請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8076完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林立德(Li-Deh Lin) | |
| dc.contributor.author | Yueh-Ling Chao | en |
| dc.contributor.author | 趙悅伶 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:48:44Z | - |
| dc.date.available | 2021-02-23 | |
| dc.date.available | 2021-05-20T00:48:44Z | - |
| dc.date.copyright | 2021-02-23 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2021-01-03 | |
| dc.identifier.citation | 1. Buser, D., et al., Evaluation of filling materials in membrane--protected bone defects. A comparative histomorphometric study in the mandible of miniature pigs. Clin Oral Implants Res, 1998. 9(3): p. 137-50. 2. Wozney, J.M., The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev, 1992. 32(2): p. 160-7. 3. Poon, B., et al., Bone morphogenetic protein-2 and bone therapy: successes and pitfalls. J Pharm Pharmacol, 2016. 68(2): p. 139-47. 4. Freitas, R.M., et al., Alveolar ridge and maxillary sinus augmentation using rhBMP-2: a systematic review. Clin Implant Dent Relat Res, 2015. 17 Suppl 1: p. e192-201. 5. Moslemi, N., et al., Outcomes of Alveolar Ridge Preservation With Recombinant Human Bone Morphogenetic Protein-2: A Systematic Review. Implant Dent, 2018. 27(3): p. 351-362. 6. Haidar, Z.S., R.C. Hamdy, and M. Tabrizian, Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part A: Current challenges in BMP delivery. Biotechnol Lett, 2009. 31(12): p. 1817-24. 7. Wikesjo, U.M., et al., rhBMP-2 significantly enhances guided bone regeneration. Clin Oral Implants Res, 2004. 15(2): p. 194-204. 8. Boyne, P.J., et al., De novo bone induction by recombinant human bone morphogenetic protein-2 (rhBMP-2) in maxillary sinus floor augmentation. J Oral Maxillofac Surg, 2005. 63(12): p. 1693-707. 9. Fiorellini, J.P., et al., Randomized study evaluating recombinant human bone morphogenetic protein-2 for extraction socket augmentation. J Periodontol, 2005. 76(4): p. 605-13. 10. Wikesjo, U.M., et al., Alveolar ridge augmentation using implants coated with recombinant human bone morphogenetic protein-2: histologic observations. J Clin Periodontol, 2008. 35(11): p. 1001-10. 11. Senn, N., On the Healing of Aseptic Bone Cavities by Implantation of Antiseptic Decalcified Bone. Ann Surg, 1889. 10(5): p. 352-68. 12. Levander, G., Tissue induction. Nature, 1945. 155: p. 148-49. 13. Lacroix, P., Recent investigation on the growth of bone. Nature, 1945. 156: p. 576. 14. Urist, M.R., Bone: formation by autoinduction. Science, 1965. 150(3698): p. 893-9. 15. Urist, M.R. and B.S. Strates, Bone morphogenetic protein. J Dent Res, 1971. 50(6): p. 1392-406. 16. Reddi, A.H. and C. Huggins, Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Natl Acad Sci U S A, 1972. 69(6): p. 1601-5. 17. Wozney, J.M., et al., Novel regulators of bone formation: molecular clones and activities. Science, 1988. 242(4885): p. 1528-34. 18. Lee, M.B., Bone morphogenetic proteins: background and implications for oral reconstruction. A review. J Clin Periodontol, 1997. 24(6): p. 355-65. 19. Israel, D.I., et al., Expression and characterization of bone morphogenetic protein-2 in Chinese hamster ovary cells. Growth Factors, 1992. 7(2): p. 139-50. 20. Reddi, A.H., Bone morphogenetic proteins: an unconventional approach to isolation of first mammalian morphogens. Cytokine Growth Factor Rev, 1997. 8(1): p. 11-20. 21. Kirsch, T., W. Sebald, and M.K. Dreyer, Crystal structure of the BMP-2-BRIA ectodomain complex. Nat Struct Biol, 2000. 7(6): p. 492-6. 22. Kirsch, T., J. Nickel, and W. Sebald, BMP-2 antagonists emerge from alterations in the low-affinity binding epitope for receptor BMPR-II. EMBO J, 2000. 19(13): p. 3314-24. 23. Knaus, P. and W. Sebald, Cooperativity of binding epitopes and receptor chains in the BMP/TGFbeta superfamily. Biol Chem, 2001. 382(8): p. 1189-95. 24. Shi, Y. and J. Massague, Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003. 113(6): p. 685-700. 25. ten Dijke, P., et al., Controlling cell fate by bone morphogenetic protein receptors. Mol Cell Endocrinol, 2003. 211(1-2): p. 105-13. 26. Lee, K.S., et al., Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol, 2000. 20(23): p. 8783-92. 27. Liu, J., et al., Insulin-like growth factor-1 and bone morphogenetic protein-2 jointly mediate prostaglandin E2-induced adipogenic differentiation of rat tendon stem cells. PLoS One, 2014. 9(1): p. e85469. 28. Suda, T., et al., Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev, 1999. 20(3): p. 345-57. 29. Okamoto, M., et al., Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development. J Bone Miner Res, 2006. 21(7): p. 1022-33. 30. McKay, W.F., S.M. Peckham, and J.M. Badura, A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). Int Orthop, 2007. 31(6): p. 729-34. 31. Govender, S., et al., Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am, 2002. 84(12): p. 2123-34. 32. Carragee, E.J., E.L. Hurwitz, and B.K. Weiner, A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J, 2011. 11(6): p. 471-91. 33. Ye, L., et al., Bone morphogenetic proteins and their receptor signaling in prostate cancer. Histol Histopathol, 2007. 22(10): p. 1129-47. 34. Ye, L., S.M. Bokobza, and W.G. Jiang, Bone morphogenetic proteins in development and progression of breast cancer and therapeutic potential (review). Int J Mol Med, 2009. 24(5): p. 591-7. 35. Yoshikawa, H., et al., Bone morphogenetic proteins in bone tumors. J Orthop Sci, 2004. 9(3): p. 334-40. 36. Jin, Y., et al., Overexpression of BMP-2/4, -5 and BMPR-IA associated with malignancy of oral epithelium. Oral Oncol, 2001. 37(3): p. 225-33. 37. Epstein, N.E., Basic science and spine literature document bone morphogenetic protein increases cancer risk. Surg Neurol Int, 2014. 5(Suppl 15): p. S552-60. 38. Alarmo, E.L. and A. Kallioniemi, Bone morphogenetic proteins in breast cancer: dual role in tumourigenesis? Endocr Relat Cancer, 2010. 17(2): p. R123-39. 39. Langenfeld, E.M., Y. Kong, and J. Langenfeld, Bone morphogenetic protein 2 stimulation of tumor growth involves the activation of Smad-1/5. Oncogene, 2006. 25(5): p. 685-92. 40. Kleeff, J., et al., Bone morphogenetic protein 2 exerts diverse effects on cell growth in vitro and is expressed in human pancreatic cancer in vivo. Gastroenterology, 1999. 116(5): p. 1202-16. 41. Kim, M.J., et al., BMP-2 promotes oral squamous carcinoma cell invasion by inducing CCL5 release. PLoS One, 2014. 9(10): p. e108170. 42. Jin, H., et al., BMP2 promotes migration and invasion of breast cancer cells via cytoskeletal reorganization and adhesion decrease: an AFM investigation. Appl Microbiol Biotechnol, 2012. 93(4): p. 1715-23. 43. Feeley, B.T., et al., Influence of BMPs on the formation of osteoblastic lesions in metastatic prostate cancer. J Bone Miner Res, 2005. 20(12): p. 2189-99. 44. Langenfeld, E.M., et al., The mature bone morphogenetic protein-2 is aberrantly expressed in non-small cell lung carcinomas and stimulates tumor growth of A549 cells. Carcinogenesis, 2003. 24(9): p. 1445-54. 45. Gao, H., et al., The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell, 2012. 150(4): p. 764-79. 46. Owens, P., et al., Disruption of bone morphogenetic protein receptor 2 (BMPR2) in mammary tumors promotes metastases through cell autonomous and paracrine mediators. Proc Natl Acad Sci U S A, 2012. 109(8): p. 2814-9. 47. Carragee, E.J., et al., Cancer risk after use of recombinant bone morphogenetic protein-2 for spinal arthrodesis. J Bone Joint Surg Am, 2013. 95(17): p. 1537-45. 48. Lad, S.P., et al., Cancer after spinal fusion: the role of bone morphogenetic protein. Neurosurgery, 2013. 73(3): p. 440-9. 49. Cooper, G.S. and T.D. Kou, Risk of cancer after lumbar fusion surgery with recombinant human bone morphogenic protein-2 (rh-BMP-2). Spine (Phila Pa 1976), 2013. 38(21): p. 1862-8. 50. Veeravagu, A., et al., The use of bone morphogenetic protein in thoracolumbar spine procedures: analysis of the MarketScan longitudinal database. Spine J, 2014. 14(12): p. 2929-37. 51. Mines, D., et al., Recombinant human bone morphogenetic protein-2 and pancreatic cancer: a retrospective cohort study. Pharmacoepidemiol Drug Saf, 2011. 20(2): p. 111-8. 52. Kelly, M.P., et al., Cancer risk from bone morphogenetic protein exposure in spinal arthrodesis. J Bone Joint Surg Am, 2014. 96(17): p. 1417-22. 53. Rihn, J.A., et al., Complications associated with single-level transforaminal lumbar interbody fusion. Spine J, 2009. 9(8): p. 623-9. 54. Burkus, J.K., H.S. Sandhu, and M.F. Gornet, Influence of rhBMP-2 on the healing patterns associated with allograft interbody constructs in comparison with autograft. Spine (Phila Pa 1976), 2006. 31(7): p. 775-81. 55. Zhang, X., et al., The roles of bone morphogenetic proteins and their signaling in the osteogenesis of adipose-derived stem cells. Tissue Eng Part B Rev, 2014. 20(1): p. 84-92. 56. James, A.W., et al., Perivascular stem cells: a prospectively purified mesenchymal stem cell population for bone tissue engineering. Stem Cells Transl Med, 2012. 1(6): p. 510-9. 57. Shahlaie, K. and K.D. Kim, Occipitocervical fusion using recombinant human bone morphogenetic protein-2: adverse effects due to tissue swelling and seroma. Spine (Phila Pa 1976), 2008. 33(21): p. 2361-6. 58. Benglis, D., M.Y. Wang, and A.D. Levi, A comprehensive review of the safety profile of bone morphogenetic protein in spine surgery. Neurosurgery, 2008. 62(5 Suppl 2): p. ONS423-31; discussion ONS431. 59. Robin, B.N., et al., Cytokine-mediated inflammatory reaction following posterior cervical decompression and fusion associated with recombinant human bone morphogenetic protein-2: a case study. Spine (Phila Pa 1976), 2010. 35(23): p. E1350-4. 60. Mindea, S.A., P. Shih, and J.K. Song, Recombinant human bone morphogenetic protein-2-induced radiculitis in elective minimally invasive transforaminal lumbar interbody fusions: a series review. Spine (Phila Pa 1976), 2009. 34(14): p. 1480-4; discussion 1485. 61. Smucker, J.D., et al., Increased swelling complications associated with off-label usage of rhBMP-2 in the anterior cervical spine. Spine (Phila Pa 1976), 2006. 31(24): p. 2813-9. 62. Epstein, N.E., Complications due to the use of BMP/INFUSE in spine surgery: The evidence continues to mount. Surg Neurol Int, 2013. 4(Suppl 5): p. S343-52. 63. Haidar, Z.S., R.C. Hamdy, and M. Tabrizian, Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part B: Delivery systems for BMPs in orthopaedic and craniofacial tissue engineering. Biotechnol Lett, 2009. 31(12): p. 1825-35. 64. Kim, H.D. and R.F. Valentini, Retention and activity of BMP-2 in hyaluronic acid-based scaffolds in vitro. J Biomed Mater Res, 2002. 59(3): p. 573-84. 65. Arosarena, O.A. and W.L. Collins, Bone regeneration in the rat mandible with bone morphogenetic protein-2: a comparison of two carriers. Otolaryngol Head Neck Surg, 2005. 132(4): p. 592-7. 66. Issa, J.P., et al., Bone repair in rat mandible by rhBMP-2 associated with two carriers. Micron, 2008. 39(4): p. 373-9. 67. Jovanovic, S.A., et al., Bone reconstruction following implantation of rhBMP-2 and guided bone regeneration in canine alveolar ridge defects. Clin Oral Implants Res, 2007. 18(2): p. 224-30. 68. Noshi, T., et al., Recombinant human bone morphogenetic protein-2 potentiates the in vivo osteogenic ability of marrow/hydroxyapatite composites. Artif Organs, 2001. 25(3): p. 201-8. 69. Ginebra, M.P., T. Traykova, and J.A. Planell, Calcium phosphate cements as bone drug delivery systems: a review. J Control Release, 2006. 113(2): p. 102-10. 70. Valimaki, V.V. and H.T. Aro, Molecular basis for action of bioactive glasses as bone graft substitute. Scand J Surg, 2006. 95(2): p. 95-102. 71. Zellin, G. and A. Linde, Importance of delivery systems for growth-stimulatory factors in combination with osteopromotive membranes. An experimental study using rhBMP-2 in rat mandibular defects. J Biomed Mater Res, 1997. 35(2): p. 181-90. 72. Sigurdsson, T.J., et al., Periodontal repair in dogs: evaluation of rhBMP-2 carriers. Int J Periodontics Restorative Dent, 1996. 16(6): p. 524-37. 73. Mayer, M., et al., Maxillary alveolar cleft repair in dogs using recombinant human bone morphogenetic protein-2 and a polymer carrier. Plast Reconstr Surg, 1996. 98(2): p. 247-59. 74. Itoh, T., et al., Repair of ulnar segmental defect by recombinant human bone morphogenetic protein-2 in dogs. J Vet Med Sci, 1998. 60(4): p. 451-8. 75. Schopper, C., et al., Bone regeneration using a naturally grown HA/TCP carrier loaded with rh BMP-2 is independent of barrier-membrane effects. J Biomed Mater Res A, 2008. 85(4): p. 954-63. 76. Kim, S.S., S.J. Gwak, and B.S. Kim, Orthotopic bone formation by implantation of apatite-coated poly(lactide-co-glycolide)/hydroxyapatite composite particulates and bone morphogenetic protein-2. J Biomed Mater Res A, 2008. 87(1): p. 245-53. 77. Boyne, P.J., et al., A feasibility study evaluating rhBMP-2/absorbable collagen sponge for maxillary sinus floor augmentation. Int J Periodontics Restorative Dent, 1997. 17(1): p. 11-25. 78. Jones, A.L., et al., Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized, controlled trial. J Bone Joint Surg Am, 2006. 88(7): p. 1431-41. 79. Campana, V., et al., Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med, 2014. 25(10): p. 2445-61. 80. Suh, D.Y., et al., Delivery of recombinant human bone morphogenetic protein-2 using a compression-resistant matrix in posterolateral spine fusion in the rabbit and in the non-human primate. Spine (Phila Pa 1976), 2002. 27(4): p. 353-60. 81. Mehta, M., et al., A 5-mm femoral defect in female but not in male rats leads to a reproducible atrophic non-union. Arch Orthop Trauma Surg, 2011. 131(1): p. 121-9. 82. Schmidt-Bleek, K., et al., BMPs in bone regeneration: Less is more effective, a paradigm-shift. Cytokine Growth Factor Rev, 2016. 27: p. 141-8. 83. Yasko, A.W., et al., The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein (rhBMP-2). A radiographic, histological, and biomechanical study in rats. J Bone Joint Surg Am, 1992. 74(5): p. 659-70. 84. Boerckel, J.D., et al., Effects of protein dose and delivery system on BMP-mediated bone regeneration. Biomaterials, 2011. 32(22): p. 5241-51. 85. Boden, S.D., et al., Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. Spine (Phila Pa 1976), 2002. 27(23): p. 2662-73. 86. Kim, Y.J. and J. Henkin, Micro-computed tomography assessment of human alveolar bone: bone density and three-dimensional micro-architecture. Clin Implant Dent Relat Res, 2015. 17(2): p. 307-13. 87. Meredith, N., Assessment of implant stability as a prognostic determinant. Int J Prosthodont, 1998. 11(5): p. 491-501. 88. Sennerby, L. and N. Meredith, Implant stability measurements using resonance frequency analysis: biological and biomechanical aspects and clinical implications. Periodontol 2000, 2008. 47: p. 51-66. 89. Veltri, M., O. Gonzalez-Martin, and U.C. Belser, Influence of simulated bone-implant contact and implant diameter on secondary stability: a resonance frequency in vitro study. Clin Oral Implants Res, 2014. 25(8): p. 899-904. 90. Lin, Z., et al., Periosteum: biology and applications in craniofacial bone regeneration. J Dent Res, 2014. 93(2): p. 109-16. 91. Tsuji, K., et al., BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet, 2006. 38(12): p. 1424-9. 92. Omar, O., et al., Barrier membranes: More than the barrier effect? J Clin Periodontol, 2019. 46 Suppl 21: p. 103-123. 93. Cochran, D.L., et al., Recombinant human bone morphogenetic protein-2 stimulation of bone formation around endosseous dental implants. J Periodontol, 1999. 70(2): p. 139-50. 94. Jovanovic, S.A., et al., Long-term functional loading of dental implants in rhBMP-2 induced bone. A histologic study in the canine ridge augmentation model. Clin Oral Implants Res, 2003. 14(6): p. 793-803. 95. James, A.W., et al., A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2. Tissue Eng Part B Rev, 2016. 22(4): p. 284-97. 96. Zara, J.N., et al., High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo. Tissue Eng Part A, 2011. 17(9-10): p. 1389-99. 97. Wei, X., et al., Augmentation of fracture healing by hydroxyapatite/collagen paste and bone morphogenetic protein-2 evaluated using a rat femur osteotomy model. J Orthop Res, 2018. 36(1): p. 129-137. 98. Susin, C., et al., Sinus augmentation using rhBMP-2/ACS in a mini-pig model: Influence of an adjunctive ceramic bone biomaterial. J Clin Periodontol, 2018. 45(8): p. 1005-1013. 99. Wikesjo, U.M., et al., Space-providing expanded polytetrafluoroethylene devices define alveolar augmentation at dental implants induced by recombinant human bone morphogenetic protein 2 in an absorbable collagen sponge carrier. Clin Implant Dent Relat Res, 2003. 5(2): p. 112-23. 100. Bosshardt, D.D., V. Chappuis, and D. Buser, Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Periodontol 2000, 2017. 73(1): p. 22-40. 101. Jung, U.W., et al., The efficacy of BMP-2 preloaded on bone substitute or hydrogel for bone regeneration at peri-implant defects in dogs. Clin Oral Implants Res, 2015. 26(12): p. 1456-65. 102. Thoma, D.S., et al., Localized bone regeneration around dental implants using recombinant bone morphogenetic protein-2 and platelet-derived growth factor-BB in the canine. Clin Oral Implants Res, 2017. 28(11): p. 1334-1341. 103. Wancket, L.M., Animal Models for Evaluation of Bone Implants and Devices: Comparative Bone Structure and Common Model Uses. Vet Pathol, 2015. 52(5): p. 842-50. 104. Buser, D., et al., Osseointegration of titanium implants in bone regenerated in membrane-protected defects: a histologic study in the canine mandible. Int J Oral Maxillofac Implants, 1995. 10(6): p. 666-81. 105. Schenk, R.K., et al., Healing pattern of bone regeneration in membrane-protected defects: a histologic study in the canine mandible. Int J Oral Maxillofac Implants, 1994. 9(1): p. 13-29. 106. Weng, D., et al., The effects of recombinant human growth/differentiation factor-5 (rhGDF-5) on bone regeneration around titanium dental implants in barrier membrane-protected defects: a pilot study in the mandible of beagle dogs. Int J Oral Maxillofac Implants, 2009. 24(1): p. 31-7. 107. Hoodless, P.A., et al., MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell, 1996. 85(4): p. 489-500. 108. Fujii, M., et al., Roles of bone morphogenetic protein type I receptors and Smad proteins in osteoblast and chondroblast differentiation. Mol Biol Cell, 1999. 10(11): p. 3801-13. 109. Hay, E., et al., Effects of bone morphogenetic protein-2 on human neonatal calvaria cell differentiation. J Cell Biochem, 1999. 72(1): p. 81-93. 110. Iwasaki, S., et al., Specific activation of the p38 mitogen-activated protein kinase signaling pathway and induction of neurite outgrowth in PC12 cells by bone morphogenetic protein-2. J Biol Chem, 1999. 274(37): p. 26503-10. 111. Saito, A., et al., Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochim Biophys Acta, 2003. 1651(1-2): p. 60-7. 112. Kim, Y., J.N. Renner, and J.C. Liu, Incorporating the BMP-2 peptide in genetically-engineered biomaterials accelerates osteogenic differentiation. Biomater Sci, 2014. 2(8): p. 1110-1119. 113. Madl, C.M., et al., Presentation of BMP-2 mimicking peptides in 3D hydrogels directs cell fate commitment in osteoblasts and mesenchymal stem cells. Biomacromolecules, 2014. 15(2): p. 445-55. 114. Li, J., et al., Repair of rat cranial bone defects with nHAC/PLLA and BMP-2-related peptide or rhBMP-2. J Orthop Res, 2011. 29(11): p. 1745-52. 115. Chen, Y., et al., Zero-order controlled release of BMP2-derived peptide P24 from the chitosan scaffold by chemical grafting modification technique for promotion of osteogenesis in vitro and enhancement of bone repair in vivo. Theranostics, 2017. 7(5): p. 1072-1087. 116. Sun, T., et al., Evaluation of osteogenic inductivity of a novel BMP2-mimicking peptide P28 and P28-containing bone composite. J Biomed Mater Res A, 2018. 106(1): p. 210-220. 117. Cai, Y., et al., Accelerated bone growth in vitro by the conjugation of BMP2 peptide with hydroxyapatite on titanium alloy. Colloids Surf B Biointerfaces, 2014. 116: p. 681-6. 118. Saito, A., et al., Repair of 20-mm long rabbit radial bone defects using BMP-derived peptide combined with an alpha-tricalcium phosphate scaffold. J Biomed Mater Res A, 2006. 77(4): p. 700-6. 119. Bain, J.L., et al., Enhancement of the Regenerative Potential of Anorganic Bovine Bone Graft Utilizing a Polyglutamate-Modified BMP2 Peptide with Improved Binding to Calcium-Containing Materials. Tissue Eng Part A, 2015. 21(17-18): p. 2426-36. 120. Bagaria, V. and Prasada, V, Bone morphogenetic protein: current state of field at the road ahead. J.Orthopaedics 2005;2(4)e3 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8076 | - |
| dc.description.abstract | 人工植牙乃重建缺牙區的主流之一,臨床上常遇到齒槽骨缺損不足的病人而無法直接置放人工植體,需要進行額外手術來增加骨量。大範圍骨缺損及植體周圍骨缺損在如今仍是一項困難的挑戰。本研究旨在測試以人工合成骨塊加入骨成形蛋白二或其抗原決定位之短鏈胜肽,修復植體周圍大範圍骨缺損的潛力及效益。 研究分為兩個單元。第一單元的主要目的在建立實驗犬下顎骨之植體周圍臨界骨缺損模型,以此模型測試人工合成骨塊是否能作為良好的支架以及骨成形蛋白二之載體,並找尋骨成形蛋白二之最低有效劑量,證實此最低有效劑量能成功誘導植體周圍大範圍齒槽骨再生。第二單元的主要目的則在測試位於骨成形蛋白二抗原決定位之短鏈胜肽是否同樣具有誘導齒槽骨再生之功能,將短鏈胜肽之功效及使用劑量和骨成形蛋白二相互比較,期待未來能取代昂貴及有副作用之骨成形蛋白二。 實驗首先建立實驗犬下顎骨之植體周圍臨界骨缺損模型。於米格魯雄性成犬之下顎做出高度四毫米、長度十毫米之齒槽骨缺損,並將人工植體(ø 4.0 x 8.5mm; Brånemark MkIII)的根部四毫米植入骨缺損中央,冠部四點五毫米則懸空於齒槽骨缺損中。此模型在無介入治療的組別中,於實驗終點無法達成植體周圍骨再生,因此證實為植體周圍之臨界骨缺損模型。 本實驗採用HAp (Hydroxyapatite)/TCP (Tri-calcium Phosphate)/Col (Collagen) 複合骨材當作支架及載體,加入0.02 mg/mL至0.2 mg/mL之骨成形蛋白二,測試其在無再生膜的情況下,於四週及八週癒合期內促進植體周圍骨再生的能力。植體的初級和次級穩定度由植體共振頻率作分析。植體周圍齒槽骨再生的效能則由放射影像、微電腦斷層影像、不脫鈣研磨骨組織切片之螢光骨標記及脫鈣骨組織染色來做分析測定。 實驗結果證實,植體周圍骨再生的能力受到骨成形蛋白二的劑量影響,骨成形蛋白二的濃度越高則齒槽骨再生的速度越快、新生骨質密度越高、植體穩定度也越好。HAp/TCP/Col 複合骨材加上 0.2 mg/mL 骨成形蛋白二可以誘導顯著優異的齒槽骨再生效能,並在八週內達到大範圍植體周圍骨缺損之完全癒合。因此,我們定義出骨成形蛋白二之最低有效劑量為0.2 mg/mL,較FDA核可之INFUSE Bone Graft低7.5倍。以本研究的實驗模組同時可證實,在HAp/TCP/Col 複合骨材加上 0.2 mg/mL 骨成形蛋白二且不使用再生膜的模式下,齒槽脊增高手術可以和人工植體植入同時進行。 接著我們使用同樣的植體周圍臨界骨缺損模型與相關分析方法,以高於骨成形蛋白二最低有效劑量20至100倍之濃度,來測試骨成形蛋白二抗原決定位之短鏈胜肽是否同樣具有誘導齒槽骨再生的功能。實驗證實 4–20 mg/mL 短鏈胜肽確實具有誘導植體周圍骨再生之能力,但其骨導引再生的效能皆不及 0.2 mg/mL 骨成形蛋白二。20 mg/mL 短鏈胜肽的表現類似於 0.02 mg/mL 骨成形蛋白二的表現。因此推測短鏈胜肽和骨成形蛋白二在質量比1000:1時能達成類似的骨誘導能力。 總結來說,骨成形蛋白二應用於植體周圍齒槽脊增高手術之最低有效劑量為0.2 mg/mL,HAp/TCP/Col 複合骨材加上 0.2 mg/mL 骨成形蛋白二能取代自體骨移植的需求並達成植體周圍大範圍骨再生的困難任務。相信未來研究改良及劑量調整後,骨成形蛋白二抗原決定位之短鏈胜肽有潛力可以作為骨成形蛋白二的替代產品。 | zh_TW |
| dc.description.abstract | Dental implant therapy has become a standard of care for the treatment of edentulous patients. Sufficient bone height and width is a prerequisite for implant insertion. However, a reduced alveolar ridge contour often occurs after tooth extraction and jeopardizes the long-term survival of dental implants. Various techniques have been attempted to increase the amount of alveolar bone, however, managing large alveolar defects remain difficult tasks. In this study, we combined osteoconductive scaffolds (HAp/TCP/Col) with osteoinductive signals (rhBMP-2 protein/or a synthetic 73–92-residue BMP-2 peptide) aiming to achieve the difficult task of peri-implant bone augmentation without the use of autogenous grafts. The study was divided into two parts. The aim of the first part was to establish a peri-implant critical size defect model at the mandibles of beagle dogs. The compatibility of the HAp/TCP/Col composite as a scaffold and carrier of rhBMP-2 was assessed using the defect model. Then we search for the lower bound for rhBMP-2 doses that could successfully induce peri-implant bone regeneration. The second part aimed to investigate the bone inductive ability of a synthetic 73–92-residue BMP-2 peptide and compare its efficacy with rhBMP-2, exploring the possibility that BMP-2 peptide could be a substitute for rhBMP-2 in the future as osteogenic molecules. Large saddle-type alveolar defects (10 mm mesiodistally, and 4 mm apicocronally) were surgically created in post‐extraction regions of the mandible in beagle dogs. Dental implants were placed into the prepared osteotomies at the center of the defects. Each implant fixture was placed with apical 4 mm of implant inserted into the bone, leaving cervical 4.5 mm exposed to the large through-and-through defects. The blank group without treatment intervention did not show obvious bone growth around the dental implants throughout the study, so the defect model could be considered a critical-sized defect model. HAp/TCP/Col composite was used as scaffold and rhBMP-2 carrier. RhBMP-2 at concentrations of 0.02–0.2 mg/mL was applied and tested using the critical-sized peri-implant defect model. After healing for 4 or 8 weeks, bone regeneration and mineralization were assessed through radiography, micro-CT, fluorescence labeling, and histologic analyses. Implant stability was measured through resonance frequency analysis. It was evident that bone regenerative ability was influenced by rhBMP-2 doses. HAp/TCP/Col with 0.2 mg/mL rhBMP-2 has presented significantly better new bone formation and was able to fulfill the bone repair of large peri-implant defects in 8 weeks. The lower bound for rhBMP-2 dose was then defined at 0.2 mg/mL, which is 7.5 times lower than the commercial INFUSE Bone Graft. Our results also implied that alveolar ridge augmentation could be performed simultaneously with dental implant placement by using HAp/TCP/Col composite combined with 0.2 mg/mL rhBMP-2 without barrier membranes. The second part of this study was to investigate the osteogenic ability of a synthetic 73–92-residue BMP-2 peptide with the same animal model and similar analyses. The BMP-2 peptide doses were set at 20 to 100 times higher than the 0.2 mg/mL rhBMP-2. Our results demonstrated the BMP-2 peptide at 4–20 mg/mL could facilitate bone regeneration in vivo, however, the bone inductive ability was inferior to 0.2 mg/mL rhBMP-2 and the mineralization level did not show a significant difference compared with the control group. The performance of 20 mg/mL BMP-2 peptide was similar to 0.02 mg/mL rhBMP-2, therefore, a mass ratio of 1000:1 was thus suggested for the BMP-2 peptide and rhBMP-2 to achieve similar osteoinductive performance. In conclusion, 0.2 mg/mL rhBMP-2 was defined as the lowest effective dose in peri-implant bone regeneration. Our results highlight the constructs of HAp/TCP/Col + 0.2 mg/mL rhBMP-2 without barrier membranes as a promising tool for peri-implant ridge augmentation. The synthetic 73–92-residue BMP-2 peptide has the potential to become an alternative to rhBMP-2. Further refinement and dose estimation are required. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:48:44Z (GMT). No. of bitstreams: 1 U0001-0301202101082000.pdf: 15387158 bytes, checksum: 77f310dec7a10d8945c8afd96dd6a267 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄
中文摘要………………………………………………………………………………...i 英文摘要………………………………………………………………………………..iii 目錄…………………………………………………………………………………….vi 圖次……………………………………………………………………………………xii 第一單元 低劑量骨成形蛋白二於人工植體周圍齒槽骨再生試驗..…………..….1 第一章 前言………………………………………………………………………….1 第二章 研究背景…………………………………………………………………….3 2.1 BMP的最初發現…………………………………………………………….3 2.2 BMPs的分離與純化…………………………………………………………3 2.3 BMP family…………………………………………………………………..4 2.4 BMP-2之抗原決定位及訊息傳遞路線………………..……………………4 2.5 美國食品藥物管理局核可…………………………………………………..5 2.6 BMP-2的可能副作用………………………………………………………..6 2.6.1 腫瘤生成的風險…………………………...…………..………..……6 2.6.2 異位骨生成…………………………...………….……….…………..7 2.6.3 蝕骨細胞活化、骨質溶解及塌陷…….………………………………8 2.6.4 形成骨囊腫………………..…………..……………………………...8 2.6.5 發炎反應……………………………..……………………………….8 2.7 BMP-2的載體………………………………………………………………..9 2.8 BMP-2劑量的考量…………………………………………………………10 2.8.1 臨床現況……………………………..……………………………...10 2.8.2 最低有效劑量仍未知……………………………………………….11 2.8.3 嘗試將rhBMP-2效能最大化………………………………………12 第三章 研究目的..………………………………………………………………….12 第四章 研究材料及方法………..………………………………………………….13 4.1 實驗動物….….……..………………………………………………………13 4.2 人工植體……………………………………………………………………13 4.3 RhBMP-2……………………………………………………………………13 4.4 人工骨塊……………………………………………………………………14 4.5 植體周圍臨界骨缺損之實驗模型建立……………………………………15 4.6 實驗分組……………………………………………………………………15 4.7 手術方法……………………………………………………………………16 4.7.1 實驗動物麻醉……………………………………………………….16 4.7.2 拔牙手術…………………………………………………………….16 4.7.3 實驗手術………………………………………………………….…17 4.7.4 術後照顧…………………………………………………………….18 4.8 螢光骨染色標記……………………………………………………………18 4.8.1 四環素Tetracycline…………………………………………………..18 4.8.2 鈣黃綠素 Calcein……………………………………………………18 4.8.3 茜素氨羧絡合劑 Alizarin Complexone……………………………..18 4.9 實驗動物犧牲及標本取得…………………………………………………19 4.10 放射線學檢查及其影像分析分法…………………………………………19 4.11 微電腦斷層掃描及其影像分析方法………………………………………20 4.12 生物力學分析:植體共振頻率分析……………….……………………….20 4.13 標本對切……………………………………………………………………21 4.14不脫鈣之研磨骨組織切片……………………………………………….…21 4.14.1 樣本脫水…………………………………………………………...21 4.14.2 樣本包埋…………………………………………………………..22 4.14.3 樣本切片…………………………………………………………..22 4.14.4 玻片製備及樣本封片……………………………………………..22 4.14.5 樣本玻片修磨及拋光……………………………………………..23 4.15 螢光骨染色之顯微分析……………………………………………………23 4.15.1 螢光顯微鏡觀察…………………………………………………….24 4.15.1.1 骨染劑之螢光激發/發射光譜…………………………24 4.15.1.2 螢光顯微鏡設定……………………………………….24 4.15.2 螢光染色量化分析………………………………………………...25 4.16 脫鈣之骨組織切片…………………………………………………………25 4.17 統計分析……………………………………………………………………26 第五章 結果…..…………………………………………………………………….27 5.1 實驗模型建立與手術臨床觀察……………………………..…………..…27 5.2 放射線影像分析………………………………………….………….……..27 5.2.1 四週之放射線影像分析………………………………….…………28 5.2.2 八週之放射線影像分析………………………………….………....28 5.2.3 放射線影像之灰值量化分析……………………….………………29 5.3 微電腦斷層影像分析……………………………………….……………...29 5.3.1 微電腦斷層之三度空間表面影像………………………….………29 5.3.2 微電腦斷層之切面影像…………………….………………………30 5.3.3 微電腦斷層之新生骨質密度量化分析…………….………………31 5.4 植體共振頻率分析…………………………………………………………31 5.5 骨染劑之螢光激發/發射光譜測定………………………………………...32 5.6 不脫鈣之研磨骨組織切片…………………………………..……………..32 5.6.1 四週之螢光顯微影像……………………………………………….33 5.6.2 八週之螢光顯微影像……………………………………………….33 5.6.3 螢光顯微影像之植體螺紋放大檢視…………………….…………34 5.6.4 螢光顯微影像之螢光面積量化分析…………………………….…34 5.7 脫鈣之骨組織切片…………………………………………………………35 5.7.1 近遠心切面全景…………………………………………………….. 35 5.7.2 局部放大顯微圖………………………………………………...…..36 5.7.3 植體螺紋處放大顯微圖……………………………………….……37 第六章 討論………………………………………………………………….……..38 6.1 實驗動物的選擇…………………………………………………….……...38 6.2 植體周圍臨界骨缺損模型之建立………………………………………....39 6.3 放射影像及微電腦斷層影像分析…………………………………………39 6.4 植體共振頻率分析…………………………………………………………40 6.5 螢光骨染色分析……………………………………………………………41 6.6 RhBMP-2的安全性與使用劑量…………………………………………...42 6.7 RhBMP-2載體……………………………………………………………...42 6.8 植體表面處理的影響………………………………………………………43 6.9 研究限制與展望……………………………………………………………43 第七章 結論………………………………………………………….……..………44 第二單元 骨成形蛋白二抗原決定位之短鏈胜肽於人工植體周圍齒槽骨再生試驗……………………………………………………………………………………...100 第一章 前言……………………………………………………………………….100 第二章 研究材料及方法………………………………………………………….103 2.1 實驗動物….….……..……………………………………………………..103 2.2 人工植體……………………………………………………………..……103 2.3 RhBMP-2……………………………………………………………..……103 2.4 73–92-residue BMP-2 peptide……………………………………………..104 2.5 人工骨塊…………………………………………………………………..104 2.6 植體周圍臨界骨缺損之實驗模型建立…………………………………..104 2.7 實驗分組…………………………………………………………………..105 2.8 手術方法…………………………………………………………………..105 2.9 螢光骨染色標記…………………………………………………………..107 2.10 實驗動物犧牲及標本取得………………………………………………..108 2.11 放射線學檢查及其影像分析方法………………………………………..108 2.12 微電腦斷層掃描及其影像分析方法……………………………………..108 2.13 生物力學分析:植體共振頻率分析……………….…………………….109 2.14 標本對切…………………………………………………………………..109 2.15不脫鈣之研磨骨組織切片…………………………………………………109 2.16 螢光骨染色之顯微分析…………………………………………………..112 2.16.1 螢光顯微鏡觀察………..……………………………………..….112 2.16.2 螢光染色量化分析……………………………………………….112 2.17 脫鈣之骨組織切片……………………………………………………..…112 2.18 統計分析…………………………………………………………………..112 第三章 結果……………………………………………………………………….113 3.1 手術臨床觀察……………………………..………………………………113 3.2 放射線影像分析………………………………………….………….……113 3.2.1 四週之放射線影像分析………………………………….….……113 3.2.2 八週之放射線影像分析………………………………….………..114 3.3 微電腦斷層影像分析……………………………………….…………….114 3.3.1 微電腦斷層之近遠心切面影像……………………………..……114 3.3.2 微電腦斷層之頰舌側切面影像…………………….……….……115 3.4 植體共振頻率分析…………………………………………………..……115 3.5 不脫鈣之研磨骨組織切片…………………………………..……………116 3.5.1 螢光顯微圖之近遠心切面影像……………………………..……116 3.5.2 螢光顯微圖之植體螺紋放大影像………………..………………116 3.5.3 顯微螢光量化分析…………………….………………………….117 3.6 脫鈣之骨組織切片………………………………………………..………117 第四章 討論………………………………………………………………………118 第五章 結論………………………………………………………………………121 總結…………………………………………………………………………………..131 參考文獻……………………………………………………………………………..132 圖次 第一單元 低劑量骨成形蛋白二於人工植體周圍齒槽骨再生試驗 圖1:實驗模型示意圖……………………………………..………….…….………..45 圖2:實驗手術時間軸…………………………………………………….……...…..45 圖3:實驗動物拔牙癒合後之左下顎頰側觀…………………….…....….………....46 圖4:實驗動物拔牙癒合後之左下顎咬合面觀…………………………..………....46 圖5:翻開骨膜皮瓣之頰側觀…………………………….….…………..……..….47 圖6:翻開骨膜皮瓣之咬合面觀…………………………………………..……..…..47 圖7:臨界骨缺損,頰側觀……………………………..…………………………..48 圖8:臨界骨缺損,咬合面觀………………………………………………….…..48 圖9:植體周圍臨界骨缺損模型……………………………………………..…....49 圖10:置放HAp/TCP/Col複合骨材,頰側觀………………………………….……49 圖11:置放HAp/TCP/Col複合骨材,咬合面觀……………………….……..…..…50 圖12:傷口一級縫合之頰側觀………………………………………….……..……..50 圖13:動物犧牲卸下之下顎骨………………………………………….…..………..51 圖14:四週負控制組之放射線影像…………………….……………………..……..52 圖15:八週負控制組之放射線影像…………………….……………………..……..52 圖16:四週控制組之放射線影像……………………….……………………..……..53 圖17:八週控制組之放射線影像………………………….……………………..…..53 圖18:四週0.02 mg/mL rhBMP-2組別之放射線影像…….……………………..…54 圖19:八週0.02 mg/mL rhBMP-2組別之放射線影像…….……………………..…54 圖20:四週0.08 mg/mL rhBMP-2組別之放射線影像……….…………………..…55 圖21:八週0.08 mg/mL rhBMP-2組別之放射線影像………….……………..……55 圖22:四週0.2 mg/mL rhBMP-2組別之放射線影像………………………..……..56 圖23:八週0.2 mg/mL rhBMP-2組別之放射線影像…………………………..…..56 圖24:放射線影像灰質量化之興趣區間……………………….………………..…..57 圖25:放射線影像之灰值量化分析…………………………….………………..…..57 圖26:四週負控制組之微電腦斷層三度空間表面影像……………………………..58 圖27:八週負控制組之微電腦斷層三度空間表面影像……………………………..58 圖28:四週控制組之微電腦斷層三度空間表面影像………………………………..59 圖29:八週控制組之微電腦斷層三度空間表面影像………………………………..59 圖30:四週0.02 mg/mL rhBMP-2組別之微電腦斷層三度空間表面影像…………60 圖31:八週0.02 mg/mL rhBMP-2組別之微電腦斷層三度空間表面影像…………60 圖32:四週0.08 mg/mL rhBMP-2組別之微電腦斷層三度空間表面影像…………61 圖33:八週0.08 mg/mL rhBMP-2組別之微電腦斷層三度空間表面影像…………61 圖34:四週0.2 mg/mL rhBMP-2組別之微電腦斷層三度空間表面影像…………..62 圖35:八週0.2 mg/mL rhBMP-2組別之微電腦斷層三度空間表面影像…………..62 圖36:微電腦斷層新生骨質密度量化之興趣區間…………………………………..63 圖37:微電腦斷層之新生骨質密度量化分析………………………………………..63 圖38:四週負控制組之微電腦斷層切面影像………………………………………..64 圖39:八週負控制組之微電腦斷層切面影像………………………………………..64 圖40:四週控制組之微電腦斷層切面影像…………………………………………..65 圖41:八週控制組之微電腦斷層切面影像…………………………………………..65 圖42:四週0.02 mg/mL rhBMP-2組別之微電腦斷層切面影像……………………66 圖43:八週0.02 mg/mL rhBMP-2組別之微電腦斷層切面影像……………………66 圖44:四週0.08 mg/mL rhBMP-2組別之微電腦斷層切面影像……………………67 圖45:八週0.08 mg/mL rhBMP-2組別之微電腦斷層切面影像……………………67 圖46:四週0.2 mg/mL rhBMP-2組別之微電腦斷層切面影像………….……...…..68 圖47:八週0.2 mg/mL rhBMP-2組別之微電腦斷層切面影像…………..……..…..68 圖48:植體共振頻率分析………………………………………..……………………69 圖49:四環黴素(Tetracycline)螢光激發與發散波長……..……………….…………69 圖50:鈣黃綠素(Calcein)螢光激發與發散波長………………..……………………70 圖51:茜素氨羧絡合劑(Alizarin Complexone)螢光激發與發散波長……….……..70 圖52:三種螢光激發與發散波長………………………………..…………………...71 圖53:牙髓腔二級牙本質之螢光反應…………………………..…………………...71 圖54:四週負控制組之螢光顯微影像…………………………..…………………...72 圖55:八週負控制組之螢光顯微影像…………………………..…………………...72 圖56:四週控制組之螢光顯微影像……………………………..…………………...73 圖57:八週控制組之螢光顯微影像……………………………..……………...……73 圖58:四週0.02 mg/mL rhBMP-2組別之螢光顯微影像………………………….74 圖59:八週0.02 mg/mL rhBMP-2組別之螢光顯微影像………………………….74 圖60:四週0.08 mg/mL rhBMP-2組別之螢光顯微影像………………………….75 圖61:八週0.08 mg/mL rhBMP-2組別之螢光顯微影像………………………….75 圖62:四週0.2 mg/mL rhBMP-2組別之螢光顯微影像…………………………...76 圖63:八週0.2 mg/mL rhBMP-2組別之螢光顯微影像…………………………...76 圖64:螢光顯微影像於人工植體上半部裸露區之放大檢視………..……………...77 圖65:螢光面積量化分析之興趣區間………………………………..……………...78 圖66:螢光顯微影像第一個興趣區間之螢光面積量化分析………..……………...78 圖67:螢光顯微影像第一個興趣區間之螢光面積量化分析…………..….………..79 圖68:四週負控制組之MT染色…………………………………….……………...80 圖69:八週負控制組之MT染色…………………………………..…….………….81 圖70:四週控制組之MT染色…………………………………………….………...82 圖71:八週控制組之MT染色…………………………………………………...…83 圖72:四週0.02 mg/mL rhBMP-2組別之MT染色……………………………….84 圖73:八週0.02 mg/mL rhBMP-2組別之MT染色……………………………….85 圖74:四週0.08 mg/mL rhBMP-2組別之MT染色……………………………….86 圖75:八週0.08 mg/mL rhBMP-2組別之MT染色……………….………………87 圖76:四週0.2 mg/mL rhBMP-2組別之MT染色……………….………………..88 圖77:八週0.2 mg/mL rhBMP-2組別之MT染色……………….………………..89 圖78:四週負控制組之HE染色……………………….…………………..………..90 圖79:八週負控制組之HE染色………………………………………….…..……..91 圖80:四週控制組之HE染色……………………………………………..….……..92 圖81:八週控制組之HE染色……………………………………………...………..93 圖82:四週0.02 mg/mL rhBMP-2組別之HE染色…………………….…………94 圖83:八週0.02 mg/mL rhBMP-2組別之HE染色…………………….…………95 圖84:四週0.08 mg/mL rhBMP-2組別之HE染色……………………….………96 圖85:八週0.08 mg/mL rhBMP-2組別之HE染色……………………………….97 圖86:四週0.2 mg/mL rhBMP-2組別之HE染色………………………………...98 圖87:八週0.2 mg/mL rhBMP-2組別之HE染色………………………..……….99 第二單元 骨成形蛋白二抗原決定位之短鏈胜肽於人工植體周圍齒槽骨再生試驗 圖 1:植體周圍臨界骨缺損模型………………………………………………….122 圖2:根尖X光放射線影像…………………………………………….……….123 圖3:微電腦斷層影像,近遠心切面……………………………………………..124 圖4:微電腦斷層影像,頰舌側切面……………………………………………..125 圖5:植體共振頻率分析…………………………………………………………..126 圖6:螢光顯微影像,近遠心切面………………………………………………..127 圖7:螢光顯微影像於人工植體上半部裸露區之放大檢視……………………..128 圖8:螢光面積量化分析之興趣區間……………………………………………..129 圖9:螢光顯微影像之螢光面積量化分析………………………………………..129 圖10:脫鈣組織切片之馬森三色染色(Masson's trichrome stain)……………….130 | |
| dc.language.iso | zh-TW | |
| dc.title | 低劑量骨成形蛋白二及其短鏈胜肽於人工植體周圍齒槽骨再生試驗 | zh_TW |
| dc.title | Effects of Low Dose RhBMP-2 and 73–92-residue BMP-2 Peptide on Peri-implant Ridge Augmentation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0003-4971-5560 | |
| dc.contributor.advisor-orcid | 林立德(0000-0002-6050-7394) | |
| dc.contributor.oralexamcommittee | 江俊斌(Chun-Pin Chiang),陳敏慧(Min-Huey Chen),章浩宏(Hao-Hueng Chang),洪志遠(Chi-Yuan Hong) | |
| dc.contributor.oralexamcommittee-orcid | 江俊斌(0000-0002-6190-7162),陳敏慧(0000-0002-4853-1906) | |
| dc.subject.keyword | 骨成形蛋白二,骨成形蛋白二之短鏈胜肽,人工植體,複合骨材,齒槽骨再生,植體周圍齒槽脊增高手術,臨界骨缺損, | zh_TW |
| dc.subject.keyword | bone morphogenetic protein-2(BMP-2),BMP-2 peptide,dental implant,composite bone graft,bone regeneration,peri-implant ridge augmentation,critical size defect, | en |
| dc.relation.page | 144 | |
| dc.identifier.doi | 10.6342/NTU202100004 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-01-04 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0301202101082000.pdf | 15.03 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
