Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80838
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏安祺(An-Chi Wei)
dc.contributor.authorChing-Hsiang Chuen
dc.contributor.author朱景詳zh_TW
dc.date.accessioned2022-11-24T03:18:33Z-
dc.date.available2021-11-06
dc.date.available2022-11-24T03:18:33Z-
dc.date.copyright2021-11-06
dc.date.issued2021
dc.date.submitted2021-09-29
dc.identifier.citation[1] J. N. Meyer, T. C. Leuthner, and A. L. Luz, “Mitochondrial fusion, fission, and mitochondrial toxicity.,” Toxicology, vol. 391, pp. 42–53, Nov. 2017. [2] W. Fu, Y. Liu, and H. Yin, “Mitochondrial dynamics: biogenesis, fission, fusion, and mitophagy in the regulation of stem cell behaviors.,” Stem Cells Int., vol. 2019, p. 9757201, Apr. 2019. [3] Y. Guo, D. Li, S. Zhang, Y. Yang, J.-J. Liu, X. Wang, C. Liu, D. E. Milkie, R. P. Moore, U. S. Tulu, D. P. Kiehart, J. Hu, J. Lippincott-Schwartz, E. Betzig, and D. Li, “Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales.,” Cell, vol. 175, no. 5, pp. 1430–1442.e17, Nov. 2018. [4] E. Schrepfer and L. Scorrano, “Mitofusins, from Mitochondria to Metabolism.,” Mol. Cell, vol. 61, no. 5, pp. 683–694, Mar. 2016. [5] Z. Song, M. Ghochani, J. M. McCaffery, T. G. Frey, and D. C. Chan, “Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion.,” Mol. Biol. Cell, vol. 20, no. 15, pp. 3525–3532, Aug. 2009. [6] A. Santel, S. Frank, B. Gaume, M. Herrler, R. J. Youle, and M. T. Fuller, “Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells.,” J. Cell Sci., vol. 116, no. Pt 13, pp. 2763–2774, Jul. 2003. [7] Y. J. Liu, R. L. McIntyre, G. E. Janssens, and R. H. Houtkooper, “Mitochondrial fission and fusion: A dynamic role in aging and potential target for age-related disease.,” Mech. Ageing Dev., vol. 186, p. 111212, Mar. 2020. [8] H. Chen, S. A. Detmer, A. J. Ewald, E. E. Griffin, S. E. Fraser, and D. C. Chan, “Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development.,” J. Cell Biol., vol. 160, no. 2, pp. 189–200, Jan. 2003. [9] R. Filadi, E. Greotti, G. Turacchio, A. Luini, T. Pozzan, and P. Pizzo, “Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling.,” Proc. Natl. Acad. Sci. USA, vol. 112, no. 17, pp. E2174–81, Apr. 2015. [10] S. C. Lewis, L. F. Uchiyama, and J. Nunnari, “ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells.,” Science, vol. 353, no. 6296, p. aaf5549, Jul. 2016. [11] J. J. Rahn, K. D. Stackley, and S. S. L. Chan, “Opa1 is required for proper mitochondrial metabolism in early development.,” PLoS One, vol. 8, no. 3, p. e59218, Mar. 2013. [12] C. Frezza, S. Cipolat, O. Martins de Brito, M. Micaroni, G. V. Beznoussenko, T. Rudka, D. Bartoli, R. S. Polishuck, N. N. Danial, B. De Strooper, and L. Scorrano, “OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion.,” Cell, vol. 126, no. 1, pp. 177–189, Jul. 2006. [13] L. Tilokani, S. Nagashima, V. Paupe, and J. Prudent, “Mitochondrial dynamics: overview of molecular mechanisms.,” Essays Biochem, vol. 62, no. 3, pp. 341–360, Jul. 2018. [14] E. Smirnova, L. Griparic, D. L. Shurland, and A. M. van der Bliek, “Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells.,” Mol. Biol. Cell, vol. 12, no. 8, pp. 2245–2256, Aug. 2001. [15] J. A. Mears, L. L. Lackner, S. Fang, E. Ingerman, J. Nunnari, and J. E. Hinshaw, “Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission.,” Nat. Struct. Mol. Biol., vol. 18, no. 1, pp. 20–26, Jan. 2011. [16] F. Korobova, V. Ramabhadran, and H. N. Higgs, “An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2.,” Science, vol. 339, no. 6118, pp. 464–467, Jan. 2013. [17] S. Gandre-Babbe and A. M. van der Bliek, “The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells.,” Mol. Biol. Cell, vol. 19, no. 6, pp. 2402–2412, Jun. 2008. [18] H. Otera, C. Wang, M. M. Cleland, K. Setoguchi, S. Yokota, R. J. Youle, and K. Mihara, “Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells.,” J. Cell Biol., vol. 191, no. 6, pp. 1141–1158, Dec. 2010. [19] K. Izuishi, K. Kato, T. Ogura, T. Kinoshita, and H. Esumi, “Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy.,” Cancer Res., vol. 60, no. 21, pp. 6201–6207, Nov. 2000. [20] I. Momose, S.-I. Ohba, D. Tatsuda, M. Kawada, T. Masuda, G. Tsujiuchi, T. Yamori, H. Esumi, and D. Ikeda, “Mitochondrial inhibitors show preferential cytotoxicity to human pancreatic cancer PANC-1 cells under glucose-deprived conditions.,” Biochem. Biophys. Res. Commun., vol. 392, no. 3, pp. 460–466, Feb. 2010. [21] B. S. Jhun, H. Lee, Z.-G. Jin, and Y. Yoon, “Glucose stimulation induces dynamic change of mitochondrial morphology to promote insulin secretion in the insulinoma cell line INS-1E.,” PLoS One, vol. 8, no. 4, p. e60810, Apr. 2013. [22] S. M. Ronnebaum, M. V. Jensen, H. E. Hohmeier, S. C. Burgess, Y.-P. Zhou, S. Qian, D. MacNeil, A. Howard, N. Thornberry, O. Ilkayeva, D. Lu, A. D. Sherry, and C. B. Newgard, “Silencing of cytosolic or mitochondrial isoforms of malic enzyme has no effect on glucose-stimulated insulin secretion from rodent islets.,” J. Biol. Chem., vol. 283, no. 43, pp. 28909–28917, Oct. 2008. [23] J. C. Henquin, M. A. Ravier, M. Nenquin, J. C. Jonas, and P. Gilon, “Hierarchy of the beta-cell signals controlling insulin secretion.,” Eur. J. Clin. Invest., vol. 33, no. 9, pp. 742–750, Sep. 2003. [24] M. Liesa and O. S. Shirihai, “Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure.,” Cell Metab., vol. 17, no. 4, pp. 491–506, Apr. 2013. [25] M. Prentki and C. J. Nolan, “Islet beta cell failure in type 2 diabetes.,” J. Clin. Invest., vol. 116, no. 7, pp. 1802–1812, Jul. 2006. [26] B. B. Lowell and G. I. Shulman, “Mitochondrial dysfunction and type 2 diabetes.,” Science, vol. 307, no. 5708, pp. 384–387, Jan. 2005. [27] M. Anello, R. Lupi, D. Spampinato, S. Piro, M. Masini, U. Boggi, S. Del Prato, A. M. Rabuazzo, F. Purrello, and P. Marchetti, “Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients.,” Diabetologia, vol. 48, no. 2, pp. 282–289, Feb. 2005. [28] Y. Yoon, C. A. Galloway, B. S. Jhun, and T. Yu, “Mitochondrial dynamics in diabetes.,” Antioxid. Redox Signal., vol. 14, no. 3, pp. 439–457, Feb. 2011. [29] V. P. Bindokas, A. Kuznetsov, S. Sreenan, K. S. Polonsky, M. W. Roe, and L. H. Philipson, “Visualizing superoxide production in normal and diabetic rat islets of Langerhans.,” J. Biol. Chem., vol. 278, no. 11, pp. 9796–9801, Mar. 2003. [30] N. Yokoi, M. Hoshino, S. Hidaka, E. Yoshida, M. Beppu, R. Hoshikawa, K. Sudo, A. Kawada, S. Takagi, and S. Seino, “A novel rat model of type 2 diabetes: the zucker fatty diabetes mellitus ZFDM rat.,” J. Diabetes Res., vol. 2013, p. 103731, Feb. 2013. [31] A. J. A. Molina, J. D. Wikstrom, L. Stiles, G. Las, H. Mohamed, A. Elorza, G. Walzer, G. Twig, S. Katz, B. E. Corkey, and O. S. Shirihai, “Mitochondrial networking protects beta-cells from nutrient-induced apoptosis.,” Diabetes, vol. 58, no. 10, pp. 2303–2315, Oct. 2009. [32] L.-D. Popov, “Mitochondrial biogenesis: An update.,” J. Cell Mol. Med., vol. 24, no. 9, pp. 4892–4899, Apr. 2020. [33] T. Wenz, “Regulation of mitochondrial biogenesis and PGC-1α under cellular stress.,” Mitochondrion, vol. 13, no. 2, pp. 134–142, Mar. 2013. [34] S.-J. Park, F. Ahmad, J.-H. Um, A. L. Brown, X. Xu, H. Kang, H. Ke, X. Feng, J. Ryall, A. Philp, S. Schenk, M. K. Kim, V. Sartorelli, and J. H. Chung, “Specific Sirt1 Activator-mediated Improvement in Glucose Homeostasis Requires Sirt1-Independent Activation of AMPK.,” EBioMedicine, vol. 18, pp. 128–138, Apr. 2017. [35] K. A. Moynihan, A. A. Grimm, M. M. Plueger, E. Bernal-Mizrachi, E. Ford, C. Cras-Méneur, M. A. Permutt, and S.-I. Imai, “Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice.,” Cell Metab., vol. 2, no. 2, pp. 105–117, Aug. 2005. [36] M. E. Patti, A. J. Butte, S. Crunkhorn, K. Cusi, R. Berria, S. Kashyap, Y. Miyazaki, I. Kohane, M. Costello, R. Saccone, E. J. Landaker, A. B. Goldfine, E. Mun, R. DeFronzo, J. Finlayson, C. R. Kahn, and L. J. Mandarino, “Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1.,” Proc. Natl. Acad. Sci. USA, vol. 100, no. 14, pp. 8466–8471, Jul. 2003. [37] M. Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver, and J. Auwerx, “Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha.,” Cell, vol. 127, no. 6, pp. 1109–1122, Dec. 2006. [38] S. Akhtar and H. M. Siragy, “Pro-renin receptor suppresses mitochondrial biogenesis and function via AMPK/SIRT-1/ PGC-1α pathway in diabetic kidney.,” PLoS One, vol. 14, no. 12, p. e0225728, Dec. 2019. [39] S. M. Jin, M. Lazarou, C. Wang, L. A. Kane, D. P. Narendra, and R. J. Youle, “Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL.,” J. Cell Biol., vol. 191, no. 5, pp. 933–942, Nov. 2010. [40] S. Sekine and R. J. Youle, “PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol.,” BMC Biol., vol. 16, no. 1, p. 2, Jan. 2018. [41] K. Palikaras, E. Lionaki, and N. Tavernarakis, “Mechanisms of mitophagy in cellular homeostasis, physiology and pathology.,” Nat. Cell Biol., vol. 20, no. 9, pp. 1013–1022, Sep. 2018. [42] G. Twig, A. Elorza, A. J. A. Molina, H. Mohamed, J. D. Wikstrom, G. Walzer, L. Stiles, S. E. Haigh, S. Katz, G. Las, J. Alroy, M. Wu, B. F. Py, J. Yuan, J. T. Deeney, B. E. Corkey, and O. S. Shirihai, “Fission and selective fusion govern mitochondrial segregation and elimination by autophagy.,” EMBO J., vol. 27, no. 2, pp. 433–446, Jan. 2008. [43] S. Rovira-Llopis, C. Bañuls, N. Diaz-Morales, A. Hernandez-Mijares, M. Rocha, and V. M. Victor, “Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications.,” Redox Biol, vol. 11, pp. 637–645, Apr. 2017. [44] V. Anesti and L. Scorrano, “The relationship between mitochondrial shape and function and the cytoskeleton.,” Biochim. Biophys. Acta, vol. 1757, no. 5–6, pp. 692–699, Jun. 2006. [45] P. J. Hollenbeck and W. M. Saxton, “The axonal transport of mitochondria.,” J. Cell Sci., vol. 118, no. Pt 23, pp. 5411–5419, Dec. 2005. [46] A. J. Kruppa and F. Buss, “Motor proteins at the mitochondria-cytoskeleton interface.,” J. Cell Sci., vol. 134, no. 7, Apr. 2021. [47] Y. Tanaka, Y. Kanai, Y. Okada, S. Nonaka, S. Takeda, A. Harada, and N. Hirokawa, “Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria.,” Cell, vol. 93, no. 7, pp. 1147–1158, Jun. 1998. [48] M. Nangaku, R. Sato-Yoshitake, Y. Okada, Y. Noda, R. Takemura, H. Yamazaki, and N. Hirokawa, “KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria.,” Cell, vol. 79, no. 7, pp. 1209–1220, Dec. 1994. [49] R. D. Vale, “The molecular motor toolbox for intracellular transport.,” Cell, vol. 112, no. 4, pp. 467–480, Feb. 2003. [50] A. L. Wells, A. W. Lin, L. Q. Chen, D. Safer, S. M. Cain, T. Hasson, B. O. Carragher, R. A. Milligan, and H. L. Sweeney, “Myosin VI is an actin-based motor that moves backwards.,” Nature, vol. 401, no. 6752, pp. 505–508, Sep. 1999. [51] K. Mitra and J. Lippincott-Schwartz, “Analysis of mitochondrial dynamics and functions using imaging approaches.,” Curr. Protoc. Cell Biol., vol. Chapter 4, p. Unit 4.25.1–21, Mar. 2010. [52] L. M. Westrate, J. A. Drocco, K. R. Martin, W. S. Hlavacek, and J. P. MacKeigan, “Mitochondrial morphological features are associated with fission and fusion events.,” PLoS One, vol. 9, no. 4, p. e95265, Apr. 2014. [53] K. Trudeau, A. J. A. Molina, and S. Roy, “High glucose induces mitochondrial morphology and metabolic changes in retinal pericytes.,” Invest. Ophthalmol. Vis. Sci., vol. 52, no. 12, pp. 8657–8664, Nov. 2011. [54] P. Marchetti, Q. Fovez, N. Germain, R. Khamari, and J. Kluza, “Mitochondrial spare respiratory capacity: Mechanisms, regulation, and significance in non-transformed and cancer cells.,” FASEB J., vol. 34, no. 10, pp. 13106–13124, Aug. 2020. [55] E. Carbognin, R. M. Betto, M. E. Soriano, A. G. Smith, and G. Martello, “Stat3 promotes mitochondrial transcription and oxidative respiration during maintenance and induction of naive pluripotency.,” EMBO J., vol. 35, no. 6, pp. 618–634, Mar. 2016. [56] E. Heart, R. F. Corkey, J. D. Wikstrom, O. S. Shirihai, and B. E. Corkey, “Glucose-dependent increase in mitochondrial membrane potential, but not cytoplasmic calcium, correlates with insulin secretion in single islet cells.,” Am. J. Physiol. Endocrinol. Metab., vol. 290, no. 1, pp. E143–E148, Jan. 2006. [57] D. Fu and J. Lippincott-Schwartz, “Monitoring the effects of pharmacological reagents on mitochondrial morphology.,” Curr. Protoc. Cell Biol., vol. 79, no. 1, p. e45, May 2018. [58] K. M. Davies, M. Strauss, B. Daum, J. H. Kief, H. D. Osiewacz, A. Rycovska, V. Zickermann, and W. Kühlbrandt, “Macromolecular organization of ATP synthase and complex I in whole mitochondria.,” Proc. Natl. Acad. Sci. USA, vol. 108, no. 34, pp. 14121–14126, Aug. 2011. [59] D. M. Wolf, M. Segawa, A. K. Kondadi, R. Anand, S. T. Bailey, A. S. Reichert, A. M. van der Bliek, D. B. Shackelford, M. Liesa, and O. S. Shirihai, “Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent.,” EMBO J., vol. 38, no. 22, p. e101056, Nov. 2019. [60] L. C. Gomes, G. Di Benedetto, and L. Scorrano, “During autophagy mitochondria elongate, are spared from degradation and sustain cell viability.,” Nat. Cell Biol., vol. 13, no. 5, pp. 589–598, May 2011. [61] A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang, O. Friman, D. A. Guertin, J. H. Chang, R. A. Lindquist, J. Moffat, P. Golland, and D. M. Sabatini, “CellProfiler: image analysis software for identifying and quantifying cell phenotypes.,” Genome Biol., vol. 7, no. 10, p. R100, Oct. 2006. [62] L. Kamentsky, T. R. Jones, A. Fraser, M.-A. Bray, D. J. Logan, K. L. Madden, V. Ljosa, C. Rueden, K. W. Eliceiri, and A. E. Carpenter, “Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software.,” Bioinformatics, vol. 27, no. 8, pp. 1179–1180, Apr. 2011. [63] C. McQuin, A. Goodman, V. Chernyshev, L. Kamentsky, B. A. Cimini, K. W. Karhohs, M. Doan, L. Ding, S. M. Rafelski, D. Thirstrup, W. Wiegraebe, S. Singh, T. Becker, J. C. Caicedo, and A. E. Carpenter, “CellProfiler 3.0: Next-generation image processing for biology.,” PLoS Biol., vol. 16, no. 7, p. e2005970, Jul. 2018. [64] “CellProfiler 4.0 Release: Improvements in speed, utility, and usability | Carpenter Lab.” [Online]. Available: https://carpenterlab.broadinstitute.org/blog/cellprofiler-40-release-improvements-speed-utility-and-usability. [Accessed: 10-Jun-2021]. [65] D. J. Rees, L. Roberts, M. Carla Carisi, A. H. Morgan, M. R. Brown, and J. S. Davies, “Automated quantification of mitochondrial fragmentation in an in vitro parkinson’s disease model.,” Curr Protoc Neurosci, vol. 94, no. 1, p. e105, 2020. [66] N. Li, K. Ragheb, G. Lawler, J. Sturgis, B. Rajwa, J. A. Melendez, and J. P. Robinson, “Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production.,” J. Biol. Chem., vol. 278, no. 10, pp. 8516–8525, Mar. 2003. [67] R. Betarbet, T. B. Sherer, G. MacKenzie, M. Garcia-Osuna, A. V. Panov, and J. T. Greenamyre, “Chronic systemic pesticide exposure reproduces features of Parkinson’s disease.,” Nat. Neurosci., vol. 3, no. 12, pp. 1301–1306, Dec. 2000. [68] Y. Reis, M. Bernardo-Faura, D. Richter, T. Wolf, B. Brors, A. Hamacher-Brady, R. Eils, and N. R. Brady, “Multi-parametric analysis and modeling of relationships between mitochondrial morphology and apoptosis.,” PLoS One, vol. 7, no. 1, p. e28694, Jan. 2012. [69] M. P. Viana, S. Lim, and S. M. Rafelski, “Quantifying mitochondrial content in living cells.,” Methods Cell Biol., vol. 125, pp. 77–93, Jan. 2015. [70] “293T | ATCC.” [Online]. Available: https://www.atcc.org/products/crl-3216. [Accessed: 10-Jun-2021]. [71] M. C. Harwig, M. P. Viana, J. M. Egner, J. J. Harwig, M. E. Widlansky, S. M. Rafelski, and R. B. Hill, “Methods for imaging mammalian mitochondrial morphology: A prospective on MitoGraph.,” Anal. Biochem., vol. 552, pp. 81–99, Jul. 2018. [72] S. M. Rafelski, M. P. Viana, Y. Zhang, Y.-H. M. Chan, K. S. Thorn, P. Yam, J. C. Fung, H. Li, L. da F. Costa, and W. F. Marshall, “Mitochondrial network size scaling in budding yeast.,” Science, vol. 338, no. 6108, pp. 822–824, Nov. 2012. [73] M. P. Viana, A. I. Brown, I. A. Mueller, C. Goul, E. F. Koslover, and S. M. Rafelski, “Mitochondrial fission and fusion dynamics generate efficient, robust, and evenly distributed network topologies in budding yeast cells.,” Cell Syst., vol. 10, no. 3, pp. 287–297.e5, Mar. 2020. [74] A. J. Valente, L. A. Maddalena, E. L. Robb, F. Moradi, and J. A. Stuart, “A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture.,” Acta Histochem., vol. 119, no. 3, pp. 315–326, Apr. 2017. [75] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital patterns,” Commun ACM, vol. 27, no. 3, pp. 236–239, Mar. 1984. [76] A. Chaudhry, R. Shi, and D. S. Luciani, “A pipeline for multidimensional confocal analysis of mitochondrial morphology, function, and dynamics in pancreatic β-cells.,” Am. J. Physiol. Endocrinol. Metab., vol. 318, no. 2, pp. E87–E101, Feb. 2020. [77] D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “DeconvolutionLab2: An open-source software for deconvolution microscopy.,” Methods, vol. 115, pp. 28–41, Feb. 2017. [78] G. W. Brodland, “How computational models can help unlock biological systems.,” Semin. Cell Dev. Biol., vol. 47–48, pp. 62–73, Dec. 2015. [79] V. M. Sukhorukov, D. Dikov, A. S. Reichert, and M. Meyer-Hermann, “Emergence of the mitochondrial reticulum from fission and fusion dynamics.,” PLoS Comput. Biol., vol. 8, no. 10, p. e1002745, Oct. 2012. [80] N. Zamponi, E. Zamponi, S. A. Cannas, O. V. Billoni, P. R. Helguera, and D. R. Chialvo, “Mitochondrial network complexity emerges from fission/fusion dynamics.,” Sci. Rep., vol. 8, no. 1, p. 363, Jan. 2018. [81] S. I. Shah, J. G. Paine, C. Perez, and G. Ullah, “Mitochondrial fragmentation and network architecture in degenerative diseases.,” PLoS One, vol. 14, no. 9, p. e0223014, Sep. 2019. [82] E. Zamponi, N. Zamponi, P. Coskun, G. Quassollo, A. Lorenzo, S. A. Cannas, G. Pigino, D. R. Chialvo, K. Gardiner, J. Busciglio, and P. Helguera, “Nrf2 stabilization prevents critical oxidative damage in Down syndrome cells.,” Aging Cell, vol. 17, no. 5, p. e12812, Oct. 2018. [83] X. Wang, B. Su, S. L. Siedlak, P. I. Moreira, H. Fujioka, Y. Wang, G. Casadesus, and X. Zhu, “Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins.,” Proc. Natl. Acad. Sci. USA, vol. 105, no. 49, pp. 19318–19323, Dec. 2008. [84] V. M. Sukhorukov and M. Meyer-Hermann, “Structural heterogeneity of mitochondria induced by the microtubule cytoskeleton.,” Sci. Rep., vol. 5, p. 13924, Sep. 2015. [85] M. Liesa, M. Palacín, and A. Zorzano, “Mitochondrial dynamics in mammalian health and disease.,” Physiol. Rev., vol. 89, no. 3, pp. 799–845, Jul. 2009. [86] D. C. Chan, “Mitochondrial dynamics and its involvement in disease.,” Annu. Rev. Pathol., vol. 15, pp. 235–259, Jan. 2020. [87] G. W. Dorn, R. B. Vega, and D. P. Kelly, “Mitochondrial biogenesis and dynamics in the developing and diseased heart.,” Genes Dev., vol. 29, no. 19, pp. 1981–1991, Oct. 2015. [88] P. Mishra and D. C. Chan, “Mitochondrial dynamics and inheritance during cell division, development and disease.,” Nat. Rev. Mol. Cell Biol., vol. 15, no. 10, pp. 634–646, Oct. 2014. [89] H. Liang and W. F. Ward, “PGC-1alpha: a key regulator of energy metabolism.,” Adv Physiol Educ, vol. 30, no. 4, pp. 145–151, Dec. 2006. [90] J. Sauvola and M. Pietikäinen, “Adaptive document image binarization,” Pattern Recognit, vol. 33, no. 2, pp. 225–236, Feb. 2000. [91] “Auto Threshold and Auto Local Threshold – Novel context-based segmentation algorithms for intelligent microscopy.” [Online]. Available: https://blog.bham.ac.uk/intellimic/g-landini-software/auto-threshold-and-auto-local-threshold/. [Accessed: 14-Jul-2021]. [92] “AnalyzeSkeleton GUI prune by length - Usage Issues - Image.sc Forum.” [Online]. Available: https://forum.image.sc/t/analyzeskeleton-gui-prune-by-length/3657. [Accessed: 14-Jul-2021]. [93] D. Legland, I. Arganda-Carreras, and P. Andrey, “MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ.,” Bioinformatics, vol. 32, no. 22, pp. 3532–3534, Nov. 2016. [94] “Subtract background [ImageJ Documentation Wiki].” [Online]. Available: https://imagejdocu.tudor.lu/gui/process/subtract_background. [Accessed: 14-Jul-2021]. [95] Sternberg, “Biomedical Image Processing,” Computer (Long. Beach. Calif), vol. 16, no. 1, pp. 22–34, Jan. 1983. [96] “Sigma Filter.” [Online]. Available: https://imagej.nih.gov/ij/plugins/sigma-filter.html. [Accessed: 14-Jul-2021]. [97] “Enhance Local Contrast (CLAHE).” [Online]. Available: https://imagej.net/plugins/clahe. [Accessed: 14-Jul-2021]. [98] “Math [ImageJ Documentation Wiki].” [Online]. Available: https://imagejdocu.tudor.lu/gui/process/math. [Accessed: 14-Jul-2021]. [99] “Brightness and Contrast.” [Online]. Available: https://imagej.net/learn/brightness-and-contrast. [Accessed: 14-Jul-2021]. [100] “ImageJ - Auto Brightness/Contrast and setMinAndMax.” [Online]. Available: http://imagej.1557.x6.nabble.com/Auto-Brightness-Contrast-and-setMinAndMax-td4968628.html. [Accessed: 14-Jul-2021]. [101] “Noise [ImageJ Documentation Wiki].” [Online]. Available: https://imagejdocu.tudor.lu/gui/process/noise. [Accessed: 14-Jul-2021]. [102] S. Bolte and F. P. Cordelières, “A guided tour into subcellular colocalization analysis in light microscopy.,” J. Microsc., vol. 224, no. Pt 3, pp. 213–232, Dec. 2006. [103] “Skeletonize3D [ImageJ Documentation Wiki].” [Online]. Available: https://imagejdocu.list.lu/doku.php?id=plugin:morphology:skeletonize3d:start. [Accessed: 14-Jul-2021]. [104] T. C. Lee, R. L. Kashyap, and C. N. Chu, “Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms,” CVGIP: Graphical Models and Image Processing, vol. 56, no. 6, pp. 462–478, Nov. 1994. [105] “Analyze Menu.” [Online]. Available: https://imagej.nih.gov/ij/docs/menus/analyze.html. [Accessed: 14-Jul-2021]. [106] I. Arganda-Carreras, R. Fernández-González, A. Muñoz-Barrutia, and C. Ortiz-De-Solorzano, “3D reconstruction of histological sections: Application to mammary gland tissue.,” Microsc. Res. Tech., vol. 73, no. 11, pp. 1019–1029, Oct. 2010. [107] W. J. H. Koopman, S. Verkaart, H.-J. Visch, F. H. van der Westhuizen, M. P. Murphy, L. W. P. J. van den Heuvel, J. A. M. Smeitink, and P. H. G. M. Willems, “Inhibition of complex I of the electron transport chain causes O2-. -mediated mitochondrial outgrowth.,” Am. J. Physiol. Cell Physiol., vol. 288, no. 6, pp. C1440–50, Jun. 2005. [108] M. Rosenblatt, “Remarks on some nonparametric estimates of a density function,” Ann. Math. Statist., vol. 27, no. 3, pp. 832–837, Sep. 1956. [109] E. Parzen, “On estimation of a probability density function and mode,” Ann. Math. Statist., vol. 33, no. 3, pp. 1065–1076, Sep. 1962. [110] “scipy.stats.gaussian_kde — SciPy v1.7.1 Manual.” [Online]. Available: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html. [Accessed: 22-Aug-2021]. [111] B. W. Silverman, Density Estimation for Statistics and Data Analysis. Boston, MA: Springer US, 1986. [112] N.-B. Heidenreich, A. Schindler, and S. Sperlich, “Bandwidth selection for kernel density estimation: a review of fully automatic selectors,” AStA Adv. Stat. Anal., vol. 97, no. 4, pp. 403–433, Oct. 2013. [113] J. R. Hershey and P. A. Olsen, “Approximating the kullback leibler divergence between gaussian mixture models,” in 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP' ' ’07, 2007, pp. IV–317–IV–320. [114] “geneticalgorithm · PyPI.” [Online]. Available: https://pypi.org/project/geneticalgorithm/. [Accessed: 29-Jul-2021]. [115] “Microscopy Image Analysis Software - Imaris - Oxford Instruments.” [Online]. Available: https://imaris.oxinst.com/. [Accessed: 21-Aug-2021]. [116] A. Merglen, S. Theander, B. Rubi, G. Chaffard, C. B. Wollheim, and P. Maechler, “Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells.,” Endocrinology, vol. 145, no. 2, pp. 667–678, Feb. 2004. [117] J. Huff, “The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution,” Nat. Methods, vol. 12, no. 12, pp. i–ii, Dec. 2015. [118] “Image-Pro.” [Online]. Available: https://www.mediacy.com/imagepro. [Accessed: 21-Aug-2021].
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80838-
dc.description.abstract粒線體作為與細胞代謝、能量及生命週期均息息相關的胞器,在細胞中會不斷地透過融合、分裂、再生、自噬、移動等動態行為來調整其型態及維持生理功能,以因應不同的環境條件及外在壓力。在本篇論文中,我們透過共軛焦螢光顯微鏡觀察INS-1以及PANC-1細胞的粒線體在不同的葡萄糖濃度環境以及藥物環境下的型態變化,並透過調整自參考論文中的影像分析方法來分析2D及3D的粒線體螢光影像以取得量化的指標,進而判斷粒線體在不同條件下的網路型態及動態平衡。 接著,為了進一步利用影像分析的結果以取得粒線體融合以及分裂速率的相關參數,我們採用並調整文獻中的粒線體網路模型,利用基因演算法搜尋「尖端對尖端」、「尖端對側邊」這兩種粒線體融合分裂模式的速率參數,並比較這些參數在細胞環境改變下呈現的趨勢。同時,我們也針對固有的粒線體網路模型進行改良,使之成為擁有再生、自噬及相對位置等反應及資訊的代理人模型,以模擬並視覺化粒線體的動態網路。 結果顯示,INS-1細胞在藥物FCCP作用、葡萄糖缺乏以及過高的情況下,於顯微影像中呈現較為破碎的粒線體型態,並在粒線體網路模型中擁有較低的融合速率。綜觀而言,這篇論文提供了包含細胞實驗、影像分析以及電腦模型的整合流程方法,使粒線體動態行為的研究更為有效率及便利。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:18:33Z (GMT). No. of bitstreams: 1
U0001-2909202121511200.pdf: 10584647 bytes, checksum: c666a81cfe8ac84e09f3f5b230f095fe (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents摘要 ii Abstract iii Table of Contents v List of Figures vii List of Tables xi Chapter 1: Introduction 1 Section 1.1 Mitochondria Dynamics and Functions 1 Section 1.2: Analyses for Mitochondria Fluorescent Images 12 Section 1.3: Computational Network Model of Mitochondria Dynamics 25 Section 1.4: Motivation and Objectives 36 Chapter 2: Methods and Materials 39 Section 2.1 Cell Culture 39 Section 2.2 Cell Imaging 42 Section 2.3 Image Analysis Pipelines 45 Section 2.4 Agent-Based Network Model for Mitochondria Simulation 73 Section 2.5 Genetic Algorithm for Parameters Fitting 89 Section 2.6 Statistical Analysis 96 Chapter 3: Results 97 Section 3.1 Image Analysis for INS-1 97 Section 3.2 Image Analysis for PANC-1 127 Section 3.3 Other Examples for Image Analysis 139 Section 3.4 Genetic Algorithm Fitting for parameters searching 142 Section 3.5 Agent-based Network Model for Visualization 150 Chapter 4: Discussion 156 Section 4.1 Experimental Design and Difficulties 156 Section 4.2 Validation and Limitation of Image Analysis Pipelines 159 Section 4.3 Remark and Limitation of Network Model and GA Fitting 163 Chapter 5: Conclusion and Future Works 169 Section 5.1 Conclusion and Summary of this study 169 Section 5.2 Future Works 173 References 176
dc.language.isoen
dc.subject代理人模型zh_TW
dc.subject融合/分裂速率zh_TW
dc.subject2D/3D影像分析zh_TW
dc.subject參數擬合zh_TW
dc.subject粒線體型態zh_TW
dc.subjectagent-based modelen
dc.subjectparameter fittingen
dc.subjectfusion/fission ratesen
dc.subjectmitochondrial morphologyen
dc.subject2D/3D image analysisen
dc.title利用粒線體顯微影像進行粒線體網路分析及電腦模擬zh_TW
dc.titleMitochondrial network analyses and computational simulations based on confocal microscopic mitochondria imagesen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何亦平(Hsin-Tsai Liu),劉彥良(Chih-Yang Tseng)
dc.subject.keyword粒線體型態,2D/3D影像分析,代理人模型,融合/分裂速率,參數擬合,zh_TW
dc.subject.keywordmitochondrial morphology,2D/3D image analysis,agent-based model,fusion/fission rates,parameter fitting,en
dc.relation.page185
dc.identifier.doi10.6342/NTU202103464
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
U0001-2909202121511200.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
10.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved