Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80745
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅(Chih-I Wu)
dc.contributor.authorLei Xuen
dc.contributor.author徐蕾zh_TW
dc.date.accessioned2022-11-24T03:15:00Z-
dc.date.available2021-11-05
dc.date.available2022-11-24T03:15:00Z-
dc.date.copyright2021-11-05
dc.date.issued2021
dc.date.submitted2021-10-19
dc.identifier.citation[1] K. Rim, S. Koester, M. Hargrove, J. Chu, P. M. Mooney, J. Ott, T. Kanarsky, P. Ronsheim, M. Ieong, A. Grill, H. P. Wong, 'Strained Si NMOSFETs for high performance CMOS technology', presented at 2001 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.01 CH37184), 12-14 June 2001, 2001. [2] E. P. Gusev, H. Shang, M. Copel, M. Gribelyuk, C. D’Emic, P. Kozlowski, T. Zabel, Applied Physics Letters 2004, 85, 2334. [3] C. Hu, Japanese Journal of Applied Physics 1994, 33, 365. [4] N. N. Ledentsov, M. Grundmann, F. Heinrichsdorff, D. Bimberg, V. M. Ustinov, A. E. Zhukov, M. V. Maximov, Z. I. Alferov, J. A. Lott, IEEE Journal of Selected Topics in Quantum Electronics 2000, 6, 439. [5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666. [6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 2005, 438, 197. [7] A. K. Geim, Science 2009, 324, 1530. [8] M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, M. Potemski, Physical Review Letters 2008, 101, 267601. [9] A. Bagri, S.-P. Kim, R. S. Ruoff, V. B. Shenoy, Nano Letters 2011, 11, 3917. [10] S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, C. N. Lau, Applied Physics Letters 2008, 92, 151911. [11] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Science 2008, 320, 1308. [12] J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, B. H. Weiller, ACS Nano 2009, 3, 301. [13] X. Wang, L. Zhi, K. Müllen, Nano Letters 2008, 8, 323. [14] R. K. Singh Raman, P. Chakraborty Banerjee, D. E. Lobo, H. Gullapalli, M. Sumandasa, A. Kumar, L. Choudhary, R. Tkacz, P. M. Ajayan, M. Majumder, Carbon 2012, 50, 4040. [15] B. J. Schultz, R. V. Dennis, V. Lee, S. Banerjee, Nanoscale 2014, 6, 3444. [16] F. Xia, T. Mueller, Y.-m. Lin, A. Valdes-Garcia, P. Avouris, Nature Nanotechnology 2009, 4, 839. [17] T. Mueller, F. Xia, P. Avouris, Nature Photonics 2010, 4, 297. [18] J. Drechsel, B. Männig, F. Kozlowski, M. Pfeiffer, K. Leo, H. Hoppe, Applied Physics Letters 2005, 86, 244102. [19] S. Yun, S.-O. Kang, S. Park, H. S. Park, Nanoscale 2014, 6, 5296. [20] B. Choi, J. Lee, S. Lee, J.-H. Ko, K.-S. Lee, J. Oh, J. Han, Y.-H. Kim, I. S. Choi, S. Park, Macromolecular Rapid Communications 2013, 34, 533. [21] J. Han, Y. J. Sa, Y. Shim, M. Choi, N. Park, S. H. Joo, S. Park, Angewandte Chemie International Edition 2015, 54, 12622. [22] J. Kotakoski, A. V. Krasheninnikov, Y. Ma, A. S. Foster, K. Nordlund, R. M. Nieminen, Physical Review B 2005, 71, 205408. [23] P. A. Denis, Chemical Physics Letters 2010, 492, 251. [24] S. Yu, W. Zheng, C. Wang, Q. Jiang, ACS Nano 2010, 4, 7619. [25] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Nano Letters 2009, 9, 1752. [26] M. Seifert, J. E. B. Vargas, M. Bobinger, M. Sachsenhauser, A. W. Cummings, S. Roche, J. A. Garrido, 2D Materials 2015, 2, 024008. [27] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, Nature Materials 2007, 6, 652. [28] J. Park, W. H. Lee, S. Huh, S. H. Sim, S. B. Kim, K. Cho, B. H. Hong, K. S. Kim, The Journal of Physical Chemistry Letters 2011, 2, 841. [29] Y. Kim, J. Ryu, M. Park, E. S. Kim, J. M. Yoo, J. Park, J. H. Kang, B. H. Hong, ACS Nano 2014, 8, 868. [30] M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. v. Klitzing, J. H. Smet, Nano Letters 2010, 10, 1149. [31] C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, Z. Liu, Advanced Materials 2011, 23, 1020. [32] J. M. Englert, C. Dotzer, G. Yang, M. Schmid, C. Papp, J. M. Gottfried, H.-P. Steinrück, E. Spiecker, F. Hauke, A. Hirsch, Nature Chemistry 2011, 3, 279. [33] R. W. Keyes, Physical Review 1953, 92, 580. [34] V. Tran, R. Soklaski, Y. Liang, L. Yang, Physical Review B 2014, 89, 235319. [35] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nature Nanotechnology 2012, 7, 699. [36] R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, M. Terrones, Accounts of Chemical Research 2015, 48, 56. [37] P. Shen, Y. Lin, H. Wang, J. Park, W. S. Leong, A. Lu, T. Palacios, J. Kong, IEEE Transactions on Electron Devices 2018, 65, 4040. [38] C. Ahn, J. Lee, H.-U. Kim, H. Bark, M. Jeon, G. H. Ryu, Z. Lee, G. Y. Yeom, K. Kim, J. Jung, Y. Kim, C. Lee, T. Kim, Advanced Materials 2015, 27, 5223. [39] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nature nanotechnology 2011, 6, 147. [40] J. Pu, Y. Yomogida, K.-K. Liu, L.-J. Li, Y. Iwasa, T. Takenobu, Nano Letters 2012, 12, 4013. [41] R. Ganatra, Q. Zhang, ACS Nano 2014, 8, 4074. [42] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Physical Review Letters 2010, 105, 136805. [43] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Nano Letters 2010, 10, 1271. [44] M. Mohl, A.-R. Rautio, G. A. Asres, M. Wasala, P. D. Patil, S. Talapatra, K. Kordas, Advanced Materials Interfaces 2020, 7, 2000002. [45] X. Dong, D. Fu, W. Fang, Y. Shi, P. Chen, L.-J. Li, Small 2009, 5, 1422. [46] J. B. Bult, R. Crisp, C. L. Perkins, J. L. Blackburn, ACS Nano 2013, 7, 7251. [47] G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M. S. Choi, D.-Y. Lee, C. Lee, W. J. Yoo, K. Watanabe, T. Taniguchi, C. Nuckolls, P. Kim, J. Hone, ACS Nano 2013, 7, 7931. [48] S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, K. Kim, Nature Communications 2012, 3, 1011. [49] B. Radisavljevic, A. Kis, Nature Materials 2013, 12, 815. [50] H. Liu, A. T. Neal, P. D. Ye, ACS Nano 2012, 6, 8563. [51] S. Das, H.-Y. Chen, A. V. Penumatcha, J. Appenzeller, Nano Letters 2013, 13, 100. [52] F. Ahmed, M. S. Choi, X. Liu, W. J. Yoo, Nanoscale 2015, 7, 9222. [53] H. Liu, M. Si, Y. Deng, A. T. Neal, Y. Du, S. Najmaei, P. M. Ajayan, J. Lou, P. D. Ye, ACS Nano 2014, 8, 1031. [54] A. Allain, J. Kang, K. Banerjee, A. Kis, Nature Materials 2015, 14, 1195. [55] Y. Du, L. Yang, J. Zhang, H. Liu, K. Majumdar, P. D. Kirsch, P. D. Ye, IEEE Electron Device Letters 2014, 35, 599. [56] X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang, Nature Nanotechnology 2014, 9, 682. [57] Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, Z. X. Shen, Nano Letters 2007, 7, 2758. [58] Y. K. Koh, M.-H. Bae, D. G. Cahill, E. Pop, ACS Nano 2011, 5, 269. [59] Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, Y. Fang, Nano Letters 2011, 11, 767. [60] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Physical Review Letters 2006, 97, 187401. [61] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano Letters 2007, 7, 238. [62] Y. Zhao, X. Luo, H. Li, J. Zhang, P. T. Araujo, C. K. Gan, J. Wu, H. Zhang, S. Y. Quek, M. S. Dresselhaus, Q. Xiong, Nano Letters 2013, 13, 1007. [63] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, S. Ryu, ACS Nano 2010, 4, 2695. [64] H. Li, J. Wu, X. Huang, G. Lu, J. Yang, X. Lu, Q. Xiong, H. Zhang, ACS Nano 2013, 7, 10344. [65] C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, A. C. Ferrari, Nano Letters 2007, 7, 2711. [66] L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, Physics Reports 2009, 473, 51. [67] J. B. Henry, Q. Rafhay, A. Cros, G. Ghibaudo, Solid-State Electronics 2016, 123, 84. [68] J. Wang, Q. Yao, C.-W. Huang, X. Zou, L. Liao, S. Chen, Z. Fan, K. Zhang, W. Wu, X. Xiao, C. Jiang, W.-W. Wu, Advanced Materials 2016, 28, 8302. [69] W. H. Lee, J. Park, Y. Kim, K. S. Kim, B. H. Hong, K. Cho, Advanced Materials 2011, 23, 3460. [70] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M. S. Fuhrer, Nature Nanotechnology 2008, 3, 206. [71] M. A. Uddin, N. Glavin, A. Singh, R. Naguy, M. Jespersen, A. Voevodin, G. Koley, Applied Physics Letters 2015, 107, 203110. [72] C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, F. Wang, Nature 2011, 471, 617. [73] G. Jnawali, Y. Rao, J. H. Beck, N. Petrone, I. Kymissis, J. Hone, T. F. Heinz, ACS Nano 2015, 9, 7175. [74] J. Yan, Y. Zhang, P. Kim, A. Pinczuk, Physical Review Letters 2007, 98, 166802. [75] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, A. K. Sood, Nature Nanotechnology 2008, 3, 210. [76] Y. Zhang, Y.-W. Tan, H. L. Stormer, P. Kim, Nature 2005, 438, 201. [77] E. H. Hwang, S. Adam, S. Das Sarma, Physical Review B 2007, 76, 195421. [78] Z. Ghahghaey, M. Hekmati, M. Darvish Ganji, Journal of Molecular Liquids 2021, 324, 114777. [79] W. Zhu, V. Perebeinos, M. Freitag, P. Avouris, Physical Review B 2009, 80, 235402. [80] H. Wang, Y. Wu, C. Cong, J. Shang, T. Yu, ACS Nano 2010, 4, 7221. [81] G. M. Ku, E. Lee, B. Kang, J. H. Lee, K. Cho, W. H. Lee, RSC Advances 2017, 7, 27100. [82] I. I. Salame, T. J. Bandosz, Journal of Colloid and Interface Science 2003, 264, 307. [83] W.-H. Lin, T.-H. Chen, J.-K. Chang, J.-I. Taur, Y.-Y. Lo, W.-L. Lee, C.-S. Chang, W.-B. Su, C.-I. Wu, ACS Nano 2014, 8, 1784. [84] M. Chhowalla, D. Jena, H. Zhang, Nature Reviews Materials 2016, 1, 16052. [85] Y. Liu, X. Duan, Y. Huang, X. Duan, Chemical Society Reviews 2018, 47, 6388. [86] R. Yan, A. Ourmazd, K. F. Lee, IEEE Transactions on Electron Devices 1992, 39, 1704. [87] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, M. C. Hersam, ACS Nano 2014, 8, 1102. [88] C. Nie, B. Zhang, Y. Gao, M. Yin, X. Yi, C. Zhao, Y. Zhang, L. Luo, S. Wang, The Journal of Physical Chemistry C 2020, 124, 16943. [89] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, H. Zhang, Nature Chemistry 2013, 5, 263. [90] K. Xu, Y. Wang, Y. Zhao, Y. Chai, Journal of Materials Chemistry C 2017, 5, 376. [91] Q. A. Vu, S. Fan, S. H. Lee, M.-K. Joo, W. J. Yu, Y. H. Lee, 2D Materials 2018, 5, 031001. [92] H.-Y. Chang, W. Zhu, D. Akinwande, Applied Physics Letters 2014, 104, 113504. [93] C. Kim, I. Moon, D. Lee, M. S. Choi, F. Ahmed, S. Nam, Y. Cho, H.-J. Shin, S. Park, W. J. Yoo, ACS Nano 2017, 11, 1588. [94] M. Abraham, S. E. Mohney, Journal of Applied Physics 2017, 122, 115306. [95] K. Yang, H. Liu, S. Wang, W. Li, T. Han, Nanomaterials 2019, 9, 1245. [96] M.-K. Joo, B. H. Moon, H. Ji, G. H. Han, H. Kim, G. Lee, S. C. Lim, D. Suh, Y. H. Lee, Nano Letters 2016, 16, 6383.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80745-
dc.description.abstract"隨着矽基晶體管越來越接近物理極限,製造工藝的要求也越來越高。然而,光刻技術改進已不足以實現元件尺寸的進一步縮小,尤其是在邏輯電路設計。更糟糕的是,集體管在尺寸上的減小會導致漏電流等缺點。於是全球的科學團隊相繼提出了應變硅、高介電係數、SOI(絕緣層上覆矽)和多柵晶體管等革新CMOS技術以幫助緩解尺寸縮小帶來的問題。然而,長遠來看,這些方法並不能阻止集體管面臨物理極限的問題。因此,發展新型材料例如二維材料來彌補矽基的缺陷是目前研究的重要方向之一。石墨烯和二硫化鉬是二維材料中最具代表性的半金屬和半導體材料。 由於石墨烯是零帶隙材料,對外在環境影響非常敏感,非常適合應用於各種偵測元件,如何控制摻雜的類型和強度就成為關鍵問題。本研究中,我們將一些常見的胺官能基分子,如鄰苯二胺(OPD)、二乙三胺(DETA)和四乙五胺(TEPA)以及羥官能基分子包括苯酚、鄰苯二酚和四甘醇利用氣相吸附的方法摻雜石墨烯。我們驗證了不同分子的種類、不同分子的結構與摻雜後對費米能階變化的相關性。實驗中發現,石墨烯表面所吸附的分子,會通過載子交換的方式摻雜石墨烯,其中推電子基的氨基分子屬於n型摻雜,搶電子基的羥基屬於p型摻雜,並可觀察到費米能階與分子官能基的數量呈正相關的變化。此外,我們發現摻雜劑分子的空間結構是影響摻雜程度和遷移率的另一個決定性因素。帶有芳香環的摻雜分子更傾向於平行分佈在石墨烯的表面,且其中的π-π鍵增強了分子與石墨烯表面的相互作用,從而產生更強的摻雜效應。載流子遷移率主要受到兩個因素的影響,由於摻雜會引入新的散射源,所以庫倫散射會使遷移率降低,而補償機制又會使遷移率提高,所以載流子遷移率的變化是補償機制與庫倫散射相互競爭的結果,因此鏈狀結構的分子 (二乙三胺和四甘醇) 提供電荷中和帶電雜質中心,從而使石墨烯的電子遷移率從3068 cm2 V-1 s-1 提升至 9700 cm2 V-1 s-1,電洞遷移率從3161 cm2 V-1 s-1提升至3650 cm2 V-1 s-1。 本文還提出了一種新型的凡德華異質結構場效應晶體管。首先,我們進行二硫化鎢/二硫化鉬與二硫化鉬/二硫化鎢兩種異質結構的光致發光光譜分析,從兩者的光學性質探討異質介面的電荷轉移機制。我們發現其二硫化鉬/二硫化鎢場效電晶體對於電特性的改善效果有限,然而倒置異質結構堆疊次序的二硫化鎢/二硫化鉬電晶體,則相較於純二硫化鉬電晶體大幅提升了汲極電流(約兩倍)與場效載子遷移率(從43.3 cm2 V-1 s-1 至 62.4 cm2 V-1 s-1)。此外,本研究也透過光致發光分析、Y函數法(Y-function method)、遲滯分析與變溫電性量測來驗證其電性顯著的提升機制來自於電荷轉移機制與通道凡德華自主封裝導致的肖特基能障下降(從120 至 52 meV)。最後,我們製作了二硫化鎢/二硫化鉬/二硫化鎢雙重異質結構場效電晶體,藉由兩個異質結構的結合,使場效載子遷移率在室溫下顯著提升至102.5 cm2 V-1 s-1外,在30 K的溫度下甚至可達169.7 cm2 V-1 s-1,該現象說明庫倫散射在低溫環境下會被進一步抑制,從而使雙重異質結構電晶體的電特性得以進一步增強。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:15:00Z (GMT). No. of bitstreams: 1
U0001-1410202101212000.pdf: 9599086 bytes, checksum: 7bc21f1dcee498e384cfc8c1aadf5fad (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsContents Chapter 1 Introduction 1 1-1 Introduction 1 1-2 Two-dimensional materials 5 1-3 Motivation 9 1-3-1 Graphene-based field effect transistor 10 1-3-2 MoS2-based field effect transistor 11 Chapter 2 Experiments and Theorems 13 2-1 Graphene Synthesis 13 2-2 Transfer Methods 14 2-2-1 Poly-methyl methacrylate (PMMA) transfer method 14 2-2-2 Van der Waals transfer method 14 2-3 Optical identification of thickness of MoS2 17 2-4 Electron Beam Lithography 19 2-5 Raman Spectroscopy of Graphene 21 2-6 Y-function method 24 2-7 Extraction of the Schottky barrier height 25 Chapter 3 Vapor Phase Doping GFET 28 3-1 Fabrication of GFETs 28 3-2 Self-assembled molecule buffer layer 29 3-3 Vapor phase doping 31 3-4 Results and discussions 34 3-4-1 Amine groups 34 3-4-2 Hydroxyl groups 45 3-5 Work function 55 3-6 Summary 56 Chapter 4 Van der Waals Heterostructure 59 4-1 Device fabrication processes 61 4-2 Optical Characteristics 63 4-3 WS2/MoS2 heterostructure 66 4-3-1 Current-voltage transfer characteristics 66 4-3-2 Schottky barrier height (SBH) 74 4-4 MoS2/WS2 heterostructure 79 4-4-1 Current-voltage transfer characteristics 79 4-5 Double heterostructures WS2/MoS2/WS2 FET 83 4-6 Summary 85 Chapter 5 Conclusions 87 Reference 89 Publication list 97
dc.language.isoen
dc.subject二硫化鉬zh_TW
dc.subject石墨烯zh_TW
dc.subject載流子濃度zh_TW
dc.subject電荷轉移zh_TW
dc.subject遷移率zh_TW
dc.subject肖特基能障zh_TW
dc.subjectGrapheneen
dc.subjectSchottky barrier heighten
dc.subjectmobilityen
dc.subjectcharge transferen
dc.subjectMoS2en
dc.subjectcarrier concertationen
dc.title利用摻雜及異質結構提高基於二維材料的場效應管的電特性zh_TW
dc.titleEnhanced Performance of Two-dimensional Materials Based Field-effect Transistors via doping and Van der Waals Heterostructuresen
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.oralexamcommittee吳肇欣(Hsin-Tsai Liu),陳奕君(Chih-Yang Tseng),張文豪,陳美杏
dc.subject.keyword石墨烯,載流子濃度,二硫化鉬,電荷轉移,遷移率,肖特基能障,zh_TW
dc.subject.keywordGraphene,carrier concertation,MoS2,charge transfer,mobility,Schottky barrier height,en
dc.relation.page97
dc.identifier.doi10.6342/NTU202103713
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1410202101212000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
9.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved