Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80861
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor嚴仲陽(Jeffrey J. Y. Yen)
dc.contributor.authorJun-Wei Lien
dc.contributor.author李峻緯zh_TW
dc.date.accessioned2022-11-24T03:19:28Z-
dc.date.available2022-02-15
dc.date.available2022-11-24T03:19:28Z-
dc.date.copyright2022-02-15
dc.date.issued2022
dc.date.submitted2022-02-08
dc.identifier.citation1. Wherry, E.J. Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nature Reviews Immunology 15, 486-499 (2015). 2. Wherry, E.J. T cell exhaustion. Nature immunology 12, 492-499 (2011). 3. Yi, J.S., Cox, M.A. Zajac, A.J. T-cell exhaustion: characteristics, causes and conversion. Immunology 129, 474-481 (2010). 4. McLane, L.M., Abdel-Hakeem, M.S. Wherry, E.J. CD8 T cell exhaustion during chronic viral infection and cancer. Annual review of immunology 37, 457-495 (2019). 5. Chen, L. Flies, D.B.J.N.R.I. Molecular mechanisms of T cell co-stimulation and co-inhibition. 13, 227-242 (2013). 6. Buggert, M. et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection. PLoS pathogens 10, e1004251 (2014). 7. Martinez, G.J. et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity 42, 265-278 (2015). 8. Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530-534 (2019). 9. Liu, X. et al. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature 567, 525-529 (2019). 10. Odagiu, L., May, J., Boulet, S., Baldwin, T.A. Labrecque, N. Role of the orphan nuclear receptor NR4A family in T-cell biology. Frontiers in Endocrinology, 1107 (2021). 11. Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571, 211-218 (2019). 12. Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proceedings of the National Academy of Sciences 116, 12410-12415 (2019). 13. Hogan, P.G.J.C.c. Calcium–NFAT transcriptional signalling in T cell activation and T cell exhaustion. 63, 66-69 (2017). 14. Kao, C. et al. Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. 12, 663-671 (2011). 15. Pearce, E.L. et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. 302, 1041-1043 (2003). 16. Seo, W., Jerin, C., Nishikawa, H.J.E. Medicine, M. Transcriptional regulatory network for the establishment of CD8+ T cell exhaustion. 53, 202-209 (2021). 17. Franco, F., Jaccard, A., Romero, P., Yu, Y.-R. Ho, P.-C.J.N.M. Metabolic and epigenetic regulation of T-cell exhaustion. 2, 1001-1012 (2020). 18. Yang, R. et al. Distinct epigenetic features of tumor-reactive CD8+ T cells in colorectal cancer patients revealed by genome-wide DNA methylation analysis. 21, 1-13 (2020). 19. Kurakula, K., Koenis, D.S., van Tiel, C.M. de Vries, C.J.J.B.e.B.A.-M.C.R. NR4A nuclear receptors are orphans but not lonesome. 1843, 2543-2555 (2014). 20. Zhang, C., Zhang, B., Zhang, X., Sun, G. Sun, X. Targeting Orphan Nuclear Receptors NR4As for Energy Homeostasis and Diabetes. 11 (2020). 21. Odagiu, L., May, J., Boulet, S., Baldwin, T.A. Labrecque, N. Role of the Orphan Nuclear Receptor NR4A Family in T-Cell Biology. 11 (2021). 22. Zhao, Y., Bruemmer, D.J.A., thrombosis, biology, v. NR4A orphan nuclear receptors: transcriptional regulators of gene expression in metabolism and vascular biology. 30, 1535-1541 (2010). 23. Zhao, Y. Bruemmer, D.J.D.D.T.D.M. NR4A orphan nuclear receptors in cardiovascular biology. 6, e43-e48 (2009). 24. Martínez-González, J. Badimon, L. The NR4A subfamily of nuclear receptors: new early genes regulated by growth factors in vascular cells. Cardiovascular Research 65, 609-618 (2005). 25. Pei, L., Castrillo, A., Chen, M., Hoffmann, A. Tontonoz, P.J.J.o.b.c. Induction of NR4A orphan nuclear receptor expression in macrophages in response to inflammatory stimuli. 280, 29256-29262 (2005). 26. Hamers, A.A., Hanna, R.N., Nowyhed, H., Hedrick, C.C. de Vries, C.J.J.C.o.i.l. NR4A nuclear receptors in immunity and atherosclerosis. 24, 381 (2013). 27. Thompson, J. Winoto, A.J.T.J.o.e.m. During negative selection, Nur77 family proteins translocate to mitochondria where they associate with Bcl-2 and expose its proapoptotic BH3 domain. 205, 1029-1036 (2008). 28. Sekiya, T. et al. Nr4a receptors are essential for thymic regulatory T cell development and immune homeostasis. 14, 230-237 (2013). 29. Martinez, G.J. et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. 42, 265-278 (2015). 30. Zhou, X., Ramachandran, S., Mann, M. Popkin, D.L. Role of lymphocytic choriomeningitis virus (LCMV) in understanding viral immunology: past, present and future. Viruses 4, 2650-2669 (2012). 31. Jiang, Y., Li, Y. Zhu, B. T-cell exhaustion in the tumor microenvironment. Cell death disease 6, e1792-e1792 (2015). 32. Saka, D. et al. Mechanisms of T-cell exhaustion in pancreatic cancer. Cancers 12, 2274 (2020). 33. Liu, Y. et al. IL-2 regulates tumor-reactive CD8+ T cell exhaustion by activating the aryl hydrocarbon receptor. Nature Immunology 22, 358-369 (2021). 34. Hung, M.H. et al. Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma. Nature communications 12, 1-15 (2021). 35. Vardhana, S.A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nature immunology 21, 1022-1033 (2020). 36. Zhao, M. et al. Rapid in vitro generation of bona fide exhausted CD8+ T cells is accompanied by Tcf7 promotor methylation. PLoS pathogens 16, e1008555 (2020). 37. Bucks, C.M., Norton, J.A., Boesteanu, A.C., Mueller, Y.M. Katsikis, P.D. Chronic antigen stimulation alone is sufficient to drive CD8+ T cell exhaustion. The Journal of Immunology 182, 6697-6708 (2009). 38. Na, Y.J. et al. Lactoferrin works as a new LPS-binding protein in inflammatory activation of macrophages. International immunopharmacology 4, 1187-1199 (2004). 39. Bryant, D.M. et al. A molecular network for de novo generation of the apical surface and lumen. 12, 1035-1045 (2010). 40. Delville, M. et al. A nontoxic transduction enhancer enables highly efficient lentiviral transduction of primary murine T cells and hematopoietic stem cells. Molecular Therapy-Methods Clinical Development 10, 341-347 (2018). 41. Wherry, E.J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670-684 (2007). 42. Zha, Y. et al. T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha. Nat Immunol 7, 1166-1173 (2006). 43. Servan-Chiara, F., Grausz, J.D., Garnier, F. Gerlier, D. Sustained IL-2 production by the EL4 subline during continuous phorbol diester stimulation is related to an increase of IL-2-mRNA. Journal of immunological methods 88, 207-215 (1986). 44. Mantei, A. et al. siRNA stabilization prolongs gene knockdown in primary T lymphocytes. Eur J Immunol 38, 2616-2625 (2008). 45. Mestermann, K. et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Science translational medicine 11 (2019). 46. Weber, E.W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372 (2021). 47. Tsurutani, N. et al. Nuclear import of the preintegration complex is blocked upon infection by human immunodeficiency virus type 1 in mouse cells. 81, 677-688 (2007). 48. Cribbs, A.P., Kennedy, A., Gregory, B. Brennan, F.M.J.B.b. Simplified production and concentration of lentiviral vectors to achieve high transduction in primary human T cells. 13, 1-8 (2013). 49. Qin, X.-F., An, D.S., Chen, I.S. Baltimore, D.J.P.o.t.N.A.o.S. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. 100, 183-188 (2003). 50. Kim, D.-H. et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. 23, 222-226 (2005). 51. Watts, J.K., Deleavey, G.F. Damha, M.J.J.D.d.t. Chemically modified siRNA: tools and applications. 13, 842-855 (2008). 52. Volkov, A.A. et al. Selective protection of nuclease-sensitive sites in siRNA prolongs silencing effect. 19, 191-202 (2009). 53. Egli, M. et al. Probing the influence of stereoelectronic effects on the biophysical properties of oligonucleotides: comprehensive analysis of the RNA affinity, nuclease resistance, and crystal structure of ten 2 ‘-O-ribonucleic acid modifications. 44, 9045-9057 (2005). 54. Blank, C.U. et al. Defining ‘T cell exhaustion’. 19, 665-674 (2019). 55. Chibueze, C.E., Yoshimitsu, M., Arima, N.J.B. communications, b.r. CD160 expression defines a uniquely exhausted subset of T lymphocytes in HTLV-1 infection. 453, 379-384 (2014). 56. Beltra, J.-C. et al. IL2Rβ-dependent signals drive terminal exhaustion and suppress memory development during chronic viral infection. 113, E5444-E5453 (2016). 57. Xin, G. et al. A critical role of IL-21-induced BATF in sustaining CD8-T-cell-mediated chronic viral control. 13, 1118-1124 (2015). 58. Chihara, N. et al. Induction and transcriptional regulation of the co-inhibitory gene module in T cells. 558, 454-459 (2018). 59. Tang, R., Rangachari, M. Kuchroo, V.K. Tim-3: A co-receptor with diverse roles in T cell exhaustion and tolerance. Seminars in immunology; 2019: Elsevier; 2019. p. 101302. 60. Raskov, H., Orhan, A., Christensen, J.P. Gögenur, I.J.B.j.o.c. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. 124, 359-367 (2021).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80861-
dc.description.abstract在慢性發炎和癌症中往往發現T細胞存在有效功能低下和抑制性受體表現量上升的狀態,稱為T細胞耗竭。由活體內系統生產耗竭性T細胞耗時且只能產生有限數量,因此活體外系統在近年逐漸被建立和驗證來克服使用活體內系統的缺點。我們成功建立一個為期五天的活體外系統用以產生似耗竭性小鼠CD8 T細胞。在此系統下藉由電穿孔送入小分子干擾核糖核酸進行基因敲落,達到調查該目標基因是否參與T細胞耗竭的目的。例如,我們發現三重敲落NR4A家族會部分回復細胞激素的產生。雖然並無在耗竭性T細胞中發現PD-1受到NR4A敲落的影響,但是在我們建立的EL4細胞模型中,由慢病毒轉染方式將小髮夾核糖核酸送入細胞來敲落NR4A1/3,結果發現佛波酯/離子黴素刺激後PD-1的表達不會上升。此外,我們也嘗試使用小分子藥物來測試是否有效預防T細胞耗竭。我們使用柏萊膜衣錠 (Dasatinib),一種SRC激酶 (kinase) 抑制劑,發現能夠有效防止T細胞耗竭,同時NR4A家族的表達會受到抑制。進一步藉由質譜流式細胞技術 (CyTOF) 和全核糖核酸測序分析發現柏萊膜衣錠處理過的耗竭性T細胞與效應T細胞基因表徵特徵大部分一致。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:19:28Z (GMT). No. of bitstreams: 1
U0001-0602202220230300.pdf: 5003414 bytes, checksum: 9ae8e2277cb6033c7d58cf5648a42168 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 ii 摘要 iii Abstract iv List of figures viii Introduction 1 1 The unique transcriptional and epigenetic profile of T cell exhaustion. 1 2 NR4As are one of key factors involved in CD8 T cell exhaustion. 2 3 In vivo and in vitro models for T cell exhaustion studies 4 4 Specific aim 5 Materials and Methods 7 1 Materials 7 1.1 Antibodies 7 1.2 Buffer and reagents 8 1.3 Primers for qPCR 8 1.4 RNAi 9 1.5 Mice and cell culture 12 2 Methods 13 2.1 In vitro system generating exhausted OT-1 T cells 13 2.2 Plasmid DNA/siRNA electroporation 14 2.3 Lentiviral transduction 15 2.4 Immunoblotting 16 2.5 RNA extraction 17 2.6 RT-qPCR 17 2.7 Flow cytometry 19 2.8 RNA sequencing 20 2.9 CyTOF 21 2.10 Statistical analysis 21 Results 23 1 Establishment of EL4 T cell line as a screening system for gene manipulation in NR4A/PD-1 pathway 23 1.1 NR4A1/3 are rapidly induced in EL4 after activation. 23 1.2 Establishment of a viral transduction protocol for EL4 cell line for gene manipulation. 24 1.3 NR4A1/3 shRNA knockdowns in EL4 cells impaired PD-1 expression. …………………………………………………………………………25 2 Manipulation of NR4A family proteins in In Vitro OT-1 T cell exhaustion model 28 2.1 Establishment and characterization of the In Vitro OT-1 T cell exhaustion model 28 2.2 NR4A family proteins were also upregulated in the exhausted OT-1 cells. .......................................................................................................................30 2.3 Genetic manipulation using lentiviral transduction is inefficient in the CD8 OT-1 model 31 2.4 Genetic manipulation using siRNA electroporation in the CD8 OT-1 model 32 2.5 Decrease of NR4A family expression levels partially recovered the cytokines production 33 3 Dasatinib treatment completely reverted the T cell exhaustion phenotypes. 35 3.1 Establishment of Dasatinib treatment protocol in In Vitro T cell exhaustion model. 35 3.2 Dasatinib reversed exhausted T cells extensively resemble the effector T cells in CyTOF analysis 36 3.3 Dasatinib-treated exhausted T cells resemble effector T cells in the transcriptomic analysis 37 Discussion 40 1 Strategy switch due to technical difficulties. 40 2 The lentiviral transduction did not workout well for the primary murine T cell system. 42 3 siRNA knockdown of NR4As in OT-1 T cells did not perform a strong inhibition effect. 43 4 The major groups of in vitro induced exhausted OT-1 T cells belong to the early stage of exhaustion. 44 5 The restriction of our in vitro system 46 6 Future direction - high-throughput screening of exhaustion-associated genes and drug therapies. 47 Figures 48 Acknowledgments 78 References 79
dc.language.isoen
dc.subjectEL4細胞zh_TW
dc.subject柏萊膜衣錠zh_TW
dc.subjectT細胞耗竭zh_TW
dc.subject活體外系統zh_TW
dc.subject小分子干擾核糖核酸zh_TW
dc.subjectNR4Azh_TW
dc.subject慢病毒轉染zh_TW
dc.subjectsiRNA electroporationen
dc.subjectdasatiniben
dc.subjectlentiviral transductionen
dc.subjectT cell exhaustionen
dc.subjectin vitro systemen
dc.subjectmurine CD8 T cellsen
dc.subjectNR4Aen
dc.title在活體外細胞培養系統中針對NR4A/PD-1訊號途徑調控T細胞耗竭zh_TW
dc.titleTargeting NR4A/PD-1 signal axis to modulate T cell exhaustion in an in vitro cell-based systemen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.oralexamcommittee徐立中(Hsu-Yang Lin),陳世淯(Ting-Jang Lu),(Reuben Wang)
dc.subject.keywordT細胞耗竭,活體外系統,NR4A,EL4細胞,慢病毒轉染,小分子干擾核糖核酸,柏萊膜衣錠,zh_TW
dc.subject.keywordT cell exhaustion,in vitro system,murine CD8 T cells,NR4A,siRNA electroporation,lentiviral transduction,dasatinib,en
dc.relation.page86
dc.identifier.doi10.6342/NTU202200305
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-02-09
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-0602202220230300.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved