請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80757完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蕭朱杏(Chuhsing Kate Hsiao) | |
| dc.contributor.author | Ying-Ju Lai | en |
| dc.contributor.author | 賴映儒 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:15:28Z | - |
| dc.date.available | 2021-11-03 | |
| dc.date.available | 2022-11-24T03:15:28Z | - |
| dc.date.copyright | 2021-11-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-14 | |
| dc.identifier.citation | 1.Enroth S, Johansson Å, Enroth SB, Gyllensten U: Strong effects of genetic and lifestyle factors on biomarker variation and use of personalized cutoffs. Nature Communications 2014, 5(1):1-11. 2.Bush WS, Moore JH: Genome-wide association studies. PLoS Computational Biology 2012, 8(12):e1002822. 3.Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J: 10 years of GWAS discovery: biology, function, and translation. The American Journal of Human Genetics 2017, 101(1):5-22. 4.Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason CE, Socci ND, Betel D: Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biology 2013, 14(9):1-13. 5.Gill R, Datta S, Datta S: A statistical framework for differential network analysis from microarray data. BMC Bioinformatics 2010, 11(1):1-10. 6.Lichtblau Y, Zimmermann K, Haldemann B, Lenze D, Hummel M, Leser U: Comparative assessment of differential network analysis methods. Briefings in Bioinformatics 2017, 18(5):837-850. 7.Ideker T, Krogan NJ: Differential network biology. Molecular Systems Biology 2012, 8(1):565. 8.Jordan MI: Graphical models. Statistical Science 2004, 19(1):140-155. 9.Wasserman SFKLM: Social network analysis: methods and applications. Cambridge: Cambridge University Press; 1994. 10.Langfelder P, Horvath S: WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008, 9(1):1-13. 11.Langfelder P, Horvath S: Eigengene networks for studying the relationships between co-expression modules. BMC Systems Biology 2007, 1:54. 12.Opsahl T, Agneessens F, Skvoretz J: Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks 2010, 32(3):245-251. 13.Epskamp S, Borsboom D, Fried EI: Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods 2018, 50(1):195-212. 14.Zhang B, Horvath S: A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology 2005, 4(1). 15.Horvath S, Dong J: Geometric interpretation of gene coexpression network analysis. PLoS Computational Biology 2008, 4(8):e1000117. 16.Baba K, Shibata R, Sibuya M: Partial correlation and conditional correlation as measures of conditional independence. Australian New Zealand Journal of Statistics 2004, 46(4):657-664. 17.Xie J, Lu D, Li J, Wang J, Zhang Y, Li Y, Nie Q: Kernel differential subgraph reveals dynamic changes in biomolecular networks. Journal of Bioinformatics and Computational Biology 2018, 16(01):1750027. 18.Vital‐Lopez FG, Memišević V, Dutta B: Tutorial on biological networks. WIREs Data Mining and Knowledge Discovery 2012, 2(4):298-325. 19.Zhang B, Li H, Riggins RB, Zhan M, Xuan J, Zhang Z, Hoffman EP, Clarke R, Wang Y: Differential dependency network analysis to identify condition-specific topological changes in biological networks. Bioinformatics 2009, 25(4):526-532. 20.Odibat O, Reddy CK: Ranking differential hubs in gene co-expression networks. Journal of Bioinformatics and Computational Biology 2012, 10(01):1240002. 21.Ji J, He D, Feng Y, He Y, Xue F, Xie L: JDINAC: joint density-based non-parametric differential interaction network analysis and classification using high-dimensional sparse omics data. Bioinformatics 2017, 33(19):3080-3087. 22.Zhang X-F, Ou-Yang L, Yan H: Incorporating prior information into differential network analysis using non-paranormal graphical models. Bioinformatics 2017, 33(16):2436-2445. 23.Ha MJ, Baladandayuthapani V, Do K-A: DINGO: differential network analysis in genomics. Bioinformatics 2015, 31(21):3413-3420. 24.Mall R, Cerulo L, Bensmail H, Iavarone A, Ceccarelli M: Detection of statistically significant network changes in complex biological networks. BMC Systems Biology 2017, 11(1):1-17. 25.Zuo Y, Cui Y, Di Poto C, Varghese RS, Yu G, Li R, Ressom HW: INDEED: Integrated differential expression and differential network analysis of omic data for biomarker discovery. Methods 2016, 111:12-20. 26.Algamal ZY, Lee MH: Penalized logistic regression with the adaptive LASSO for gene selection in high-dimensional cancer classification. Expert Systems with Applications 2015, 42(23):9326-9332. 27.Xiong Y, Ling Q-H, Han F, Liu Q-H: An efficient gene selection method for microarray data based on LASSO and BPSO. BMC Bioinformatics 2019, 20(22):1-13. 28.Zou H, Hastie T: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2005, 67(2):301-320. 29.Zou H, Hastie T: Regression shrinkage and selection via the elastic net, with applications to microarrays. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2003, 67:301-320. 30.Xia Y, Cai T, Cai TT: Testing Differential Networks with Applications to Detecting Gene-by-Gene Interactions. Biometrika 2015, 102(2):247-266. 31.Lauritzen SL: Graphical models. Oxford: Clarendon Press; 1996. 32.Vasen HF, Tesfay E, Boonstra H, Mourits MJ, Rutgers E, Verheyen R, Oosterwijk J, Beex L: Early detection of breast and ovarian cancer in families with BRCA mutations. European Journal of Cancer 2005, 41(4):549-554. 33.Network CGAR: Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474(7353):609. 34.Cheng S-J: Identification of Methylation driven Genes with Bayesian Conditional Autoregressive Model. Master's Thesis. National Taiwan University; 2015. 35.O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A: The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annual Review of Medicine 2015, 66:311-328. 36.Cai D, Choi PS, Gelbard M, Meyerson M: Identification and characterization of oncogenic SOS1 mutations in lung adenocarcinoma. Molecular Cancer Research 2019, 17(4):1002-1012. 37.Manning G, Tichý A, Sirák I, Badie C: Radiotherapy-associated long-term modification of expression of the inflammatory biomarker genes ARG1, BCL2L1, and MYC. Frontiers in Immunology 2017, 8:412. 38.Haikala HM, Anttila JM, Marques E, Raatikainen T, Ilander M, Hakanen H, Ala-Hongisto H, Savelius M, Balboa D, Von Eyss B: Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy. Nature Communications 2019, 10(1):1-17. 39.Rajagopal N, Hodgson G, Hu S, McKeown M, Bush A, Fritz C, Orlando D, Olson E, di Tomaso E: Abstract P1-09-08: BCL2L1 (BCL-XL) expression and MYC super-enhancer positivity predict sensitivity to the covalent CDK7 inhibitor SY-1365 in triple negative breast cancer (TNBC) cell lines. In.: American Association for Cancer Research (AACR); 2018. 40.Wang S, Cao N: Uncovering potential differentially expressed miRNAs and targeted mRNAs in myocardial infarction based on integrating analysis. Molecular Medicine Reports 2020, 22(5):4383-4395. 41.Stefan E, Bister K: MYC and RAF: key effectors in cellular signaling and major drivers in human cancer. Viruses, Genes, and Cancer 2017:117-151. 42.Yu Q-Y, Lu T-P, Hsiao T-H, Lin C-H, Wu C-Y, Tzeng J-Y, Hsiao CK: An Integrative Co-localization (INCO) Analysis for SNV and CNV Genomic Features With an Application to Taiwan Biobank Data. Frontiers in Genetics 2021, 12. 43.Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y: The GeneCards suite: from gene data mining to disease genome sequence analyses. Current Protocols in Bioinformatics 2016, 54(1):1.30. 31-31.30. 33. 44.Kim P, Zhou X: FusionGDB: fusion gene annotation DataBase. Nucleic Acids Research 2019, 47(D1):D994-D1004. 45.Frenkel-Morgenstern M, Gorohovski A, Tagore S, Sekar V, Vazquez M, Valencia A: ChiPPI: a novel method for mapping chimeric protein-protein interactions uncovers selection principles of protein fusion events in cancer. Nucleic Acids Research 2017, 45(12):7094-7105. 46.Mertens F, Johansson B, Fioretos T, Mitelman F: The emerging complexity of gene fusions in cancer. Nature Reviews Cancer 2015, 15(6):371-381. 47.Paine CT, Paine ML, Luo W, Okamoto CT, Lyngstadaas SP, Snead ML: A tuftelin-interacting protein (TIP39) localizes to the apical secretory pole of mouse ameloblasts. Journal of Biological Chemistry 2000, 275(29):22284-22292. 48.Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, Ziegler E, Butzmann L, Gessulat S, Marx H et al: Mass-spectrometry-based draft of the human proteome. Nature 2014, 509(7502):582-587. 49.Mohammadi A, Wit EC: Bayesian Structure Learning in Sparse Gaussian Graphical Models. Bayesian Analysis 2015, 10(1). 50.Liu H, Lafferty J, Wasserman L: The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. Journal of Machine Learning Research 2009, 10(10). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80757 | - |
| dc.description.abstract | "基因差異網路分析(differential network analysis)可用於了解基因之間相關性的改變對於複雜疾病的影響。疾病與基因的關聯性研究,過去多專注於找尋基因表現量差異(differential gene expression)的生物標記(biomarker),然而隨著生物路徑(biological pathway)與基因網路(genetic network)近年來被廣泛討論,複雜的生物機制、基因與基因之間的相關性,不論是相互抑制或是活化,都有可能造成疾病的發生;而利用基因差異網路分析能不再只針對單一個基因,而可以同時將基因之間的相關性納入考量,並且同時利用條件機率考慮到網路內全體基因。 大多數研究對於基因差異網路的建立,都需要先針對不同組別各自建立出基因網路,然後再藉由不同的統計方法,如假設檢定等,探討兩個組別顯著差異的網路連線。例如,先利用條件相關性質建立每個組別的基因網路,再利用兩個組別的條件相關係數之差異,來作為建立基因差異網路的方法。這樣的方法至少需要兩個步驟,可能花費較多計算時間;而且,建立兩個組別各自的基因網路將導致需要被估計的參數個數變得龐大。 本研究提出的方法希望能同時將兩個組別的基因資訊一同進行模型估計,使得所需要估計的參數個數較少、使用較少的模型假設、達到較快的運算速度。本研究的方式為,利用「條件相關」、「基因差異網路」以及「基因交互作用」三者,來建立基因差異網路,希望透過基因之間交互作用在不同組別間的不同,利用羅吉斯迴歸模型,來建立基因差異網路。同時,本研究也將闡明,不論是條件相關差異或是迴歸係數估計皆能得到相似的基因差異網路。 本研究透過模擬比較羅吉斯迴歸模型與其他建立差異網路的方法,例如:DINGO、INDEED、JDINAC、以及其他變數選擇的統計方法等,結果顯示羅吉斯迴歸模型在特異度(specificity)、準確度和F1-score均有很好的表現。同時,本研究也將此方法應用在兩筆不同的資料,分別為美國癌症基因體圖譜計畫(The Cancer Genome Atlas, TCGA)資料庫中子宮頸癌資料,以及台灣人體生物資料庫(Taiwan biobank)中三酸甘油酯資料。在這些實證資料分析中,藉由基因差異網路的建立,可以了解基因之間相互作用的改變對於疾病的影響。在本研究建立的差異網路中,STAT1與AKT3、MYC與RAF等基因交互作用對於卵巢癌有顯著影響,而在三酸甘油酯資料則發現SNX27與TUFT1、TUFT1與TFIP等基因交互作用,未來或許可以進一步探討其分子層次的功能與對於疾病的影響。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:15:28Z (GMT). No. of bitstreams: 1 U0001-1210202122003300.pdf: 10027078 bytes, checksum: a7bc82fabb96ca4ffe0619d40d478150 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝 i 中文摘要 ii 英文摘要 iv 目錄 vi 表目錄 vii 圖目錄 viii 第一章 研究背景 1 第一節 傳統相關性分析 1 第二節 基因網路的研究目的 2 第三節 基因與基因之間的關聯性測量 4 第四節 現有基因差異網路研究 5 第二章 研究方法 8 第一節 Gaussian Graphical Model 8 第二節 羅吉斯迴歸模型 10 第三節 方法連結 11 第三章 統計模擬 18 第一節 模擬設定 18 第二節 模擬結果 21 第四章 資料分析 25 第一節 卵巢癌資料分析 25 第二節 三酸甘油脂資料分析 27 第五章 討論 30 第六章 參考文獻 33 | |
| dc.language.iso | zh-TW | |
| dc.subject | 精確度矩陣 | zh_TW |
| dc.subject | 基因網路 | zh_TW |
| dc.subject | 基因差異網路 | zh_TW |
| dc.subject | 條件相關 | zh_TW |
| dc.subject | 羅吉斯迴歸模型 | zh_TW |
| dc.subject | 交互作用 | zh_TW |
| dc.subject | logistic regression | en |
| dc.subject | precision matrix | en |
| dc.subject | interaction | en |
| dc.subject | genetic network | en |
| dc.subject | differential network analysis | en |
| dc.subject | partial correlation | en |
| dc.title | 利用基因交互作用建立基因差異網路 | zh_TW |
| dc.title | Utilizing Gene-gene Interaction for Construction of Differential Network | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 盧子彬(Tzu-Pin Lu) | |
| dc.contributor.oralexamcommittee | 楊欣洲(Hsin-Tsai Liu),鍾仁華(Chih-Yang Tseng),王彥雯 | |
| dc.subject.keyword | 基因網路,基因差異網路,條件相關,羅吉斯迴歸模型,交互作用,精確度矩陣, | zh_TW |
| dc.subject.keyword | genetic network,differential network analysis,partial correlation,logistic regression,interaction,precision matrix, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU202103675 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-14 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1210202122003300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
