Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80817Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林浩雄(Hao-Hsiung Lin) | |
| dc.contributor.author | Hsu-Chia Huang | en |
| dc.contributor.author | 黃旭嘉 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:17:40Z | - |
| dc.date.available | 2021-11-08 | |
| dc.date.available | 2022-11-24T03:17:40Z | - |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-06 | |
| dc.identifier.citation | [1] T. Miya, T. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fiber at 1.55 µm,” Electron. Lett., vol. 15, no. 4, pp. 106-108, Feb. 1979. [2] S. M. Sze and K. K. Ng, Physics of semiconductor devices, pp. 665, 3rd ed., Wiley interscience, 2007. [3] T. Swaminathan, and A. T. Macrander, Material aspects of GaAs and InP based structures, Prentice Hall, 1991, p.25. [4] N. Susa, Y. Yamauchi and H. Kanbe, 'Punch-through type InGaAs photodetector fabricated by vapor-phase epitaxy,' IEEE J. Quantum Electron., vol. 16, no. 5, pp. 542-545, May 1980. [5] S. Akiba, K. Sakai, Y. Matsushima, and T. Yamamoto, “A proposal to semiconductor heterostructure APD,” Nat’l Conv. Rec. of IECE Japan, p.859, Apr. 1979 [6] Y. Matsushima, K. Sakai and Y. Noda, “New type InGaAs/InP heterostructure avalanche photodiode with buffer layer,” IEEE Electron Device Lett., vol. 2, no. 7, pp. 179-181, Jul. 1981. [7] Kazuhito Yasuda, Tatsunori Shirai, Yutaka Kishi, Susumu Yamazaki, and Takao Kaneda. “Heterojunction effect on spectral and frequency responses in InP/InGaAsP/InGaAs APD,” Japan. J. Appl. Phys., vol. 22, pp. 291, Jan. 1983. [8] L. Y. Chii and H. C. Fang, Power Microelectronics: Device And Process Technologies. World Scientific Pub, 2017. [9] Gou-Chung Chi et al., 'Planar InP/InGaAsP three-dimensional graded-junction avalanche photodiode,' IEEE Trans. Electron. Devices, vol. 34, no. 11, pp. 2265-2269, Nov. 1987. [10] J. N. Haralson, J. W. Parks, K. F. Brennan, W. Clark and L. E. Tarof, 'Numerical simulation of avalanche breakdown within InP-InGaAs SAGCM standoff avalanche photodiodes,' J. Lightwave Technol., vol. 15, no. 11, pp. 2137-2140, Nov. 1997. [11] K. Taguchi et al., 'Planar InP/InGaAs avalanche photodiodes with preferential lateral extended guard ring,' IEEE Electron Device Lett., vol. 7, no. 4, pp. 257-258, Apr. 1986. [12] H. Sudo and M. Suzuki, 'Surface degradation mechanism of InP/InGaAs APDs,' J. Lightwave Technol., vol. 6, no. 10, pp. 1496-1501, Oct. 1988. [13] Y. Liu, S. R. Forrest, J. Hladky, M. J. Lange, G. H. Olsen and D. E. Ackley, 'A planar InP/InGaAs avalanche photodiode with floating guard ring and double diffused junction,' J. Lightwave Tech., vol. 10, no. 2, pp. 182-193, Feb. 1992. [14] S. M. Sze and K. K. Ng, Physics of semiconductor devices, pp. 104-106, 3rd ed., Wiley interscience, 2007. [15] H. Ando, H. Kanbe, T. Kimura, T. Yamaoka and T. Kaneda, 'Characteristics of germanium avalanche photodiodes in the wavelength region of 1-1.6 µm,' IEEE J. Quantum Electron., vol. 14, no. 11, pp. 804-809, Nov. 1978. [16] S. Forrest, 'Performance of InxGa1-xAsyP1-yphotodiodes with dark current limited by diffusion, generation recombination, and tunneling,' IEEE J. Quantum Electron., vol. 17, no. 2, pp. 217-226, Feb.1981. [17] S. M. Sze and K. K. Ng, Physics of semiconductor devices, pp. 42, 3rd ed., Wiley interscience, 2007. [18] S. R. Forrest, O. K. Kim, and R. G. Smith, “Optical response time of InGaAs/InP avalanche photodiodes,” Appl. Phys. Lett., Vol. 41, no. 1, pp. 95-98, Jul. 1982 [19] J. C. Campbell, W. T. Tsang, G. J. Qua and B. C. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quan. Electron., Vol. 25, pp. 496-500, Mar. 1988. [20] H. Ando, H. Kanbe, M. Ito, and T. Kaneda, “Tunneling current in InGaAs and optimum design for InGaAs/InP avalanche photodiode,” Japan. J. Appl. Phys. vol. 19, pp. 277-280, Jun. 1980. [21] L. E. Tarof, R. Bruce, D. G. Knight, J. Yu, H. B. Kim and T. Baird, 'Planar InP-InGaAs single-growth avalanche photodiodes with no guard rings,' IEEE Photon. Technol. Lett., vol. 7, no. 11, pp. 1330-1332, Nov. 1995. [22] Liang-Hsuan Nieh, “Manufacture process and electrical analysis of SWIR Lidar,” Unpublished master’s thesis, National Taiwan University, Taiwan, Jul. 2020. [23] K. Lee and K. Yang, 'Analysis of InGaAs/InP single-photon avalanche diodes with the multiplication width variation,' IEEE Photon. Technol. Lett., vol. 26, no. 10, pp. 999-1002, May 2014. [24] HOU Li-li, HAN Qin, LI Bin, WANG Shuai, YE Han. “Using etch well to suppress edge breakdown of planar-type InGaAs/InP Geiger mode avalanche photodiodes,” Acta Photonica Sinica, vol. 47, no. 5, pp. 0523001, May 2018. [25] T. Swaminathan, and A. T. Macrander, Material aspects of GaAs and InP based structures, Prentice Hall, 1991, p.15. [26] Sadao Adachi, Properties of semiconductor alloys: Group-IV, III–V and II–VI Semiconductors, John Wiley Sons, 2009, pp. 280. [27] G. J. van Gurp, T. van Dongen, G. Fontein, J. Jacobs and D. Tjaden, “Interstitial and substitutional Zn in InP and InGaAsP,” J. Appl. Phys. vol. 65, no. 2, pp. 553-560, Jan. 1989. [28] B. Tuck and A. Hooper, “Diffusion profiles of zinc in indium phosphide,” J. Phys. D: Appl. Phys. vol. 8, pp. 1806-1821, May 1975. [29] L.Y. Chan, Kin Man Yu, M. Ben-Tzur, E.E. Haller, J.M. Jaklevic, W. Walukiewicz and C. M. Hanson, “Lattice location of diffused Zn atoms in GaAs and InP single crystals,” J. Appl. Phys. vol. 69, no. 5, pp. 2998-3006, Mar. 1991. [30] I. Yun and K. S. Hyun, “Zinc diffusion process investigation of InP-based test structures for high-speed avalanche photodiode fabrication,” Micro- electron. J., vol. 31, no. 8, pp. 635–639, Aug. 2000. [31] M.H. Park, L.C. Wang, J.Y. Cheng, and C.J. Palmstrom, “Low resistance ohmic contact scheme (~μΩ cm2) to p-InP,” Appl. Phys. Lett. Vol. 70, pp. 99-101, Jan. 1997 [32] G.-C. Chi, D. J. Muehlner, F. W. Ostermayer, Jr., J. M. Fruend, K. J. O'Brien, R. Pawel, R. J. McCoy, R. C. Smith, and V. D. Mattera, Jr., “Planar InP/InGaAsP three-dimensional graded junction avalanche photodiode,” IEEE Trans. Electron Devices, vol. 34, pp. 2265–2269, Nov. 1987. [33] Huang, Wenchao Xia, Hui Wanga, Shaowei Deng, Honghai Wei, Peng li, Lu Liu, Fengqi Li, Z. li, Tianxin. “Microscopic study on the carrier distribution in optoelectronic device structures: Experiment and modeling,” Proc. SPIE., vol. 8308, pp. 83081Y, Nov. 2011. [34] Domenico D’Agostino et al., 'Low-loss passive waveguides in a generic InP foundry process via local diffusion of zinc,' Opt. Express, vol. 23, pp. 25143-25157, Sep. 2015 [35] S. R. Cho et al., “Suppression of avalanche multiplication at the periphery of diffused junction by floating guard rings in a planar InGaAs-InP avalanche photodiode,” IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 534-536, May 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80817 | - |
| dc.description.abstract | 本論文討論平面型磷化銦/砷化銦鎵SAGCM(分離式吸收、漸變、電荷、倍增層)結構雪崩光電二極體的電性量測,包含元件的電流電壓分析、電容電壓分析、頻率響應和量子效率。針對側護環與懸護環的設計進行討論,分析護環深度、不同護環間距與寬度對崩潰電壓的影響。 首先改善側護環深度,將側護環與主動區的擴散深度差從1.3 μm減少到0.3 μm,讓元件的崩潰電壓提升5.6 V,也經由TCAD模擬觀察到相同的趨勢。從鋅側向擴散實驗,得到側向擴散的比例80~87%,可用於評估崩潰電壓與實際懸護環間距關係的正確性。有側護環元件的崩潰電壓相較於沒有側護環的還要高出4.64 V,也透過模擬驗證側護環的保護效果,能夠降低主動區邊緣電場。懸護環寬度比擴散深度窄時實際擴散深度變淺,崩潰電壓下降較明顯,所以懸護環寬度要設計比擴散深度寬,改善後的結構可以提升崩潰電壓1.4 V。 當懸護環與側護環因側向擴散相連時,從線性光電流掃描的實驗觀察到光電流的峰值會發生在懸護環,因為懸護環底部曲率半徑小,電場聚集的程度比主動區邊緣更強,因此提早發生崩潰,而且設計的懸護環寬度越窄,碰撞游離的程度越強。 我們由電容電壓特性量測的結果作線性擬合電荷層與吸收層的摻雜濃度 ,確認APD晶片的結構濃度與磊晶廠測試片提供的資料相近。也根據頻率響應量測得到元件的3dB頻寬為1.9 GHz。最後藉由光功率以及光電流的量測,得到元件的反應率為0.95 A/W,外部量子效率為76 %。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:17:40Z (GMT). No. of bitstreams: 1 U0001-0410202102460300.pdf: 6875060 bytes, checksum: e09565ab427b27aed9114d3fbf68b106 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 目錄 致謝 I 摘要 II Abstract III 目錄 V 圖目錄 VII 表目錄 XI 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 論文架構 3 第2章 雪崩光電二極體原理與介紹 5 2.1 光偵測原理與雪崩倍增 5 2.2 量子效率與響應度 7 2.3 暗電流產生機制 9 2.3.1 擴散電流 10 2.3.2 產生-復合電流 10 2.3.3 能帶穿隧電流 11 2.4 頻寬 12 2.5 雪崩光電二極體操作模式 13 第3章 SAGCM InP/InGaAs 雪崩光電二極體樣品與製程介紹 15 3.1 樣品介紹 15 3.1.1 磊晶結構 15 3.1.2 側護環設計 18 3.1.3 Test-kit與元件參數設計 21 3.2 樣品製程流程與結果 26 第4章 結構分析與光電特性結果 34 4.1 元件結構 34 4.2 鋅側向擴散實驗 37 4.2.1 實驗設計 39 4.2.2 實驗結果 40 4.3 元件I-V特性 43 4.3.1 Test-kit 元件I-V量測 47 4.3.2 主動區加懸護環之元件I-V量測 51 4.3.3 主動區加側護環與懸護環之元件I-V量測 57 4.3.4 線性掃描光響應特性量測 66 4.4 元件C-V特性 73 4.5 頻率響應與眼圖量測 75 4.6 量子效率 80 第5章 結論 83 參考文獻 84 | |
| dc.language.iso | zh-TW | |
| dc.subject | 線性光電流掃描 | zh_TW |
| dc.subject | 磷化銦 | zh_TW |
| dc.subject | 雪崩光電二極體 | zh_TW |
| dc.subject | 側向擴散 | zh_TW |
| dc.subject | 側護環 | zh_TW |
| dc.subject | 懸護環 | zh_TW |
| dc.subject | floating guard ring | en |
| dc.subject | linear photocurrent scanning | en |
| dc.subject | InP | en |
| dc.subject | avalanche photodiode | en |
| dc.subject | lateral diffusion | en |
| dc.subject | attached guard ring | en |
| dc.title | InGaAs/InP 雪崩光電二極體之側護環與懸護環電性分析 | zh_TW |
| dc.title | Electrical analysis of InGaAs/InP Avalanche photodiode with attached guard ring and floating guard ring | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 毛明華(Hsin-Tsai Liu),黃朝興(Chih-Yang Tseng),羅俊傑 | |
| dc.subject.keyword | 磷化銦,雪崩光電二極體,側向擴散,側護環,懸護環,線性光電流掃描, | zh_TW |
| dc.subject.keyword | InP,avalanche photodiode,lateral diffusion,attached guard ring,floating guard ring,linear photocurrent scanning, | en |
| dc.relation.page | 87 | |
| dc.identifier.doi | 10.6342/NTU202103524 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-07 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| Appears in Collections: | 電子工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-0410202102460300.pdf Access limited in NTU ip range | 6.71 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
