Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80857
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳肇欣(Chao-Hsin Wu)
dc.contributor.authorYu-Hsuan Luen
dc.contributor.author呂育瑄zh_TW
dc.date.accessioned2022-11-24T03:19:19Z-
dc.date.available2021-11-08
dc.date.available2022-11-24T03:19:19Z-
dc.date.copyright2021-11-08
dc.date.issued2021
dc.date.submitted2021-09-30
dc.identifier.citation[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). [2] S. D. Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011). [3] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotech. 7, 699 (2012). [4] M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, Nat. Chem. 5, 263 (2013). [5] A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013). [6] R. Ganatra and Q. Zhang, ACS Nano 8, 4074 (2014). [7] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotech. 6, 147 (2011). [8] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010). [9] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010). [10] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Nano Lett. 11, 5111 (2011). [11] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis. Nat. Nanotech. 8, 497 (2013). [12] Y. Guo, X. Wei, J. Shu, B. Liu, J. Yin, C. Guan, Y. Han, S. Gao, and Q. Chen, Appl. Phys. Lett. 106, 103109 (2015). [13] S. Rathi, I. Lee, D. Lim, J. Wang, Y. Ochiai, N. Aoki, K. Watanabe, T. Taniguchi, G. H. Lee, Y. J. Yu, P. Kim, and G. H. Kim, Nano Lett. 15, 5017 (2015). [14] R. Cheng, F. Wang, L. Yin, K. Xu, T. A. Shifa, Y. Wen, X. Zhan, J. Li, C. Jiang, Z. Wang, and J. He. Appl. Phys. Lett. 110, 173507 (2017). [15] M. H. Doan, Y. Jin, S. Adhikari, S. Lee, J. Zhao, S. C. Lim, and Y. H. Lee, ACS Nano 11, 3832 (2017). [16] A. Nourbakhsh, A. Zubair, M. S. Dresselhaus, and T. Palacios, Nano Lett. 15, 5791 (2015). [17] R. K. Ghosh and S. Mahapatra, IEEE J. Electron Devi. 1, 175 (2013). [18] J. Kang, S. Tongay, J. Zhou, J. B. Li, and J. Q. Wu, Appl. Phys. Lett. 102, 012111 (2013). [19] Y. F. Liang, S. T. Huang, R. Soklaski, and L. Yang, Appl. Phys. Lett. 103, 042106 (2013). [20] C. Gong, H. J. Zhang, W. H. Wang, L. Colombo, R. M. Wallace, and K. J. Cho, Appl. Phys. Lett. 103, 053513 (2013). [21] Y. Guo and J. Robertson, Appl. Phys. Lett. 108, 233104 (2016). [22] J. Xu, J. Jia, S. Lai, J. Ju, and S. Lee, Appl. Phys. Lett. 110, 033103 (2017). [23] Y. W. Lan, C. M. Torres, S. H. Tsai, X. Zhu, Y. Shi, M. Y. Li, L. J. Li, W. K. Yeh, and K. L. Wang, Small 2, 5676 (2016). [24] T. Roy, M. Tosun, M. Hettick, G. H. Ahn, C. Hu, and A. Javey, Appl. Phys. Lett. 108, 083111 (2016). [25] Uchida, K., et al. Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm. in Digest. International Electron Devices Meeting. 2002. [26] Yu-Ming Lin, Hsin-Ying Chiu, K.A. Jenkins, D.B. Farmer, P. Avouris, and A. Valdes-Garcia, IEEE Electron Device Letters 31, 68 (2010). [27] R. Ganatra and Q. Zhang, ACS Nano 8, 4074 (2014). [28] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nature Nanotechnology 6, 147 (2011). [29] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, Physical Review X 4, (2014). [30] A. Pospischil, M.M. Furchi, and T. Mueller, Nature Nanotechnology 9, 257 (2014). [31] A. Prakash and J. Appenzeller, ACS Nano 11, 1626 (2017). [32] P.R. Pudasaini, A. Oyedele, C. Zhang, M.G. Stanford, N. Cross, A.T. Wong, A.N. Hoffman, K. Xiao, G. Duscher, D.G. Mandrus, T.Z. Ward, and P.D. Rack, Nano Research 11, 722 (2017). [33] C. Zhou, Y. Zhao, S. Raju, Y. Wang, Z. Lin, M. Chan, and Y. Chai, Advanced Functional Materials 26, 4223 (2016). [34] W. Zhou, Z. Yu, H. Song, R. Fang, Z. Wu, L. Li, Z. Ni, W. Ren, L. Wang, and S. Ruan, Physical Review B 96, (2017). [35] W. Li, X. Xiao, and H. Xu, ACS Applied Materials amp; Interfaces 11, 30045 (2019). [36] J.-Y. Wu, Y.T. Chun, S. Li, T. Zhang, J. Wang, P.K. Shrestha, and D. Chu, Advanced Materials 30, 1705880 (2018). [37] C. Zhou, S. Raju, B. Li, M. Chan, Y. Chai, and C.Y. Yang, Advanced Functional Materials 28, 1802954 (2018). [38] C. Zhou, S. Zhang, Z. Lv, Z. Ma, C. Yu, Z. Feng, and M. Chan, Npj 2D Materials and Applications 4, (2020). [39] Xiao Yan , Chunsen Liu , Chao Li , Wenzhong Bao , Shijin Ding , David Wei Zhang and Peng Zhou , small 2017, 1701478 [40] Tania Roy , Mahmut Tosun , Mark Hettick , Geun Ho Ahn , Chenming Hu and Ali Javey , Appl. Phys. Lett. 108, 083111 (2016)] [41] Hui Xue , Yunyun Dai , Wonjae Kim , Yadong Wang , Xueyin Bai , Mei Qi , Kari Halonen , Harri Lipsanena and Zhipei Sun , Nanoscale, 2019, 11, 3240 [42] A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H.S. van der Zant, and G.A. Steele, 2D Materials 1, 011002 (2014). [43] S. Fan, Q.A. Vu, S. Lee, T.L. Phan, G. Han, Y.-M. Kim, W.J. Yu, and Y.H. Lee, ACS Nano 13, 8193 (2019). [44] C. Kittel and P. McEuen, Introduction to Solid State Physics (John Wiley amp; Sons, Hoboken, NJ, 2019). [45] A. Laturia, M.L. Van de Put, and W.G. Vandenberghe, Npj 2D Materials and Applications 2, (2018). [46] Neamen , Donald A., Semiconductor physics and devices : basic principles, 4th ed., University of New Mexico pp. 45. 277.354-355. 332. 386. [47] T. Roy, M. Tosun, M. Hettick, G.H. Ahn, C. Hu, and A. Javey, Applied Physics Letters 108, 083111 (2016). [48] Stanford Research Systems Inc. Model SR570 Low-Noise Current Preamplifer. 1290-D Reamwood Avenue, Sunnyvale, CA 94089, U.S.A., 1995. [49] Stanford Research Systems Inc. Model SR560 Low-Noise Voltage Preamplifer. 1290-D Reamwood Avenue, Sunnyvale, CA 94089, U.S.A., 1995. [50] Stanford Research Systems Inc. Model SR830 Lock-In Amplifier. 1290-D Reamwood Avenue, Sunnyvale, CA 94089, U.S.A., 1995. [51] H. Zhang, J. Ji, A.A. Gonzalez, and J.H. Choi, Journal of Materials Chemistry C 5, 11233 (2017). [52] W. Zhao, R.M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A.H. Castro Neto, and G. Eda, Nano Letters 13, 5627 (2013).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80857-
dc.description.abstract本實驗主要分成兩部分,其中一部分探討二硒化錫(SnSe2)、二硒化鎢(WSe2)及六方氮化硼(h-BN)異質結構之光電特性與空乏區電場分布情況。藉由機械式剝離及乾式轉印技術,將30 nm h-BN、5 nm WSe2及10 nm SnSe2依序堆疊在300 nm厚的二氧化矽基板上,其厚度分別為30 nm、5 nm、10 nm,並使用標準電子束微影技術製作出鈦金電極(10 nm/90 nm)。二硒化錫大小約為25 μm × 17 μm,二硒化鎢大小約為30 μm × 20 μm,兩材料重疊區域大約為10 μm × 20 μm。 元件在VDS = -1.6 V 時,其開關比可達106,次臨界擺幅(Subthreshold Swing)約0.54 V/dec。藉由物鏡將波長633 nm、強度5 nW雷射聚光在樣品表面,光點直徑約為1.5 μm,再搭配低雜訊電流放大器及鎖相放大器所組成之掃描光電流量測系統對元件做光電特性及空乏區電場分布情況研究。將雷射光點覆蓋整個樣品,量測元件短路電流(ISC)和開路電壓(VOC)隨不同VGS值的變化,在VGS = 0 V和VDS = -0.26 V時,可獲得最大光偵測率2.97×1012 Jones,在VGS = 40 V和VDS = 2 V時,最大光響應度為100 A / W。最後使用分光儀量測光電流頻譜。綜述上論,我們發現由二硒化鎢(WSe2)和二硒化錫(SnSe2)組成的異質結構具有出色光響應,可以用作光電感測器或光伏(photovoltaic)元件。 另一部分探討,不同絕緣層對於單層二硫化鉬電晶體的影響,首先先製作使用二氧化矽為絕緣層的背閘極單層二硫化鉬,加上不同的passivation比較電性變化,接著將背閘極絕緣層改為h-BN,再使用不同的passivation比較電性變化,最後製作上下閘極絕緣層均為h-BN,使用石墨烯做為電極的單層二硫化鉬元件,最大電流為150 uA,SS約為100 mV/dec,其開關比可達108,最後在利用C-V量測對絕緣層電容值進行修正,得到載子遷移率高達200 cm2/V·s。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:19:19Z (GMT). No. of bitstreams: 1
U0001-2809202105582700.pdf: 3987484 bytes, checksum: 04ae7ea3e91d8732f8035a314bdaede1 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員審定書 I 誌謝 II 摘要 IV Abstract V 第一章 緒論 1 1-1前言 1 1-2二維材料介紹 3 1-2-1石墨烯(graphene) 4 1-2-2二硫化鉬(MoS2) 4 1-2-3二硒化鎢(WSe2) 5 1-2-4二硒化錫(SnSe2) 6 1-2-5六方氮化錋(h-BN) 7 1-3二維材料光偵測器 8 1-4研究動機 12 第二章 二維材料異質結構元件基本電性 13 2.1 二維材料異質結構元件製程 13 2-1-1樣品製作 13 2-1-2 AFM量測以及Raman鑑定 14 2-1-3 E-Beam lithography以及蒸鍍金屬 15 2-2 二維材料異質結構場校電晶體 15 2-2-1 PDMS乾式轉印技術 16 2-3基本電性量測 17 2-3-1 ID-VD量測 17 2-3-2 ID-VG量測 23 2-4 帶間穿隧機制 27 2-5 變溫量測 28 第三章 二維材料異質結構元件光電特性 34 3-1 掃描光電流顯微鏡系統 35 3.2 校準和設置 35 3-3 線掃描(Line Scan) 38 3.4 照光I-V characteristic 42 3.5 光電流頻譜圖 44 第四章 二硫化鉬場校電晶體 47 4-1 單層二硫化鉬(MoS2)背閘極電晶體 47 4-2 雙閘極二硫化鉬場校電晶體 55 4-3 C-V量測 62 第五章、結論與未來規劃 67 參考資料 68
dc.language.isozh-TW
dc.subject異質結構zh_TW
dc.subject二硒化鎢zh_TW
dc.subject二硒化錫zh_TW
dc.subject次臨界擺幅zh_TW
dc.subject石墨烯zh_TW
dc.subject二硫化鉬zh_TW
dc.subjectTungsten diselenideen
dc.subjectmolybdenum disulfideen
dc.subjectgrapheneen
dc.subjectsubthreshold swingen
dc.subjecttin diselenideen
dc.subjectheterostructureen
dc.title二維材料異質結構元件光電特性探討zh_TW
dc.titleInvestigation of Photoelectric Characteristics of Two-Dimensional Material Heterostructure Devicesen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孫允武(Hsin-Tsai Liu),吳育任(Chih-Yang Tseng),張書維,陳建宏
dc.subject.keyword二硒化鎢,二硒化錫,次臨界擺幅,石墨烯,二硫化鉬,異質結構,zh_TW
dc.subject.keywordTungsten diselenide,tin diselenide,subthreshold swing,graphene,molybdenum disulfide,heterostructure,en
dc.relation.page71
dc.identifier.doi10.6342/NTU202103418
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2809202105582700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved