Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80776Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林淑華(Shu-Wha Lin) | |
| dc.contributor.author | Guan-Ren Wang | en |
| dc.contributor.author | 王冠人 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:16:11Z | - |
| dc.date.available | 2021-11-03 | |
| dc.date.available | 2022-11-24T03:16:11Z | - |
| dc.date.copyright | 2021-11-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-12 | |
| dc.identifier.citation | 1. Puente, X.S., et al., A genomic view of the complexity of mammalian proteolytic systems. Biochem Soc Trans, 2005. 33(Pt 2): p. 331-4. 2. López-Otín, C. and J.S. Bond, Proteases: multifunctional enzymes in life and disease. Journal of Biological Chemistry, 2008. 283(45): p. 30433-30437. 3. Di Cera, E., Serine proteases. IUBMB Life, 2009. 61(5): p. 510-5. 4. Hooper, J.D., et al., Type II transmembrane serine proteases: insights into an emerging class of cell surface proteolytic enzymes. Journal of Biological Chemistry, 2001. 276(2): p. 857-860. 5. Leytus, S.P., et al., A novel trypsin-like serine protease (hepsin) with a putative transmembrane domain expressed by human liver and hepatoma cells. Biochemistry, 1988. 27(3): p. 1067-74. 6. Szabo, R. and T.H. Bugge, Type II transmembrane serine proteases in development and disease. The international journal of biochemistry cell biology, 2008. 40(6-7): p. 1297-1316. 7. Ahmed, Z.M., et al., Characterization of a new full length TMPRSS3 isoform and identification of mutant alleles responsible for nonsyndromic recessive deafness in Newfoundland and Pakistan. BMC Medical Genetics, 2004. 5(1): p. 1-8. 8. Guipponi, M., et al., Mice deficient for the type II transmembrane serine protease, TMPRSS1/hepsin, exhibit profound hearing loss. The American journal of pathology, 2007. 171(2): p. 608-616. 9. List, K., et al., Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene, 2002. 21(23): p. 3765-3779. 10. Basel-Vanagaite, L., et al., Autosomal recessive ichthyosis with hypotrichosis caused by a mutation in ST14, encoding type II transmembrane serine protease matriptase. The American Journal of Human Genetics, 2007. 80(3): p. 467-477. 11. Yan, W., et al., Corin, a mosaic transmembrane serine protease encoded by a novel cDNA from human heart. Journal of Biological Chemistry, 1999. 274(21): p. 14926-14935. 12. Dries, D.L., et al., Corin gene minor allele defined by 2 missense mutations is common in blacks and associated with high blood pressure and hypertension. Circulation, 2005. 112(16): p. 2403-2410. 13. Tsuji, A., et al., Hepsin, a cell membrane-associated protease. Characterization, tissue distribution, and gene localization. Journal of Biological Chemistry, 1991. 266(25): p. 16948-16953. 14. Kawamura, S., et al., Complete nucleotide sequence, origin of isoform and functional characterization of the mouse hepsin gene. European journal of biochemistry, 1999. 262(3): p. 755-764. 15. Somoza, J.R., et al., The structure of the extracellular region of human hepsin reveals a serine protease domain and a novel scavenger receptor cysteine-rich (SRCR) domain. Structure, 2003. 11(9): p. 1123-1131. 16. Vu, T.-K.H., et al., Identification and cloning of the membrane-associated serine protease, hepsin, from mouse preimplantation embryos. Journal of Biological Chemistry, 1997. 272(50): p. 31315-31320. 17. Li, S., et al., Hepsin: a multifunctional transmembrane serine protease in pathobiology. The FEBS Journal, 2021. 288(18): p. 5252-5264. 18. Hsu, Y.C., et al., Serine protease hepsin regulates hepatocyte size and hemodynamic retention of tumor cells by hepatocyte growth factor signaling in mice. Hepatology, 2012. 56(5): p. 1913-1923. 19. Li, S., et al., Hepsin enhances liver metabolism and inhibits adipocyte browning in mice. Proceedings of the National Academy of Sciences, 2020. 117(22): p. 12359-12367. 20. Bugge, T.H., T.M. Antalis, and Q. Wu, Type II transmembrane serine proteases. Journal of Biological Chemistry, 2009. 284(35): p. 23177-23181. 21. Klezovitch, O., et al., Hepsin promotes prostate cancer progression and metastasis. Cancer cell, 2004. 6(2): p. 185-195. 22. Xuan, J.-A., et al., Antibodies neutralizing hepsin protease activity do not impact cell growth but inhibit invasion of prostate and ovarian tumor cells in culture. Cancer research, 2006. 66(7): p. 3611-3619. 23. Merrell, A.J. and G. Kardon, Development of the diaphragm–a skeletal muscle essential for mammalian respiration. The FEBS journal, 2013. 280(17): p. 4026-4035. 24. Campbell, E.J.M., E. Agostoni, and J.N. Davis, The respiratory muscles: mechanics and neural control. 1970: London: Lloyd-Luke (Medical Books). 25. Perry, S.F., et al., The evolutionary origin of the mammalian diaphragm. Respiratory physiology neurobiology, 2010. 171(1): p. 1-16. 26. Pober, B.R. Overview of epidemiology, genetics, birth defects, and chromosome abnormalities associated with CDH. in American Journal of Medical Genetics Part C: Seminars in Medical Genetics. 2007. Wiley Online Library. 27. Pickering, M. and J.F. Jones, The diaphragm: two physiological muscles in one. Journal of anatomy, 2002. 201(4): p. 305-312. 28. Christensen, P., Eventration of the diaphragm. Thorax, 1959. 14(4): p. 311. 29. Finsterer, J., Cardiopulmonary support in Duchenne muscular dystrophy. Lung, 2006. 184(4): p. 205-215. 30. Pearce, J., Henry Gray's anatomy. Clinical Anatomy: The Official Journal of the American Association of Clinical Anatomists and the British Association of Clinical Anatomists, 2009. 22(3): p. 291-295. 31. Allan, D.W. and J.J. Greer, Embryogenesis of the phrenic nerve and diaphragm in the fetal rat. Journal of Comparative Neurology, 1997. 382(4): p. 459-468. 32. Stuelsatz, P., et al., A contemporary atlas of the mouse diaphragm: myogenicity, vascularity, and the Pax3 connection. Journal of Histochemistry Cytochemistry, 2012. 60(9): p. 638-657. 33. Ackerman, K.G. and J.J. Greer. Development of the diaphragm and genetic mouse models of diaphragmatic defects. in American Journal of Medical Genetics Part C: Seminars in Medical Genetics. 2007. Wiley Online Library. 34. Holder, A., et al., Genetic factors in congenital diaphragmatic hernia. The American Journal of Human Genetics, 2007. 80(5): p. 825-845. 35. Babiuk, R.P., et al., Embryological origins and development of the rat diaphragm. Journal of Comparative Neurology, 2003. 455(4): p. 477-487. 36. Dunwoodie, S.L., T.A. Rodriguez, and R.S. Beddington, Msg1 and Mrg1, founding members of a gene family, show distinct patterns of gene expression during mouse embryogenesis. Mechanisms of development, 1998. 72(1-2): p. 27-40. 37. Iritani, I., Experimental study on embryogenesis of congenital diaphragmatic hernia. Anatomy and embryology, 1984. 169(2): p. 133-139. 38. Allan, D.W. and J.J. Greer, Pathogenesis of nitrofen-induced congenital diaphragmatic hernia in fetal rats. Journal of applied physiology, 1997. 83(2): p. 338-347. 39. Mey, J., et al., Retinal dehydrogenase-2 is inhibited by compounds that induce congenital diaphragmatic hernias in rodents. The American journal of pathology, 2003. 162(2): p. 673-679. 40. Clugston, R.D., et al., Teratogen-induced, dietary and genetic models of congenital diaphragmatic hernia share a common mechanism of pathogenesis. The American journal of pathology, 2006. 169(5): p. 1541-1549. 41. Merrell, A.J., et al., Muscle connective tissue controls development of the diaphragm and is a source of congenital diaphragmatic hernias. Nature genetics, 2015. 47(5): p. 496-504. 42. Dietrich, S., et al., The role of SF/HGF and c-Met in the development of skeletal muscle. Development, 1999. 126(8): p. 1621-1629. 43. Buckingham, M., Skeletal muscle progenitor cells and the role of Pax genes. Comptes rendus biologies, 2007. 330(6-7): p. 530-533. 44. Murphy, M. and G. Kardon, Origin of vertebrate limb muscle: the role of progenitor and myoblast populations. Current topics in developmental biology, 2011. 96: p. 1-32. 45. Maina, F., et al., Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development. Cell, 1996. 87(3): p. 531-542. 46. Uehara, Y., et al., Rescue of embryonic lethality in hepatocyte growth factor/scatter factor knockout mice. genesis, 2000. 27(3): p. 99-103. 47. Yamamoto, Y., et al., Hepatocyte growth factor (HGF/SF) is a muscle-derived survival factor for a subpopulation of embryonic motoneurons. Development, 1997. 124(15): p. 2903-2913. 48. Clugston, R.D., W. Zhang, and J.J. Greer, Gene expression in the developing diaphragm: significance for congenital diaphragmatic hernia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2008. 294(4): p. L665-L675. 49. Longoni, M., B.R. Pober, and F.A. High, Congenital diaphragmatic hernia overview. GeneReviews®[Internet], 2019. 50. Mai, C.T., et al., National population‐based estimates for major birth defects, 2010–2014. Birth defects research, 2019. 111(18): p. 1420-1435. 51. America Centers for Disease Control., Diaphragmatic Hernia. 2020. 52. Harrison, M.R., et al., A prospective study of the outcome for fetuses with diaphragmatic hernia. Jama, 1994. 271(5): p. 382-384. 53. Ackerman, K.G. and B.R. Pober. Congenital diaphragmatic hernia and pulmonary hypoplasia: new insights from developmental biology and genetics. in American Journal of Medical Genetics Part C: Seminars in Medical Genetics. 2007. Wiley Online Library. 54. Keller, R.L. Antenatal and postnatal lung and vascular anatomic and functional studies in congenital diaphragmatic hernia: implications for clinical management. in American Journal of Medical Genetics Part C: Seminars in Medical Genetics. 2007. Wiley Online Library. 55. Ackerman, K.G., et al., Fog2 is required for normal diaphragm and lung development in mice and humans. PLoS genetics, 2005. 1(1): p. e10. 56. Graham, G. and P.C. Devine. Antenatal diagnosis of congenital diaphragmatic hernia. in Seminars in perinatology. 2005. Elsevier. 57. 吳珮如, 謝., 病例討論─先天性橫膈膜心包膜疝氣,併心包膜積水. 周產期會訊, 2006. 第一二一期. 58. Russell, M.K., et al., Congenital diaphragmatic hernia candidate genes derived from embryonic transcriptomes. Proceedings of the National Academy of Sciences, 2012. 109(8): p. 2978-2983. 59. Torfs, C.P., et al., A population‐based study of congenital diaphragmatic hernia. Teratology, 1992. 46(6): p. 555-565. 60. 陳加祥, 衛生福利部國民健康署遺傳疾病諮詢服務窗口, 2008. 61. Donnai, D. and M. Barrow, Diaphragmatic hernia, exomphalos, absent corpus callosum, hypertelorism, myopia, and sensorineural deafness: a newly recognized autosomal recessive disorder? American journal of medical genetics, 1993. 47(5): p. 679-682. 62. Slavotinek, A.M., Fryns syndrome: a review of the phenotype and diagnostic guidelines. American Journal of Medical Genetics Part A, 2004. 124(4): p. 427-433. 63. Antonius, T., et al., Denys–Drash syndrome and congenital diaphragmatic hernia: Another case with the 1097G> A (Arg366His) mutation. American Journal of Medical Genetics Part A, 2008. 146(4): p. 496-499. 64. Lin, I.C., et al., Recurrent congenital diaphragmatic hernia in Ehlers-Danlos syndrome. Cardiovascular and interventional radiology, 2006. 29(5): p. 920-923. 65. Tautz, J., et al., Congenital diaphragmatic hernia and a complex heart defect in association with Wolf-Hirschhorn syndrome. Am J Med Genet A, 2010. 152(11): p. 2891-2894. 66. Schrier, S.A., et al., Causes of death and autopsy findings in a large study cohort of individuals with Cornelia de Lange syndrome and review of the literature. American Journal of Medical Genetics Part A, 2011. 155(12): p. 3007-3024. 67. Smigiel, R., et al., Co‐occurrence of severe Goltz–Gorlin syndrome and pentalogy of cantrell–case report and review of the literature. American Journal of Medical Genetics Part A, 2011. 155(5): p. 1102-1105. 68. Wayne, E.R., et al., Eventration of the diaphragm. Journal of pediatric surgery, 1974. 9(5): p. 643-651. 69. Smith, C., et al., Diaphragmatic paralysis and eventration in infants. The Journal of thoracic and cardiovascular surgery, 1986. 91(4): p. 490-497. 70. Obara, H., et al., Eventration of the diaphragm in infants and children. Acta Pædiatrica, 1987. 76(4): p. 654-658. 71. Wu, S., et al., Congenital diaphragmatic eventration in children: 12 years' experience with 177 cases in a single institution. Journal of pediatric surgery, 2015. 50(7): p. 1088-1092. 72. Shah-Mirany, J., G. Schmitz, and R. Watson, Eventration of the diaphragm: physiologic and surgical significance. Archives of Surgery, 1968. 96(5): p. 844-850. 73. Bisgard, J.D., Congenital eventration of the diaphragm. Journal of Thoracic Surgery, 1947. 16(5): p. 484-491. 74. Deslauriers, J., Eventration of the diaphragm. Chest surgery clinics of North America, 1998. 8(2): p. 315-330. 75. Inanlou, M.R., et al., A significant reduction of the diaphragm in mdx: MyoD−/− 9th embryos suggests a role for MyoD in the diaphragm development. Developmental biology, 2003. 261(2): p. 324-336. 76. Tseng, B.S., et al., Pulmonary hypoplasia in the myogenin null mouse embryo. American journal of respiratory cell and molecular biology, 2000. 22(3): p. 304-315. 77. Babiuk, R.P. and J.J. Greer, Diaphragm defects occur in a CDH hernia model independently of myogenesis and lung formation. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2002. 283(6): p. L1310-L1314. 78. Mäki, J.M., et al., Lysyl oxidase is essential for normal development and function of the respiratory system and for the integrity of elastic and collagen fibers in various tissues. The American journal of pathology, 2005. 167(4): p. 927-936. 79. Kluth, D., et al., Nitrofen-induced diaphragmatic hernias in rats: an animal model. Journal of pediatric surgery, 1990. 25(8): p. 850-854. 80. Clugston, R.D., et al., Understanding abnormal retinoid signaling as a causative mechanism in congenital diaphragmatic hernia. American journal of respiratory cell and molecular biology, 2010. 42(3): p. 276-285. 81. Chassaing, N., et al., Phenotypic spectrum of STRA6 mutations: from Matthew‐Wood syndrome to non‐lethal anophthalmia. Human mutation, 2009. 30(5): p. E673-E681. 82. Chitayat, D., et al., The PDAC syndrome (pulmonary hypoplasia/agenesis, diaphragmatic hernia/eventration, anophthalmia/microphthalmia, and cardiac defect)(Spear syndrome, Matthew‐Wood syndrome): Report of eight cases including a living child and further evidence for autosomal recessive inheritance. American journal of medical genetics Part A, 2007. 143(12): p. 1268-1281. 83. Mendelsohn, C., et al., Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development, 1994. 120(10): p. 2749-2771. 84. Brady, P.D., et al., Recent developments in the genetic factors underlying congenital diaphragmatic hernia. Fetal diagnosis and therapy, 2011. 29(1): p. 25-39. 85. Goumy, C., et al., Retinoid pathway and congenital diaphragmatic hernia: hypothesis from the analysis of chromosomal abnormalities. Fetal diagnosis and therapy, 2010. 28(3): p. 129-139. 86. Yu, L., et al., Variants in GATA4 are a rare cause of familial and sporadic congenital diaphragmatic hernia. Human genetics, 2013. 132(3): p. 285-292. 87. Arrington, C.B., et al., A family‐based paradigm to identify candidate chromosomal regions for isolated congenital diaphragmatic hernia. American Journal of Medical Genetics Part A, 2012. 158(12): p. 3137-3147. 88. Longoni, M., et al., Congenital diaphragmatic hernia interval on chromosome 8p23. 1 characterized by genetics and protein interaction networks. American Journal of Medical Genetics Part A, 2012. 158(12): p. 3148-3158. 89. Jay, P.Y., et al., Impaired mesenchymal cell function in Gata4 mutant mice leads to diaphragmatic hernias and primary lung defects. Developmental biology, 2007. 301(2): p. 602-614. 90. Cantor, A.B. and S.H. Orkin. Coregulation of GATA factors by the Friend of GATA (FOG) family of multitype zinc finger proteins. in Seminars in cell developmental biology. 2005. Elsevier. 91. Klaassens, M., et al., Congenital diaphragmatic hernia and chromosome 15q26: determination of a candidate region by use of fluorescent in situ hybridization and array-based comparative genomic hybridization. The American Journal of Human Genetics, 2005. 76(5): p. 877-882. 92. You, L.-R., et al., Mouse lacking COUP-TFII as an animal model of Bochdalek-type congenital diaphragmatic hernia. Proceedings of the National Academy of Sciences, 2005. 102(45): p. 16351-16356. 93. Yu, I.-S., et al., Mice deficient in hepsin, a serine protease, exhibit normal embryogenesis and unchanged hepatocyte regeneration ability. Thrombosis and haemostasis, 2000. 84(11): p. 865-870. 94. Chen, C.-Y., et al., Embryonic Cul4b is important for epiblast growth and location of primitive streak layer cells. PloS one, 2019. 14(7): p. e0219221. 95. Coles, G.L. and K.G. Ackerman, Kif7 is required for the patterning and differentiation of the diaphragm in a model of syndromic congenital diaphragmatic hernia. Proceedings of the National Academy of Sciences, 2013. 110(21): p. E1898-E1905. 96. Takimoto, A., et al., Scleraxis and osterix antagonistically regulate tensile force-responsive remodeling of the periodontal ligament and alveolar bone. Development, 2015. 142(4): p. 787-796. 97. Kirchhofer, D., et al., Hepsin activates pro-hepatocyte growth factor and is inhibited by hepatocyte growth factor activator inhibitor-1B (HAI-1B) and HAI-2. FEBS letters, 2005. 579(9): p. 1945-1950. 98. Zhang, B., et al., Heparan sulfate deficiency disrupts developmental angiogenesis and causes congenital diaphragmatic hernia. The Journal of clinical investigation, 2014. 124(1): p. 209-221. 99. Schweitzer, R., E. Zelzer, and T. Volk, Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development, 2010. 137(17): p. 2807-2817. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80776 | - |
| dc.description.abstract | "絲胺酸蛋白酶(serine protease) 在生物體中扮演著非常重要的角色,也與許多小鼠及人類疾病的病因有關。其中第二型穿膜絲胺酸蛋白酶 (Type II transmembrane serine proteases, TTSP) 的缺失與小鼠及人類的發育疾病都有關聯。 Hepsin屬於TTSP,主要表現在肝臟,少量表現在其他組織,但對其發育相當重要,例如Hepsin會調控脂肪細胞分化、胚胎耳蝸的發育以及胚胎著床等。先前本實驗室利用Hepsin基因改造小鼠探討絲胺酸蛋白酶與小鼠橫膈膜發育的相關性,發現 Hepsin基因剔除(Hepsin-/-)小鼠肺功能較野生型小鼠(Hepsin+/+) 差,且Hepsin-/-成鼠肝臟末緣至肋骨最後一節距離較小,上述表徵類似橫膈上提(diaphragmatic eventration) 的病理現象,此外Hepsin-/-成鼠橫膈膜也較小,橫膈膜病理切片也發現中央肌腱 (central tendon) 區域較薄。進一步對胚胎橫膈膜發育進行研究,以切片染色分析小鼠E13.5胚胎時發現Hepsin -/-胚胎橫膈膜前驅結構(pleuroperitoneal fold, PPF)面積、肌肉前驅細胞(muscle precursor cell)及纖維母細胞(fibroblast) 的細胞計數皆無變化。 為了釐清先前成鼠與胚胎結果的差異性,本研究首先利用回交C57BL/6Jnarl 超過10代以上之6-8週齡成鼠作分析Hepsin各基因型小鼠之肝臟末端至肋骨末緣之距離,發現無論公鼠或母鼠,Hepsin -/-成鼠肝臟末緣至肋骨最後一節距離較異合型(Hepsin+/-) 成鼠與Hepsin+/+成鼠小,也有類似橫膈上提的情形。進一步測量橫膈膜的直徑與面積,觀察到無論公鼠或母鼠,Hepsin -/- 成鼠橫膈膜的直徑與面積皆較小。此外,無論公鼠或母鼠,Hepsin -/- 成鼠其橫膈膜肌肉層無變化,但中央肌腱層皆明顯較薄。接著分析E13.5小鼠胚胎,利用切片H E染色,量測其PPF面積,發現Hepsin -/- 小鼠胚胎PPF面積明顯小於Hepsin+/+與Hepsin+/- 小鼠胚胎PPF面積。進一步對E13.5小鼠胚胎進行切片免疫螢光染色,計數每個切片所有PPF中的PAX7 (肌肉前驅細胞)陽性細胞與GATA4 (纖維母細胞)陽性細胞,結果顯示Hepsin -/-小鼠胚胎其纖維母細胞無變化,但肌肉前驅細胞明顯較少。接著測量E13.5胚胎整體橫膈膜直徑及面積,結果發現無論在胚胎橫膈膜直徑橫向、縱向與面積,三種Hepsin基因型小鼠(Hepsin -/-、Hepsin+/+與Hepsin+/-)間皆無明顯差異。以肌腱前驅細胞(tendon precursor cell)的標誌性蛋白mouse Scleraxis (mSCX) 的RNA作為探針利用全標本包埋原位雜合技術(whole mount in situ hybridization, WISH),偵測E13.5胚胎橫膈膜肌腱的型態與含量,結果發現E13.5胚胎橫膈膜,三種Hepsin基因型小鼠(Hepsin -/-、Hepsin+/+與Hepsin+/-)間皆無明顯差異。 綜合上述結果,推測Hepsin 缺失可能造成小鼠橫膈膜發育異常,並且Hepsin 可能透過影響肌肉前驅細胞,進而影響橫膈膜中央肌腱的發育,造成類似橫膈上提的病理現象。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:16:11Z (GMT). No. of bitstreams: 1 U0001-1110202117425400.pdf: 4188459 bytes, checksum: 54ad4106704d8877d5b364f953a30cbe (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員審定書 ii 致謝 iii 中文摘要 iv 英文摘要 vi 目錄 viii 圖目錄 x 表目錄 xi 第一章、緒論 1 前言 1 第二型穿膜絲胺酸蛋白酶 1 缺乏第二型穿膜絲胺酸蛋白酶的相關發育問題 2 Hepsin的組織分布與蛋白結構 2 Hepsin功能探討 3 橫膈膜的功能與結構 4 橫隔膜的發育 5 橫膈膜疝氣 (diaphragmatic hernia) 7 橫膈上提 (diaphragmatic eventration) 7 橫膈膜缺陷相關機制 8 研究目的 11 第二章、材料與方法 12 小鼠實驗 12 實驗動物犧牲與石蠟切片製作 12 小鼠橫膈膜解剖及型態觀察 12 組織染色(Hematoxylin and Eosin stain) 13 免疫組織螢光染色(Immunofluorescence, IF) 13 PPF面積計算 14 PPF中肌肉前驅細胞與纖維母細胞計數 15 胚胎橫膈膜解剖及型態觀察 15 mSCX DNA轉殖片段製備 16 全標本包埋原位雜合(Whole mount in situ hybridization, WISH)實驗用之mSCX RNA探針製備 16 全標本包埋原位雜合(Whole mount in situ hybridization, WISH) 17 數據分析與統計 18 第三章、實驗結果 19 Hepsin-/-成鼠肝臟末端至肋骨末緣之距離明顯較小 19 Hepsin-/-成鼠橫向、縱向距離與橫膈膜面積明顯較小 19 Hepsin-/-成鼠橫膈膜中央肌腱組織厚度較薄 20 Hepsin-/- E13.5 胚胎PPF面積較小 21 Hepsin-/- E13.5 胚胎PPF中肌肉前驅細胞較少 21 Hepsin-/- E13.5 胚胎橫膈膜大小正常 21 以WISH探討肌腱前驅細胞相關轉錄因子mSCX 22 第四章、討論 24 Hepsin-/- 成鼠橫膈膜發育異常 24 Hepsin-/- E13.5胚胎PPF面積較小且PPF中肌肉前驅細胞數量較少 25 Hepsin-/- E13.5 胚胎橫膈膜與 Hepsin+/+ E13.5 胚胎橫膈膜無異 26 全標本包埋原位雜合需累積實驗數據並改善實驗流程 27 綜合本篇論文與先前實驗室成果比較及綜合討論 29 未來實驗規劃 32 參考文獻 33 圖 41 表 62 附錄 64" | |
| dc.language.iso | zh-TW | |
| dc.subject | 橫膈上提 | zh_TW |
| dc.subject | 橫膈膜發育 | zh_TW |
| dc.subject | pleuroperitoneal fold | zh_TW |
| dc.subject | whole mount in situ hybridization | zh_TW |
| dc.subject | Hepsin基因剔除小鼠 | zh_TW |
| dc.subject | whole mount in situ hybridization | en |
| dc.subject | Hepsin knockout mice | en |
| dc.subject | diaphragm development | en |
| dc.subject | diaphragm eventration | en |
| dc.subject | pleuroperitoneal fold | en |
| dc.title | 利用基因改造小鼠探討絲胺酸蛋白酶與小鼠橫膈膜發育的相關性 | zh_TW |
| dc.title | Investigating the role of serine proteases in relation to murine diaphragm development using genetically modified mouse model | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳瑞菁(Hsin-Tsai Liu),黃祥博(Chih-Yang Tseng),游益興 | |
| dc.subject.keyword | Hepsin基因剔除小鼠,橫膈膜發育,橫膈上提,pleuroperitoneal fold,whole mount in situ hybridization, | zh_TW |
| dc.subject.keyword | Hepsin knockout mice,diaphragm development,diaphragm eventration,pleuroperitoneal fold,whole mount in situ hybridization, | en |
| dc.relation.page | 68 | |
| dc.identifier.doi | 10.6342/NTU202103654 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-12 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| Appears in Collections: | 醫學檢驗暨生物技術學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1110202117425400.pdf Access limited in NTU ip range | 4.09 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
