal cancer patients. Int J Cancer 118:1445-52, 2006 27.Galluzzi L, Senovilla L, Zitvogel L, et al: The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 11:215-33, 2012 28.Siew YY, Neo SY, Yew HC, et al: Oxaliplatin regulates expression of stress ligands in ovarian cancer cells and modulates their susceptibility to natural killer cell-mediated cytotoxicity. Int Immunol 27:621-32, 2015 29.Iwai T, Sugimoto M, Wakita D, et al: Topoisomerase I inhibitor, irinotecan, depletes regulatory T cells and up-regulates MHC class I and PD-L1 expression, resulting in a supra-additive antitumor effect when combined with anti-PD-L1 antibodies. Oncotarget 9:31411-31421, 2018 30.Garrido G, Rabasa A, Garrido C, et al: Upregulation of HLA Class I Expression on Tumor Cells by the Anti-EGFR Antibody Nimotuzumab. Front Pharmacol 8:595, 2017 31.Singh L, Singh MK, Kenney MC, et al: Prognostic significance of PD-1/PD-L1 expression in uveal melanoma: correlation with tumor-infiltrating lymphocytes and clinicopathological parameters. Cancer Immunol Immunother, 2020 32.Grasso CS, Tsoi J, Onyshchenko M, et al: Conserved Interferon-γ Signaling Drives Clinical Response to Immune Checkpoint Blockade Therapy in Melanoma. Cancer Cell 38:500-515.e3, 2020 33.Arenas EJ, Martínez-Sabadell A, Rius Ruiz I, et al: Acquired cancer cell resistance to T cell bispecific antibodies and CAR T targeting HER2 through JAK2 down-modulation. Nat Commun 12:1237, 2021 34.Chang CC, Pirozzi G, Wen SH, et al: Multiple structural and epigenetic defects in the human leukocyte antigen class I antigen presentation pathway in a recurrent metastatic melanoma following immunotherapy. J Biol Chem 290:26562-75, 2015 35.Bukur J, Jasinski S, Seliger B: The role of classical and non-classical HLA class I antigens in human tumors. Semin Cancer Biol 22:350-8, 2012 36.Groothuis TA, Griekspoor AC, Neijssen JJ, et al: MHC class I alleles and their exploration of the antigen-processing machinery. Immunol Rev 207:60-76, 2005 37.Shankaran V, Ikeda H, Bruce AT, et al: IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107-11, 2001 38.Zhang S, Kohli K, Black RG, et al: Systemic Interferon-γ Increases MHC Class I Expression and T-cell Infiltration in Cold Tumors: Results of a Phase 0 Clinical Trial. Cancer Immunol Res 7:1237-1243, 2019 39.Majoros A, Platanitis E, Kernbauer-Hölzl E, et al: Canonical and Non-Canonical Aspects of JAK-STAT Signaling: Lessons from Interferons for Cytokine Responses. Front Immunol 8:29, 2017 40.Antonelli AC, Binyamin A, Hohl TM, et al: Bacterial immunotherapy for cancer induces CD4-dependent tumor-specific immunity through tumor-intrinsic interferon-γ signaling. Proc Natl Acad Sci U S A 117:18627-18637, 2020 41.Necchi A, Raggi D, Gallina A, et al: Impact of Molecular Subtyping and Immune Infiltration on Pathological Response and Outcome Following Neoadjuvant Pembrolizumab in Muscle-invasive Bladder Cancer. Eur Urol 77:701-710, 2020 42.Slattery ML, Wolff RK, Lundgreen A: A pathway approach to evaluating the association between the CHIEF pathway and risk of colorectal cancer. Carcinogenesis 36:49-59, 2015 43.Mundy-Bosse BL, Lesinski GB, Jaime-Ramirez AC, et al: Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. Cancer Res 71:5101-10, 2011 44.Wick EC, LeBlanc RE, Ortega G, et al: Shift from pStat6 to pStat3 predominance is associated with inflammatory bowel disease-associated dysplasia. Inflamm Bowel Dis 18:1267-74, 2012 45.Slattery ML, Lundgreen A, Kadlubar SA, et al: JAK/STAT/SOCS-signaling pathway and colon and rectal cancer. Mol Carcinog 52:155-66, 2013 46.Gordziel C, Bratsch J, Moriggl R, et al: Both STAT1 and STAT3 are favourable prognostic determinants in colorectal carcinoma. Br J Cancer 109:138-46, 2013 47.Tobelaim WS, Beaurivage C, Champagne A, et al: Tumour-promoting role of SOCS1 in colorectal cancer cells. Sci Rep 5:14301, 2015 48.Leon-Cabrera S, Vázquez-Sandoval A, Molina-Guzman E, et al: Deficiency in STAT1 Signaling Predisposes Gut Inflammation and Prompts Colorectal Cancer Development. Cancers (Basel) 10, 2018 49.Sakahara M, Okamoto T, Oyanagi J, et al: IFN/STAT signaling controls tumorigenesis and the drug response in colorectal cancer. Cancer Sci 110:1293-1305, 2019 50.Serra D, Rufino AT, Mendes AF, et al: Resveratrol modulates cytokine-induced Jak/STAT activation more efficiently than 5-aminosalicylic acid: an in vitro approach. PLoS One 9:e109048, 2014 51.Czodrowski P, Mallinger A, Wienke D, et al: Structure-Based Optimization of Potent, Selective, and Orally Bioavailable CDK8 Inhibitors Discovered by High-Throughput Screening. J Med Chem 59:9337-9349, 2016 52.Leone P, Shin EC, Perosa F, et al: MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst 105:1172-87, 2013 53.Ling A, Löfgren-Burström A, Larsson P, et al: TAP1 down-regulation elicits immune escape and poor prognosis in colorectal cancer. Oncoimmunology 6:e1356143, 2017 54.Yang S, Tang D, Zhao YC, et al: Potentially functional variants of ERAP1, PSMF1 and NCF2 in the MHC-I-related pathway predict non-small cell lung cancer survival. Cancer Immunol Immunother 70:2819-2833, 2021 55.Courau T, Bonnereau J, Chicoteau J, et al: Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment. J Immunother Cancer 7:74, 2019 56.Feng Q, Yu S, Mao Y, et al: High MICB expression as a biomarker for good prognosis of colorectal cancer. J Cancer Res Clin Oncol 146:1405-1413, 2020 57.Jhunjhunwala S, Hammer C, Delamarre L: Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer 21:298-312, 2021 58.Pfirschke C, Engblom C, Rickelt S, et al: Immunogenic Chemotherapy Sensitizes Tumors to Checkpoint Blockade Therapy. Immunity 44:343-54, 2016 59.Gajewski TF, Schreiber H, Fu YX: Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14:1014-22, 2013 60.Pozzi C, Cuomo A, Spadoni I, et al: The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nat Med 22:624-31, 2016 61.Lesterhuis WJ, Punt CJ, Hato SV, et al: Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J Clin Invest 121:3100-8, 2011 62.Tesniere A, Schlemmer F, Boige V, et al: Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29:482-91, 2010 63.Trivedi S, Concha-Benavente F, Srivastava RM, et al: Immune biomarkers of anti-EGFR monoclonal antibody therapy. Ann Oncol 26:40-7, 2015 64.Troiani T, Zappavigna S, Martinelli E, et al: Optimizing treatment of metastatic colorectal cancer patients with anti-EGFR antibodies: overcoming the mechanisms of cancer cell resistance. Expert Opin Biol Ther 13:241-55, 2013 65.Wallin JJ, Bendell JC, Funke R, et al: Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat Commun 7:12624, 2016 66.Martino EC, Misso G, Pastina P, et al: Immune-modulating effects of bevacizumab in metastatic non-small-cell lung cancer patients. Cell Death Discov 2:16025, 2016 67.FDA US: https://www.accessdata.fda.gov/scripts/cder/daf/. Drugs@FDA: FDA-Approved Drugs U.S. Food and Drug Administration, 2020 68.Oldham ML, Hite RK, Steffen AM, et al: A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter. Nature 529:537-40, 2016 69.Matschulla T, Berry R, Gerke C, et al: A highly conserved sequence of the viral TAP inhibitor ICP47 is required for freezing of the peptide transport cycle. Sci Rep 7:2933, 2017 70.Benson AB, Venook AP, Al-Hawary MM, et al: NCCN Guidelines Insights: Colon Cancer, Version 2.2018. J Natl Compr Canc Netw 16:359-369, 2018 71.Burtness B, Harrington KJ, Greil R, et al: Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 394:1915-1928, 2019 72.Becht E, Giraldo NA, Beuselinck B, et al: Prognostic and theranostic impact of molecular subtypes and immune classifications in renal cell cancer (RCC) and colorectal cancer (CRC). Oncoimmunology 4:e1049804, 2015 73.Guinney J, Dienstmann R, Wang X, et al: The consensus molecular subtypes of colorectal cancer. Nat Med 21:1350-6, 2015 74.Wang S, Darini C, Désaubry L, et al: STAT1 Promotes KRAS Colon Tumor Growth and Susceptibility to Pharmacological Inhibition of Translation Initiation Factor eIF4A. Mol Cancer Ther 15:3055-3063, 2016 75.Spano JP, Milano G, Rixe C, et al: JAK/STAT signalling pathway in colorectal cancer: a new biological target with therapeutic implications. Eur J Cancer 42:2668-70, 2006 76.Mimura K, Teh JL, Okayama H, et al: PD-L1 expression is mainly regulated by interferon gamma associated with JAK-STAT pathway in gastric cancer. Cancer Sci 109:43-53, 2018 77.Garcia-Diaz A, Shin DS, Moreno BH, et al: Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression. Cell Rep 19:1189-1201, 2017 78.Liang YH, Tsai JH, Cheng YM, et al: Chemotherapy agents stimulate dendritic cells against human colon cancer cells through upregulation of the transporter associated with antigen processing. Sci Rep 11:9080, 2021 79.Ahmed D, Eide PW, Eilertsen IA, et al: Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2:e71, 2013 80.Li Y, Cui K, Zhang Q, et al: FBXL6 degrades phosphorylated p53 to promote tumor growth. Cell Death Differ 28:2112-2125, 2021 81.Kwon M, Rubio G, Nolan N, et al: FILIP1L loss is a driver of aggressive mucinous colorectal adenocarcinoma and mediates cytokinesis defects through PFDN1. Cancer Res, 2021 82.Ao N, Liu Y, Feng H, et al: Ubiquitin-specific peptidase USP22 negatively regulates the STAT signaling pathway by deubiquitinating SIRT1. Cell Physiol Biochem 33:1863-75, 2014 83.Tundo GR, Sbardella D, Santoro AM, et al: The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 213:107579, 2020 84.Fricker LD: Proteasome Inhibitor Drugs. Annu Rev Pharmacol Toxicol 60:457-476, 2020 85.Ten Hoorn S, Trinh A, de Jong J, et al: Classification of Colorectal Cancer in Molecular Subtypes by Immunohistochemistry. Methods Mol Biol 1765:179-191, 2018 86.Bilchik A, Nissan A, Wainberg Z, et al: Surgical quality and nodal ultrastaging is associated with long-term disease-free survival in early colorectal cancer: an analysis of 2 international multicenter prospective trials. Ann Surg 252:467-74; discussion 474-6, 2010 87.Pflügler S, Svinka J, Scharf I, et al: IDO1(+) Paneth cells promote immune escape of colorectal cancer. Commun Biol 3:252, 2020 88.Yu L, Ye F, Li YY, et al: Histone methyltransferase SETDB1 promotes colorectal cancer proliferation through the STAT1-CCND1/CDK6 axis. Carcinogenesis 41:678-688, 2020 89.Niu M, Yi M, Dong B, et al: Upregulation of STAT1-CCL5 axis is a biomarker of colon cancer and promotes the proliferation of colon cancer cells. Ann Transl Med 8:951, 2020 90.Zhao T, Li Y, Zhang J, et al: PD-L1 expression increased by IFN-γ via JAK2-STAT1 signaling and predicts a poor survival in colorectal cancer. Oncol Lett 20:1127-1134, 2020 91.Kikuchi T, Mimura K, Okayama H, et al: A subset of patients with MSS/MSI-low-colorectal cancer showed increased CD8(+) TILs together with up-regulated IFN-γ. Oncol Lett 18:5977-5985, 2019 92.Moretto R, Corallo S, Belfiore A, et al: Prognostic impact of immune-microenvironment in colorectal liver metastases resected after triplets plus a biologic agent: A pooled analysis of five prospective trials. Eur J Cancer 135:78-88, 2020 93.Ledys F, Klopfenstein Q, Truntzer C, et al: RAS status and neoadjuvant chemotherapy impact CD8+ cells and tumor HLA class I expression in liver metastatic colorectal cancer. J Immunother Cancer 6:123, 2018 94.Naranbhai V, Viard M, Dean M, et al: HLA-A*03 and response to immune checkpoint blockade in cancer: an epidemiological biomarker study. Lancet Oncol, 2021 95.Srivastava S, Furlan SN, Jaeger-Ruckstuhl CA, et al: Immunogenic Chemotherapy Enhances Recruitment of CAR-T Cells to Lung Tumors and Improves Antitumor Efficacy when Combined with Checkpoint Blockade. Cancer Cell 39:193-208.e10, 2021 96.Bains SJ, Abrahamsson H, Flatmark K, et al: Immunogenic cell death by neoadjuvant oxaliplatin and radiation protects against metastatic failure in high-risk rectal cancer. Cancer Immunol Immunother 69:355-364, 2020 97.Bordonaro R, Calvo A, Auriemma A, et al: Trifluridine/tipiracil in combination with oxaliplatin and either bevacizumab or nivolumab in metastatic colorectal cancer: a dose-expansion, phase I study. ESMO Open 6:100270, 2021 98.Herting CJ, Farren MR, Tong Y, et al: A multi-center, single-arm, phase Ib study of pembrolizumab (MK-3475) in combination with chemotherapy for patients with advanced colorectal cancer: HCRN GI14-186. Cancer Immunol Immunother 70:3337-3348, 2021 99.Oliveras-Ferraros C, Vazquez-Martin A, Queralt B, et al: Interferon/STAT1 and neuregulin signaling pathways are exploratory biomarkers of cetuximab (Erbitux®) efficacy in KRAS wild-type squamous carcinomas: a pathway-based analysis of whole human-genome microarray data from cetuximab-adapted tumor cell-line models. Int J Oncol 39:1455-79, 2011 100.Martinelli E, Martini G, Famiglietti V, et al: Cetuximab Rechallenge Plus Avelumab in Pretreated Patients With RAS Wild-type Metastatic Colorectal Cancer: The Phase 2 Single-Arm Clinical CAVE Trial. JAMA Oncol 7:1529-1535, 2021 101.Soldevilla B, Carretero-Puche C, Gomez-Lopez G, et al: The correlation between immune subtypes and consensus molecular subtypes in colorectal cancer identifies novel tumour microenvironment profiles, with prognostic and therapeutic implications. Eur J Cancer 123:118-129, 2019 102.Mosele F, Remon J, Mateo J, et al: Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann Oncol 31:1491-1505, 2020 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80872 | - |
| dc.description.abstract | "現今的免疫治療對於MSI-H (microsatellite instability-high,微衛星不穩定)之轉移性大腸直腸癌有突破性的療效,但由於MSI-H之轉移性大腸直腸癌僅占1.8%至4%,因此化學治療合併標靶治療仍舊是佔96%以上的MSS (microsatellite stable,微衛星穩定)轉移性大腸直腸癌之標準治療。目前至少已經有兩個第三期臨床試驗,顯示免疫治療合併化學治療與標靶治療並無法顯著增加存活期。因此,嶄新的合併治療處方以及探尋免疫治療的新型生物標記,是現今MSS轉移性大腸直腸癌一項亟待突破的重要課題。現今已知其他種類癌症常用之免疫治療生物標記:PD-L1 (programed cell death ligand-1,細胞程式性凋亡配體1),對於轉移性大腸直腸癌並不能做為免疫治療生物標記,而MHC class I (major histocompatibility complex class I,第一型主要組織相容型複合體)之表現則是抗原表現細胞(antigen presenting cells)與T細胞毒殺效應的重要環節,有少數研究指出MHC class I 對於轉移性大腸直腸癌可能是一預後因子。探究MHC class I與免疫微環境之交互作用,可能為未來之免疫治療嶄新生物標記。 以MHC class I為中心,我們依序設計兩大部分的研究。第一部份,目前已知化學治療與標靶藥物會影響腫瘤的免疫微環境(tumor immune microenvironment)以及免疫表面因子。初步資料顯示irinotecan能藉由增加癌細胞的內質網壓力(endoplasmic reticulum stress)引發後續的免疫源發細胞凋亡(immunogenic cell death, ICD)。而oxaliplatin可激發癌細胞上的MHC class I之表現。此類反應都能激發T細胞的免疫毒殺反應。因此探究化學治療「前」、「後」腫瘤細胞上免疫表面因子之動態變化,對於未來設計免疫合併治療有不可或缺的重要性。第二部分,目前初步證據已知,IFN-γ (interferon-γ,干擾素γ)/ Janus kinase (JAK)/ STAT1 (signal transducer and activator of transcription 1,轉錄訊息傳遞與活化子1)路徑活化程度乃是免疫治療之重要的預測性生物標記之一。IFN-γ/JAK/STAT1不僅是抗原表現路徑中的樞紐,更藉此影響下游的MHC class I表現。因此更深入探究大腸癌細胞STAT1的表現,對於了解免疫治療的後續機轉與調控策略之研發至為重要。 依據以上兩大命題,我們設計與執行了兩個主要方向之研究。第一主題的研究,我們首先使用流式細胞儀(flow cytometry)測試了三株大腸癌細胞株:SW480、HT29、與COLO-320。這三株大腸癌細胞株同樣都是MHC class I與NK細胞配體(natural-killer cell ligands)表現量之基礎值都很低。在接受IFN-γ刺激後,這三株細胞株的MHC class I表現量也都顯著增加,尤其是HLA-A。相反地,其NK細胞配體都對IFN-γ刺激毫無反應。後續實驗中我們使用三大類治療大腸直腸癌的化學治療藥物,包括oxaliplatin,5-FU,以及irinotecan的活性代謝物SN-38,來應用在SW480細胞株。我們發現這三個化學治療藥物都能增加大腸癌細胞上MHC class I(尤其是HLA-A)的表現量,這其中又以SN-38增加幅度最為顯著。此外,oxaliplatin與5-FU對於MHC class I提升量與藥物濃度呈正相關。相對地,SN-38在極低的劑量就有效增加MHC class I表現,其增加幅度甚至接近IFN-γ的效果,而SN-38增加MHC class I在中劑量時達到最高效果,高劑量後效果則略微降低。接著我們使用西方點墨法(Western blot)來分析抗原表現路徑中的各個訊號,進而發現化學治療藥物刺激MHC class I之機轉,主要藉由刺激TAP1與TAP2 (transporters associated with antigen processing 1 and 2,表現轉移子1與2)。ICP-47(infected cell protein 47,感染細胞蛋白-47)是單純皰疹病毒的產物,可以直接抑制人類的TAP1與TAP2。在使用Xfect將ICP-47轉染入SW480細胞後,也確實會讓原本可被化學治療藥物激發的MHC class I表現量下降。在免疫功能分析的實驗中,我們也證實藉由增加癌細胞上MHC class I之表現,SN-38能夠顯著增加單核球衍生之樹突細胞(monocyte-derived dendritic cells, MoDCs)對癌細胞進行吞噬作用。最後,我們也從臨床檢體檢測,罹患轉移性大腸直腸癌的患者在接受第一線化學治療合併標靶治療「之前」與「之後」,進由分析成對的腫瘤切片,其腫瘤細胞上的MHC class I表現量確實有大幅增加,而增加的MHC class I主要是HLA-A與HLA-B。本主題研究結果證實了化學治療藥物可以提升大腸直腸癌細胞的免疫反應。 第二主題的研究,我們首先利用流式細胞儀加以測試更多不同大腸癌細胞株:SW620與DLD-1。發現與SW480等細胞株不同的是,雖然所有的大腸癌細胞株上其MHC class I與PD-L1之基礎值皆呈現低表現量,然而在IFN-γ刺激後,SW620與DLD-1細胞株對IFN-γ刺激完全沒有反應。後續使用西方點墨法分析發現IFN-γ的下游訊息:STAT1與pSTAT1 (phosphorylated STAT1,磷酸化轉錄訊息傳遞與活化子1)之基礎表現量,在SW480等細胞株都有正常表現,但在SW620與DLD-1細胞株中STAT1與pSTAT1之基礎表現量則都下降,進而使下游的訊息傳遞路徑,包括MHC class I等之表現量也同步下降。更進一步,我們發現蛋白酶體(proteasome)抑制劑,尤其是已可在臨床上使用的bortezomib,能有效恢復pSTAT1的表現量,同時也增加了下游的訊號:包括IRF-1(interferon regulatory factor-1)與MHC class I表現量。我們後續使用PerkinElmer Opal多重染色平台對所收集的六十個轉移性大腸直腸癌患者之腫瘤檢體進行檢測。我們發現腫瘤細胞中高表現的STAT1,同時也與該腫瘤高活性免疫微環境呈正相關。在高表現STAT1腫瘤檢體中,其腫瘤細胞與腫瘤周邊細胞都表現較高的MHC class I與PD-L1,並且腫瘤周邊淋巴球(tumor infiltrating lymphocytes, TILs) 數量也顯著地提升,同時包括CD4與CD8淋巴球。最後我們將這些臨床檢體使用NanoString RNA定量平台加以分析,我們應證了這兩個平台的結果是相同的。在PerkinElmer Opal多重染色平台檢測顯示高表現STAT1的腫瘤檢體,其使用NanoString平台也顯示該腫瘤檢體有較高的STAT1 mRNA表現量。更進一步,我們也驗證了高表現STAT1的腫瘤檢體,其MHC class I,包含了HLA-A,HLA-E,與HLA-G的mRNA表現量都顯著地比低表現STAT1的腫瘤檢體來得高。最後,我們從NanoString平台結果發現高表現STAT1的腫瘤檢體中有顯著較高的IFN-γ mRNA表現量。 總和以上結論,我們的研究提供了嶄新的轉移性大腸直腸癌免疫治療策略以及免疫治療生物標記。我們的結果證明大腸癌細胞之抗原表現路徑,尤其是MHC class I之表現與細胞免疫微環境呈現高度正相關,並且也顯著較高機率引發抗原表現細胞對癌細胞進行吞噬作用。我們進一步證明化學治療藥物能有效提升癌細胞上MHC class I之表現,而最高的刺激效果來自SN-38,而非oxaliplatin或5-FU。在分析更多臨床檢體後,我們也發現MHC class I之表現受控於抗原表現路徑上游的STAT1。腫瘤細胞中高表現的STAT1,同時與高活性免疫微環境尤其是MHC class I之表現呈正相關。針對高表現STAT1腫瘤,合併免疫治療與化學治療,特別是irinotecan,能夠增強免疫治療的效果。而在低表現STAT1腫瘤,合併蛋白酶體抑制劑是一個可行的調控策略,尤其是bortezomib,可能進一步活化腫瘤的免疫微環境。由於我們研究結果證明MHC class I與STAT1可做為轉移性大腸直腸癌免疫治療之嶄新生物標記,後續我們仍需前瞻性之臨床試驗來驗證其可行性。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:19:56Z (GMT). No. of bitstreams: 1 U0001-0602202215364700.pdf: 11794734 bytes, checksum: 2b2dc7e2106d5358ca8e2ccc4885d2fb (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | "口試委員會審定書 誌謝…………………………………………………………………………… i 中文摘要………………………………………………………………… ii 英文摘要………………………………………………………………… v 第一章 研究背景…………………………………………………………………………………………… 1 1.1 大腸直腸癌治療現況………………………………………………… 1 1.2 化學治療與免疫微環境…………………………………………… 2 1.3 抗原表現途徑與免疫微環境………………………………… 3 第二章 化學治療藥物對轉移性結直腸癌免疫微環境之影響…………… 6 2.1 引言……………………………………………………………………… 6 2.2 方法……………………………………………………………………… 7 2.3 結果……………………………………………………………………… 15 2.4 討論……………………………………………………………………… 18 第三章 STAT1的表現對轉移性結直腸癌免疫微環境之影響…………… 21 3.1 引言……………………………………………………………………… 21 3.2 方法……………………………………………………………………… 22 3.3 結果……………………………………………………………………… 27 3.4 討論……………………………………………………………………… 30 第四章 結論與未來展望………………………………………………… 33 第五章 圖………………………………………………………………… 38 第六章 表………………………………………………………………… 87 參考文獻…………………………………………………………………… 88 附錄……………………………………………………………………………… 99 圖 目 錄 Figure 1. Mean fluorescence intensity (MFI) for immune surface markers expressed on two colon cell lines in response to IFN-γ after 48-h exposure…………… 38 Figure 2. Mean fluorescence intensity (MFI) for immune surface markers expressed on SW480in response to chemotherapy or IFN-γ……………………………………… 42 Figure 3. Western blot for SW480 with antigen processing pathway in response to chemotherapy agents ………………………………………………………………………… 50 Figure 4. Transfection with Xfect plus X-gal into SW480 and Western blot for SW480 with antigen processing pathway in response to ICP47 ………………………… 53 Figure 5. Functional phagocytosis assay demonstrated MoDCs and SW480 cells…………………………………………………………………………………………………………… 56 Figure 6. Images of CT scan, Nanostring, and IHC staining from the patient before (baseline) and after (post-treatment) systemic targeted therapy and chemotherapy 58 Figure 7. Western blots for the SW480 and SW620 cells in the IFN-γ pathway in response to IFN-γ …………………………………………………………………………… 63 Figure 8. Western blotsfor SW620 and SW480 cells in the STAT1 pathway in response to bortezomib, LLnL, MG132, and IFN-γ…………………………………………………66 Figure 9. Western blots for SW620 and DLD-1 cells in the STAT1 pathway in response to bortezomib and IFN-γ………………………………… 68 Figure 10. One example of IHC staining by the PerkinElmer Opal multiplex system……………………………………………………………………… 73 Figure 11. Counts for mRNA expression in tumor tissue through NanoString analysis…………………………………………………………………… 80 表 目 錄 Table 1. Patient clinical characteristics………………………………… 87" | |
| dc.language.iso | en | |
| dc.subject | 干擾素γ | zh_TW |
| dc.subject | 大腸直腸癌 | zh_TW |
| dc.subject | 第一型主要組織相容型複合體 | zh_TW |
| dc.subject | 免疫治療 | zh_TW |
| dc.subject | 抗原表現轉移子 | zh_TW |
| dc.subject | 蛋白酶體抑制劑 | zh_TW |
| dc.subject | 轉錄訊息傳遞與活化子1 | zh_TW |
| dc.subject | 腫瘤周邊淋巴球 | zh_TW |
| dc.subject | colorectal cancer | en |
| dc.subject | interferon-γ (IFN-γ) | en |
| dc.subject | tumor infiltrating lymphocytes (TILs) | en |
| dc.subject | signal transducer and activator of transcription (STAT)1 | en |
| dc.subject | proteasome inhibitors | en |
| dc.subject | transporter associated with antigen processing (TAP) | en |
| dc.subject | immunotherapy | en |
| dc.subject | major histocompatibility complex (MHC) | en |
| dc.title | 大腸直腸癌免疫表面因子之變化與機制解析及其調控策略之研發 | zh_TW |
| dc.title | "Researches on Dynamic Changes, Mechanisms, and Modulation Strategies for Immune Surface Markers of Colorectal Cancers" | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0002-7224-9687 | |
| dc.contributor.oralexamcommittee | 趙毅(Chi-hsiung Chang),顏厥全(En-Mei Chin),許秉寧,徐志宏 | |
| dc.subject.keyword | 大腸直腸癌,第一型主要組織相容型複合體,免疫治療,抗原表現轉移子,蛋白酶體抑制劑,轉錄訊息傳遞與活化子1,腫瘤周邊淋巴球,干擾素γ, | zh_TW |
| dc.subject.keyword | colorectal cancer,major histocompatibility complex (MHC),immunotherapy,transporter associated with antigen processing (TAP),proteasome inhibitors,signal transducer and activator of transcription (STAT)1,tumor infiltrating lymphocytes (TILs),interferon-γ (IFN-γ), | en |
| dc.relation.page | 100 | |
| dc.identifier.doi | 10.6342/NTU202200300 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-02-09 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 腫瘤醫學研究所 | zh_TW |
| 顯示於系所單位: | 腫瘤醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0602202215364700.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 11.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
