請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80858完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江昭皚(Joe-Air Jiang) | |
| dc.contributor.author | Ling-Chieh Tai | en |
| dc.contributor.author | 戴令絜 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:19:21Z | - |
| dc.date.available | 2021-11-08 | |
| dc.date.available | 2022-11-24T03:19:21Z | - |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-04 | |
| dc.identifier.citation | 經濟部能源局。2020。能源統計月報。網址:hthttps://www.twtpo.org.tw/。上網日期:2020-10-09。 台灣電力公司。2020。台灣電力股份有限公司輸電系統規劃準則。網址:https://www.taipower.com.tw/upload/146/2017111318193843329.pdf。上網日期:2020-10-11。 Agora Energiewende Sandbag, 2019. The European Power Sector in 2018: Up-to-Date Analysis on the Electricity Transition (Berlin: January 2019), p. 3, Pei-Chi Chang, Ray-Yeng Yang, Chi-Ming Lai (2015), “Potential of Offshore Wind Energy and Extreme Wind Speed Forecasting on the West Coast of Taiwan”, Energies. 8. 1685-1700. 10.3390/en8031685. Cheng-Dar Yue, Che-Chih Liu, Chien-Cheng Tu, Ta-Hui Lin (2019), “Prediction of Power Generation by Offshore Wind Farms Using Multiple Data Sources”, Energies. 12. 700. 10.3390/en12040700. Advanced String Monitoring System of today. Available at: https://adsprojects.wordpress.com/. Ahmed, R., Sreeram, V., Mishra, Y., Arif, M. D. 2020. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renewable and Sustainable Energy Reviews, 124, 109792. Ashton, T. S. 1997. The industrial revolution 1760-1830. OUP Catalogue. Akyildiz, I. F., W. Su, Y. Sankarasubramaniam and E. Cayirci. 2002. A survey on sensor networks. IEEE Communications magazine. 40(8). 102-114. Bae, K. Y., Jang, H. S., Sung, D. K. 2016. Hourly solar irradiance prediction based on support vector machine and its error analysis. IEEE Transactions on Power Systems 32(2): 935-945. Bellini A., Bifaretti S., Iacovone V., and Cornaro C. 2009. Simplified model of a photovoltaic module. In “Simplified model of a photovoltaic module 2009”. 47-51. Pilsen, Czech Republic: IEEE. Bodur, M., and M. Ermis. 1994. Maximum power point tracking for low power photovoltaic solar panels. In Electrotechnical Conference, 1994. Proceedings., 7th Mediterranean. 758-761. IEEE. Bose, B. K., P. M. Szczesny, and R. L. Steigerwald. 1985. Microcomputer control of a residential photovoltaic power conditioning system. IEEE Transactions on Industry applications. (5): 1182-1191. Boluwaji, M. O. and D. O. Onyedi. 2016. Comparative study of ground measured, satellite-derived, and estimated global solar radiation data in Nigeria. Journal of Solar Energy. 10: 1-7. Bucciarelli, L. L., B. L. Grossman, E. F. Lyon and N. E. Rasmussen. 1980. Energy balance associated with the use of a maximum power tracer in a 100-kW-peak power system (No. COO--4094-72; CONF-800106--16). Massachusetts Inst. of Tech., Lexington (USA). Lincoln Lab.. Bulusu, N., D. Estrin, L. Girod and J. Heidemann. 2001. Scalable coordination for wireless sensor networks: self-configuring localization systems. In International Symposium on Communication Theory and Applications (ISCTA 2001), Ambleside, UK. Carroll, D. P., Gareis, Krause G. E., Ong P. C., Schwartz C. M., R. J. and O. Wasynczuk. 1983. Dynamic simulation of dispersed grid-connected photovoltaic power systems: Task 1-modelling and control (No. SAND-83-7018). Purdue Univ., Lafayette, IN (USA). School of Electrical Engineering. Cornaro, C., F. Bucci, M. Pierro, F. Del Frate, S. Peronaci and A. Taravat, 2013. Solar radiation forecast using neural networks for the prediction of grid connected pv plants energy production (dsp project). In Proceedings of 28th European Photovoltaic Solar Energy Conference and Exhibition : pp. 3992-3999. Coakley, J. A. 2003. Reflectance and albedo, surface. Encyclopedia of the Atmosphere : 1914-1923. Chai, M., Xia, F., Hao, S., Peng, D., Cui, C., Liu, W. 2019. PV power prediction based on LSTM with adaptive hyperparameter adjustment. IEEE Access, 7, 115473-115486. Esram, T. and P. L. Chapman. 2007. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Transactions on energy conversion. 22(2): 439-449. Estrin, D., L. Girod, G. Pottie and M. Srivastava. 2001. Instrumenting the world with wireless sensor networks. In Acoustics, Speech, and Signal Processing, 2001. Proceedings.(ICASSP'01). 2001 IEEE International Conference on. IEEE. Vol. 4: pp. 2033-2036. Gow, J. A., and C. D. Manning. 2000. Photovoltaic converter system suitable for use in small scale stand-alone or grid connected applications. IEE Proceedings-Electric Power Applications. 147(6): 535-543. Guy, C. 2006. Wireless sensor networks. In Sixth International Symposium on Instrumentation and Control Technology: Signal Analysis, Measurement Theory, Photo-Electronic Technology, and Artificial Intelligence. International Society for Optics and Photonics. Vol. 6357: p. 63571I Hart, G. W., H. M. Branz and C. H. Cox Iii. 1984. Experimental tests of open-loop maximum-power-point tracking techniques for photovoltaic arrays. Solar cells. 13(2): 185-195. Heinzelman, W. R., J. Kulik and H. Balakrishnan. 1999. Adaptive protocols for information dissemination in wireless sensor networks. In Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking ACM. pp. 174-185. Heinzelman, W. R., A. Chandrakasan and H. Balakrishnan. 2000. Energy-efficient communication protocol for wireless microsensor networks. In System sciences, 2000. Proceedings of the 33rd annual Hawaii international conference on IEEE. :pp. 10-pp. Hiyama, T., S. Kouzuma and T. Imakubo. 1995. Identification of optimal operating point of PV modules using neural network for real time maximum power tracking control. IEEE Transactions on Energy Conversion. 10(2): 360-367. Hilloowala, R. M., and A. M. Sharaf. 1992. A rule-based fuzzy logic controller for a PWM inverter in photo-voltaic energy conversion scheme. In Industry Applications Society Annual Meeting, 1992., Conference Record of the 1992 IEEE :pp. 762-769. IEEE. Huang, X., Li, Q., Tai, Y., Chen, Z., Zhang, J., Shi, J., ... Liu, W. (2021). Hybrid deep neural model for hourly solar irradiance forecasting. Renewable Energy, 171, 1041-1060. Jang, H. S., K. Y. Bae, H. S. Park, and D. K. Sung. 2016. Solar power prediction based on satellite images and support vector machine. IEEE Transactions on Sustainable Energy. 7(3): 1255-1263. Jeong, Y. S., J. B. Park, H. G. Jung, J. Kim, X. Luo, J. Lu and Y. J. Lee. 2015. Study on the catalytic activity of noble metal nanoparticles on reduced graphene oxide for oxygen evolution reactions in lithium–air batteries. Nano letters. 15(7): 4261-4268. Jang, H. S., K. Y. Bae, H. S. Park and D. K. Sung. 2016. Solar power prediction based on satellite images and support vector machine. IEEE Transactions on Sustainable Energy, 7(3): 1255-1263. Kaiser, A. S., B. Zamora, R. Mazón, J. R. García and F. Vera. 2014. Experimental study of cooling BIPV modules by forced convection in the air channel. Applied Energy. 135: 88-97. Kamadinata, J. O., Ken, T. L., Suwa, T. 2019. Sky image-based solar irradiance prediction methodologies using artificial neural networks. Renewable Energy, 134, 837-845. Kapourchali, M. H., Sepehry, M., Aravinthan, V. 2018. Multivariate spatio-temporal solar generation forecasting: A unified Approach to deal with communication failure and invisible sites. IEEE Systems Journal, 13(2), 1804-1812. Lambert, J. H. 1760. Photometria sive de mensura et gradibus luminis, colorum et umbrae. Klett. Mellit, A., and A. M. Pavan. 2010. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Solar Energy. 84(5): 807-821. Mitchell, M. L. and J. H. Mulherin. 1996. The impact of industry shocks on takeover and restructuring activity. Journal of financial economics. 41(2): 193-229. Mihalakakou, G., M. Santamouris and D. N. Asimakopoulos. 2000. The total solar radiation time series simulation in Athens, using neural networks. Theoretical and Applied Climatology. 66(3-4): 185-197. Pan, C. T., J. Y. Chen, C. P. Chu and Y. S. Huang. 1999. A fast maximum power point tracker for photovoltaic power systems. In Industrial Electronics Society, 1999. IECON'99 Proceedings. The 25th Annual Conference of the IEEE. IEEE. Vol. 1: pp. 390-393. Renewable energy world. 2016. The 2016 Global PV Outlook: US, Asian Markets Strengthened by Policies to Reduce CO2. Available at: https://www.renewableenergyworld.com/articles/2016/01/the-2016-global-pv-outlook-u-s-and-asian-markets-strengthened-by-policies-to-reduce-co2.html. Accessed 25 June 2018. Schaake, J., J. Pailleux, J. Thielen, R. Arritt, T. Hamill, L. Luo and F. Pappenberger. 2010. Summary of recommendations of the first workshop on Postprocessing and Downscaling Atmospheric Forecasts for Hydrologic Applications held at Météo‐France, Toulouse, France, 15–18 June 2009. Atmospheric Science Letters. 11(2): 59-63. Si, Z., Yu, Y., Yang, M., Li, P. 2020. Hybrid solar forecasting method using satellite visible images and modified convolutional neural networks. IEEE Transactions on Industry Applications, 57(1), 5-16. Sunny Rich System Co., Ltd。2016。太陽能的歷史。網址:http://www.sunnyrichsystem.com.tw/history_s.html。上網日期:2020-10-07。。 Sze, S. M., and K. K. Ng. 1981. Physics of semiconductor devices, ed. John Willey Sons,. Sullivan, C. R., and M. J. Powers. 1993. A high-efficiency maximum power point tracker for photovoltaic arrays in a solar-powered race vehicle. In Power Electronics Specialists Conference, 1993. PESC'93 Record., 24th Annual IEEE :574-580. Schoeman, J. J., and J. V. Wyk. 1982. A simplified maximal power controller for terrestrial photovoltaic panel arrays. In Power Electronics Specialists conference, 1982 IEEE :pp. 361-367. Shen, C. C., C. Srisathapornphat and C. Jaikaeo. 2001. Sensor information networking architecture and applications. IEEE Personal communications. 8(4): 52-59. Tanahashi, S., H. Kawamura, T. Matsuura, T. Takahashi and H. Yusa. 2001. A system to distribute satellite incident solar radiation in real-time. Remote Sensing of Environment, 75(3), 412-422. Vapnik, V. S. Mukherjee 2000. Support vector method for multivariate density estimation. In Advances in neural information processing systems : pp. 659-665. Wang, J. C., Y. L. Su, J. C. Shieh and J. A. Jiang. 2011. High-accuracy maximum power point estimation for photovoltaic arrays. Solar Energy Materials and Solar Cells. 95(3): 843-851. Wu, Y. K., C. R. Chen and H. Abdul Rahman. 2014. A novel hybrid model for short-term forecasting in PV power generation. International Journal of Photoenergy, 2014. Jeong, Y. S., Lee, S. H., Han, K. H., Ryu, D., Jung, Y. 2015. Design of short-term forecasting model of distributed generation power for solar power generation. Indian Journal of Science and Technology, 8, 261. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80858 | - |
| dc.description.abstract | "隨著環保意識增長及尋求能源的永續發展,再生能源的發展成為各國重點施政項目,根據國際能源署(International Energy Agency, IEA)統計,全球再生能源發電量年年上升,預估在 2019 年至 2024 年再生能源發電容量能夠成長 50%,增加1200 GW,其中太陽能光電系統成長最鉅,發電容量增長 60%,增加 500GW。台灣的再生能源發電比例約占總發電量的 15%,太陽能則為第二大再生能源,佔再生能源總發電量的 28.2%,且呈現逐年上升的趨勢。太陽能發電會因天氣因素而有劇烈波動,可能產生供電間歇性及隨機性等問題,而影響電力系統的安全及穩定。本研究提出一太陽能光電系統發電量預測方法,以衛星雲圖資料及環境參數作為輸入參數,輸入雲圖至卷積神經網路提取雲圖特徵,建立可適用於廣域發電預測的模型。在太陽能光電系統預測中,長時間預測容易忽略掉太陽輻照度的變化,因此本研究採用短時間間隔預測太陽輻照度,並分別討論晴天及陰天的情況。並依照輻照度預測結果,與歷史資料做迴歸曲線分析,找出迴歸方程式與相關性分析,藉此預測未來太陽能光電系統之發電量。 " | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:19:21Z (GMT). No. of bitstreams: 1 U0001-2709202121224900.pdf: 4993958 bytes, checksum: 2dfecbe35fd286ce3d14e546045d9758 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝 ........................................... i 摘要 ........................................... iv Abstract ....................................... v Table of Contents.............................. vii List of Figures ................................ x List of Tables ................................. xiii Chapter 1 Introduction ......................... 1 1.1 Background ................................. 1 1.2 Motivation and propose...................... 5 1.3 Thesis organization ........................ 5 Chapter 2 Literature Review .................... 7 2.1 Photoelectric system power generation efficiency..................... 7 2.2 Solar Irradiation Prediction ........................................ 12 2.2.1 Artificial Neural Network Models................................... 16 2.2.2 Numerical weather prediction (NWP) model........................... 17 2.2.3 Genetic algorithm (GA)............................................. 18 2.2.4 Autoregressive Moving Average (ARMA) model......................... 20 2.2.5 Support vector machine (SVM) model................................. 20 2.3 Satellite Images..................................................... 21 2.3.1 Visible light cloud image and irradiance .......................... 22 2.4 Convolutional Neural Network ........................................ 23 2.4.1 Convolution Layer.................................................. 24 2.4.2 Pooling Layer ..................................................... 25 2.4.3 Fully Connected Layer ............................................. 26 2.4.4 Pre-trained Model.................................................. 26 Chapter 3 Materials and Methods ......................................... 29 3.1 Framework of the proposed method .................................... 29 3.1.1 The architecture of the solar irradiance prediction system......... 29 3.2 Experimental Equipment............................................... 32 3.3 Satellite Cloud Images and Feature Extraction........................ 36 3.4 Model Implementation ................................................ 37 3.4.1 Criteria for performance evaluation ............................... 37 Chapter 4 Results and Discussion ........................................ 40 4.1 Convolutional Neural Network for Predicting Irradiance............... 40 4.1.1 Data sets.......................................................... 40 4.1.2 Finding the best combination of the optimizer and epochs........... 42 4.1.3 Finding the best combination of neurons ........................... 46 4.1.4 The performance of the training model ............................. 47 4.2 Wide-area prediction predictive method .............................. 56 4.2.1 Multi-objective optimization ...................................... 58 4.2.2 Wide-area prediction results....................................... 60 Chapter 5 Conclusion..................................................... 68 References .............................................................. 72 | |
| dc.language.iso | en | |
| dc.subject | 太陽能光電系統 | zh_TW |
| dc.subject | 衛星雲圖 | zh_TW |
| dc.subject | 發電量預測 | zh_TW |
| dc.subject | Satellite Cloud image | en |
| dc.subject | Power Generation | en |
| dc.subject | Photovoltaic System | en |
| dc.title | 應用卷積神經網路於廣域太陽光電系統之發電預測與分析 | zh_TW |
| dc.title | Forecast and Analysis of Power Generation for Wide-Area Photovoltaic Systems Based on Convolutional Neural Network | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭瑛東(Hsin-Tsai Liu),王永鐘(Chih-Yang Tseng),周呈霙,王人正 | |
| dc.subject.keyword | 太陽能光電系統,衛星雲圖,發電量預測, | zh_TW |
| dc.subject.keyword | Photovoltaic System,Satellite Cloud image,Power Generation, | en |
| dc.relation.page | 77 | |
| dc.identifier.doi | 10.6342/NTU202103416 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-06 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物機電工程學系 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2709202121224900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
