請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80743完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋延齡(Yen-Ling Song) | |
| dc.contributor.author | Hsin-Yun Lin | en |
| dc.contributor.author | 林欣芸 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:14:56Z | - |
| dc.date.available | 2021-11-05 | |
| dc.date.available | 2022-11-24T03:14:56Z | - |
| dc.date.copyright | 2021-11-05 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-14 | |
| dc.identifier.citation | Adamo, S., 2008. Norepinephrine and octopamine: linking stress and immune function across phyla. Invertebrate Survival Journal 5, 12-19. Adamo, S., Parsons, N., 2006. The emergency life-history stage and immunity in the cricket, Gryllus texensis. Anim. Behav. 72, 235-244. Adamo, S.A., 2012a. Comparative psychoneuroimmunology/ecoimmunology: Lessons from simpler model systems, The Oxford Handbook of Psychoneuroimmunology. Oxford University Press Oxford, pp. 277-290. Adamo, S.A., 2012b. The effects of the stress response on immune function in invertebrates: an evolutionary perspective on an ancient connection. Horm Behav 62, 324-330. Adamo, S.A., 2014. The effects of stress hormones on immune function may be vital for the adaptive reconfiguration of the immune system during fight-or-flight behavior. The Society for Integrative and Comparative Biology. Adams, A., 1991. Response of penaeid shrimp to exposure to Vibrio species. Fish Shellfish Immunol. 1, 59-70. Aguirre-Guzman, G., Sanchez-Martinez, J.G., Campa-Cordova, A.I., Luna-Gonzalez, A., Ascencio, F., 2009. Penaeid shrimp immune system. Thai. J. Vet. Med. 39, 205-215. Alday-Sanz, V., Roque, A., Turnbull, J., 2002. Clearing mechanisms of Vibrio vulnificus biotype I in the black tiger shrimp Penaeus monodon. Diseases of aquatic organisms 48, 91-99. Allen, G.F., Land, J.M., Heales, S.J., 2009. A new perspective on the treatment of aromatic L-amino acid decarboxylase deficiency. Molecular genetics and metabolism 97, 6-14. Amparyup, P., Charoensapsri, W., Tassanakajon, A., 2013. Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish Shellfish Immunol. 34, 990-1001. Aparicio-Simón, B., Piñón, M., Racotta, R., Racotta, I.S., 2010. Neuroendocrine and metabolic responses of Pacific whiteleg shrimp Litopenaeus vannamei exposed to acute handling stress. Aquaculture 298, 308-314. Aparicio-Simón, B., Pinon, M., Racotta, R., Racotta, I.S., 2018. Neuroendocrine and metabolic responses of Pacific whiteleg shrimp Penaeus vannamei exposed to hypoxia stress. Lat. Am. J. Aquat. Res. 46, 364-376. Arnow, L.E., 1937. Colorimetric determination of the components of 3, 4-dihydroxyphenylalanine-tyrosine mixtures. J. biol. Chem 118, 531-537. Bachère, E., Gueguen, Y., Gonzalez, M., De Lorgeril, J., Garnier, J., Romestand, B., 2004. Insights into the anti‐microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunol. Rev. 198, 149-168. Baker, H., Abate, C., Szabo, A., Joh, T.H., 1991. Species‐specific distribution of aromatic L‐amino acid decarboxylase in the rodent adrenal gland, cerebellum, and olfactory bulb. J. Comp. Neurol. 305, 119-129. Barker, D.L., Kushner, P.D., Hooper, N.K., 1979. Synthesis of dopamine and octopamine in the crustacean stomatogastric nervous system. Brain Res. 161, 99-113. Basile, F., Capaccia, C., Zampini, D., Biagetti, T., Diverio, S., Guelfi, G., 2021. Omics insights into animal resilience and stress factors. Animals 11, 47. Basu, S., Dasgupta, P.S., 2000. Dopamine, a neurotransmitter, influences the immune system. J. Neuroimmunol. 102, 113-124. Bell, K.L., Smith, V.J., 1993. In vitro superoxide production by hyaline cells of the shore crab Carcinus maenas (L.). Dev. Comp. Immunol. 17, 211-219. Beltz, B.S., Kravitz, E.A., 2002. Serotonin in crustacean systems: more than a half century of fundamental discoveries, Crustacean experimental systems in neurobiology. Springer, pp. 141-163. Berczi, I., Quintanar‐Stephano, A., Kovacs, K., 2009. Neuroimmune regulation in immunocompetence, acute illness, and healing. Annals of the New York Academy of Sciences 1153, 220-239. Bertoldi, M., 2014. Mammalian Dopa decarboxylase: structure, catalytic activity and inhibition. Arch Biochem Biophys 546, 1-7. Bertoldi, M., Castellani, S., Voltattorni, C.B., 2001. Mutation of residues in the coenzyme binding pocket of Dopa decarboxylase: Effects on catalytic properties. Eur. J. Biochem. 268, 2975-2981. Bertoldi, M., Voltattorni, C.B., 2009. Multiple roles of the active site lysine of Dopa decarboxylase. Archives of biochemistry and biophysics 488, 130-139. Burdick, N., Randel, R., Carroll, J., Welsh, T., 2011. Interactions between temperament, stress, and immune function in cattle. International Journal of Zoology 2011. Cain, D.W., Cidlowski, J.A., 2017. Immune regulation by glucocorticoids. Nature Reviews Immunology 17, 233-247. Carrasco, G.A., Van de Kar, L.D., 2003. Neuroendocrine pharmacology of stress. Eur. J. Pharmacol. 463, 235-272. Cellini, B., Montioli, R., Oppici, E., Voltattorni, C.B., 2012. Biochemical and computational approaches to improve the clinical treatment of dopa decarboxylase-related diseases: an overview. The open biochemistry journal 6, 131. Cerenius, L., Söderhäll, K., 2004. The prophenoloxidase‐activating system in invertebrates. Immunol. Rev. 198, 116-126. Cerenius, L., Söderhäll, K., 2012. Crustacean immune responses and their implications for disease control, Infectious Disease in Aquaculture, pp. 69-87. Chang, C.-C., Wu, Z.-R., Chen, C.-S., Kuo, C.-M., Cheng, W., 2007a. Dopamine modulates the physiological response of the tiger shrimp Penaeus monodon. Aquaculture 270, 333-342. Chang, C.C., Hung, M.D., Cheng, W., 2011. Norepinephrine depresses the immunity and disease-resistance ability via alpha1- and beta1-adrenergic receptors of Macrobrachium rosenbergii. Dev Comp Immunol 35, 685-691. Chang, C.C., Jiang, J.R., Cheng, W., 2015a. A first insight into temperature stress-induced neuroendocrine and immunological changes in giant freshwater prawn, Macrobrachium rosenbergii. Fish Shellfish Immunol. 47, 528-534. Chang, C.C., Lee, P.P., Cheng, W., 2012. Norepinephrine regulates prophenoloxidase system-related parameters and gene expressions via alpha- and beta-adrenergic receptors in Litopenaeus vannamei. Fish Shellfish Immunol. 33, 962-968. Chang, C.C., Tsai, W.L., Jiang, J.R., Cheng, W., 2015b. The acute modulation of norepinephrine on immune responses and genes expressions via adrenergic receptors in the giant freshwater prawn, Macrobrachium rosenbergii. Fish Shellfish Immunol. 46, 459-467. Chang, C.C., Wu, Z.R., Kuo, C.M., Cheng, W., 2007b. Dopamine depresses immunity in the tiger shrimp Penaeus monodon. Fish Shellfish Immunol. 23, 24-33. Chang, Z.W., Ke, Z.H., Chang, C.C., 2016. Roles of dopamine receptors in mediating acute modulation of immunological responses in Macrobrachium rosenbergii. Fish Shellfish Immunol. 49, 286-297. Charmandari, E., Tsigos, C., Chrousos, G., 2005. Endocrinology of the stress response. Annu. Rev. Physiol. 67, 259-284. Cheng, W., Chieu, H.T., Ho, M.C., Chen, J.C., 2006. Noradrenaline modulates the immunity of white shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 21, 11-19. Cheng, W., Chieu, H.T., Tsai, C.H., Chen, J.C., 2005a. Effects of dopamine on the immunity of white shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 19, 375-385. Cheng, W., Ka, Y.W., Chang, C.C., 2016. Dopamine beta-hydroxylase participate in the immunoendocrine responses of hypothermal stressed white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 59, 166-178. Cheng, W., Ka, Y.W., Chang, C.C., 2017. Involvement of dopamine beta-hydroxylase in the neuroendocrine-immune regulatory network of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 68, 92-101. Cheng, W., Liu, C.-H., Tsai, C.-H., Chen, J.-C., 2005b. Molecular cloning and characterisation of a pattern recognition molecule, lipopolysaccharide-and β-1, 3-glucan binding protein (LGBP) from the white shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 18, 297-310. Cheng, W., Wang, L.-U., Chen, J.-C., 2005c. Effect of water temperature on the immune response of white shrimp Litopenaeus vannamei to Vibrio alginolyticus. Aquaculture 250, 592-601. Chiu, H.-T., Yeh, S.-P., Huang, S.-C., Chang, C.-C., Kuo, C.-M., Cheng, W., 2006. Dopamine induces transient modulation of the physiological responses of whiteleg shrimp, Litopenaeus vannamei. Aquaculture 251, 558-566. Christie, A.E., 2011. Crustacean neuroendocrine systems and their signaling agents. Cell and tissue research 345, 41-67. Christie, A.E., Fontanilla, T.M., Roncalli, V., Cieslak, M.C., Lenz, P.H., 2014. Identification and developmental expression of the enzymes responsible for dopamine, histamine, octopamine and serotonin biosynthesis in the copepod crustacean Calanus finmarchicus. General and comparative endocrinology 195, 28-39. Chrousos, G.P., 1998. Stressors, stress, and neuroendocrine integration of the adaptive response: The 1997 Hans Selye Memorial Lecture. Annals of the New York Academy of Sciences 851, 311-335. Chung, J.S., Zmora, N., Katayama, H., Tsutsui, N., 2010. Crustacean hyperglycemic hormone (CHH) neuropeptides family: functions, titer, and binding to target tissues. General and comparative endocrinology 166, 447-454. Clark, W.C., Pass, P.S., Venkataraman, B., Hodgetts, R.B., 1978. Dopa decarboxylase from Drosophila melanogaster. Mol. Gen. Genet. 162, 287-297. Cryer, P.E., 1980. Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. New England Journal of Medicine 303, 436-444. Cserzo, M., Eisenhaber, F., Eisenhaber, B., Simon, I., 2004. TM or not TM: transmembrane protein prediction with low false positive rate using DAS-TMfilter. Bioinformatics 20, 136-137. de Oliveira Cesar, J.R., Zhao, B., Malecha, S., Ako, H., Yang, J., 2006. Morphological and biochemical changes in the muscle of the marine shrimp Litopenaeus vannamei during the molt cycle. Aquaculture 261, 688-694. Del Rey, A., Chrousos, G., Besedovsky, H., 2008. The hypothalamus-pituitary-adrenal axis. Elsevier. Demas, G.E., Adamo, S.A., French, S.S., 2011. Neuroendocrine‐immune crosstalk in vertebrates and invertebrates: implications for host defence. Funct. Ecol. 25, 29-39. Diehl-Jones, W.L., Mandato, C.A., Whent, G., Downer, R.G., 1996. Monoaminergic regulation of hemocyte activity. J. Insect Physiol. 42, 13-19. Dominici, P., Moore, P.S., Castellani, S., Bertoldi, M., Voltattorni, C.B., 1997. Mutation of cysteine 111 in Dopa decarboxylase leads to active site perturbation. Protein Sci. 6, 2007-2015. Ellis, A.E., 1990. Lysozyme assays, in: J.S. Stolen, T.C.F., D.P. Anderson, B.S. Roberson, W.B. van Muiswinkel (Ed.), Techniques in fish immunology. SOS Publications, Fair Haven (USA), pp. 101-103. Elofsson, R., Laxmyr, L., Rosengren, E., Hansson, C., 1982. Identification and quantitative measurements of biogenic amines and DOPA in the central nervous system and haemolymph of the crayfish Pacifastacus leniusculus (crustacea). Comp. Biochem. Physiol. C Comp. Pharmacol. 71, 195-201. Fan, L., Wang, A., Wu, Y., 2013. Comparative proteomic identification of the hemocyte response to cold stress in white shrimp, Litopenaeus vannamei. J. Proteomics 80, 196-206. Fan, L., Wang, L., Wang, Z., 2019. Proteomic characterization of the hepatopancreas in the Pacific white shrimp Litopenaeus vannamei under cold stress: Revealing the organism homeostasis mechanism. Fish Shellfish Immunol. 92, 438-449. Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791. Ferdlg, M., Li, J., Severson, D., Christensen, B., 1996. Mosquito dopa decarboxylase cDNA characterization and blood‐meal‐induced ovarian expression. Insect Mol. Biol. 5, 119-126. Fingerman, M., Nagabhushanam, R., 1992. Control of the release of crustacean hormones by neuroregulators. Comp. Biochem. Physiol. C Comp. Pharmacol. 102, 343-352. Fingerman, M., Nagabhushanam, R., Sarojini, R., Reddy, P.S., 1994. Biogenic amines in crustaceans: identification, localization, and roles. Journal of Crustacean Biology 14, 413-437. Fu, Q., Kutz, K.K., Schmidt, J.J., Hsu, Y.W.A., Messinger, D.I., Cain, S.D., de la Iglesia, H.O., Christie, A.E., Li, L., 2005. Hormone complement of the Cancer productus sinus gland and pericardial organ: an anatomical and mass spectrometric investigation. J. Comp. Neurol. 493, 607-626. Fujimori, K.E., 2009. Characterization of the regulatory region of the dopa decarboxylase gene in Medaka: an in vivo green fluorescent protein reporter assay combined with a simple TA-cloning method. Mol. Biotechnol. 41, 224-235. Funge-Smith, S., Briggs, M., 2003. The introduction of Penaeus vannamei and P. stylirostris into the Asia-Pacific region. International Mechanisms for the Control and Responsible Use of Alien Species in Aquatic Ecosystems, Jinghong, Xishuangbanna, People’s Republic of China, 26-29. Gerald, M., 2010. Biogenic amines: A historical perspective, Biogenic Amines: Pharmacological, Neurochemical and Molecular Aspects in the CNS. Nova, pp. 3-12. Gomi, M., Sonoyama, M., Mitaku, S., 2004. High performance system for signal peptide prediction: SOSUIsignal. Chem-Bio Inf. J. 4, 142-147. Gupta, R., Jung, E., Brunak, S., 2017. Prediction of N-glycosylation sites in human proteins. 2004. preparation. Available online: http://www. cbs. dtu. dk/services/NetNGlyc. Hauton, C., 2012. The scope of the crustacean immune system for disease control. J. Invertebr. Pathol. 110, 251-260. Herman, J., McKlveen, J., Solomon, M., Carvalho-Netto, E., Myers, B., 2012. Neural regulation of the stress response: glucocorticoid feedback mechanisms. Brazilian journal of medical and biological research 45, 292-298. Herman, J.P., McKlveen, J.M., Ghosal, S., Kopp, B., Wulsin, A., Makinson, R., Scheimann, J., Myers, B., 2011. Regulation of the hypothalamic‐pituitary‐adrenocortical stress response. Comprehensive Physiology 6, 603-621. Hernández-López, J., Gollas-Galván, T., Vargas-Albores, F., 1996. Activation of the prophenoloxidase system of the brown shrimp Penaeus californiensis Holmes. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 113, 61-66. Hikima, S., Hikima, J.-i., Rojtinnakorn, J., Hirono, I., Aoki, T., 2003. Characterization and function of kuruma shrimp lysozyme possessing lytic activity against Vibrio species. Gene 316, 187-195. Hodgetts, R.B., O'Keefe, S.L., 2006. Dopa decarboxylase: a model gene-enzyme system for studying development, behavior, and systematics. Annu. Rev. Entomol. 51, 259-284. Holtz, P., Heise, R., Lüdtke, K., 1938. Fermentativer Abbau von l-dioxyphenylalanin (Dopa) durch Niere. Naunyn-Schmiedeberg's Arch. Pharmacol. 191, 87-118. Hsieh, S.L., Chen, S.M., Yang, Y.H., Kuo, C.M., 2006. Involvement of norepinephrine in the hyperglycemic responses of the freshwater giant prawn, Macrobrachium rosenbergii, under cold shock. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 143, 254-263. Iwanaga, S., Lee, B.-L., 2005. Recent advances in the innate immunity of invertebrate animals. BMB Reports 38, 128-150. Jahng, J.W., Wessel, T.C., Houpt, T.A., Son, J.H., Joh, T.H., 1996. Alternate promoters in the rat aromatic L‐amino acid decarboxylase gene for neuronal and nonneuronal expression: an in situ hybridization study. J. Neurochem. 66, 14-19. Johansson, M.W., Keyser, P., Sritunyalucksana, K., Söderhäll, K., 2000. Crustacean haemocytes and haematopoiesis. Aquaculture 191, 45-52. Kitahama, K., Ikemoto, K., Jouvet, A., Araneda, S., Nagatsu, I., Raynaud, B., Nishimura, A., Nishi, K., Niwa, S.-i., 2009. Aromatic L-amino acid decarboxylase-immunoreactive structures in human midbrain, pons, and medulla. J. Chem. Neuroanat. 38, 130-140. Klemm, N., Nässel, D., Osborne, N., 1985. Dopamine-β-hydroxylase-like immunoreactive neurons in two insect species, Calliphora eryhthrocephala and Periplaneta americana. Histochemistry 83, 159-164. Kokkinou, I., Nikolouzou, E., Hatzimanolis, A., Fragoulis, E.G., Vassilacopoulou, D., 2009. Expression of enzymatically active L-DOPA decarboxylase in human peripheral leukocytes. Blood Cells Mol. Dis. 42, 92-98. Konrad, K.D., Marsh, J.L., 1987. Developmental expression and spatial distribution of dopa decarboxylase in Drosophila. Dev. Biol. 122, 172-185. Krieger, M., Coge, F., Gros, F., Thibault, J., 1991. Different mRNAs code for dopa decarboxylase in tissues of neuronal and nonneuronal origin. Proceedings of the National Academy of Sciences 88, 2161-2165. Kulkarni, A., Krishnan, S., Anand, D., Kokkattunivarthil Uthaman, S., Otta, S.K., Karunasagar, I., Kooloth Valappil, R., 2021. Immune responses and immunoprotection in crustaceans with special reference to shrimp. Reviews in Aquaculture 13, 431-459. Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution 35, 1547-1549. Kuo, C.-m., Hsu, C.-r., Lin, C.-y., 1995. Hyperglycaemic effects of dopamine in tiger shrimp, Penaeus monodon. Aquaculture 135, 161-172. Kuo, C., Yang, Y., 1999. Hyperglycemic responses to cold shock in the freshwater giant prawn, Macrobrachium rosenbergii. J. Comp. Physiol. B 169, 49-54. Lacoste, A., Malham, S.K., Cueff, A., Poulet, S.A., 2001. Stress-induced catecholamine changes in the hemolymph of the oyster Crassostrea gigas. General and comparative endocrinology 122, 181-188. Laxmyr, L., 1984. Biogenic amines and DOPA in the central nervous system of decapod crustaceans. Comp. Biochem. Physiol. C Comp. Pharmacol. 77, 139-143. Lemos, D., Weissman, D., 2021. Moulting in the grow‐out of farmed shrimp: a review. Reviews in Aquaculture 13, 5-17. Li, C.-C., Chen, J.-C., 2008. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under low and high pH stress. Fish Shellfish Immunol. 25, 701-709. Li, C., Wang, S., He, J., 2019. The two NF-κB pathways regulating bacterial and WSSV infection of shrimp. Front. Immunol. 10, 1785. Li, F., Xiang, J., 2013. Signaling pathways regulating innate immune responses in shrimp. Fish Shellfish Immunol. 34, 973-980. Li, H., Yin, B., Wang, S., Fu, Q., Xiao, B., Lǚ, K., He, J., Li, C., 2018. RNAi screening identifies a new Toll from shrimp Litopenaeus vannamei that restricts WSSV infection through activating Dorsal to induce antimicrobial peptides. PLoS pathogens 14, e1007109. Li, J.T., Lee, P.P., Chen, O.C., Cheng, W., Kuo, C.M., 2005. Dopamine depresses the immune ability and increases susceptibility to Lactococcus garvieae in the freshwater giant prawn, Macrobrachium rosenbergii. Fish Shellfish Immunol. 19, 269-280. Liang, J., Han, Q., Tan, Y., Ding, H., Li, J., 2019. Current Advances on Structure-Function Relationships of Pyridoxal 5′-Phosphate-Dependent Enzymes. Frontiers in molecular biosciences 6. Lin, H.-Y., Kuo, H.-W., Song, Y.-L., Cheng, W., 2020. Cloning and characterization of DOPA decarboxylase in Litopenaeus vannamei and its roles in catecholamine biosynthesis, immunocompetence, and antibacterial defense by dsRNA-mediated gene silencing. Dev. Comp. Immunol. 108, 103668. Liu, C.-H., Chen, J.-C., 2004. Effect of ammonia on the immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish Shellfish Immunol. 16, 321-334. Liu, C.-H., Cheng, W., Hsu, J.-P., Chen, J.-C., 2004. Vibrio alginolyticus infection in the white shrimp Litopenaeus vannamei confirmed by polymerase chain reaction and 16S rDNA sequencing. Diseases of aquatic organisms 61, 169-174. Liu, Y., Song, L., Sun, Y., Liu, T., Hou, F., Liu, X., 2016a. Comparison of immune response in Pacific white shrimp, Litopenaeus vannamei, after knock down of Toll and IMD gene in vivo. Dev. Comp. Immunol. 60, 41-52. Liu, Z., Wang, L., Lv, Z., Zhou, Z., Wang, W., Li, M., Yi, Q., Qiu, L., Song, L., 2018. The Cholinergic and Adrenergic Autocrine Signaling Pathway Mediates Immunomodulation in Oyster Crassostrea gigas. Front. Immunol. 9. Liu, Z., Wang, L., Zhou, Z., Sun, Y., Wang, M., Wang, H., Hou, Z., Gao, D., Gao, Q., Song, L., 2016b. The simple neuroendocrine-immune regulatory network in oyster Crassostrea gigas mediates complex functions. Sci. Rep. 6, 26396. Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408. Livingstone, M.S., Tempel, B.L., 1983. Genetic dissection of monoamine neurotransmitter synthesis in Drosophila. Nature 303, 67-70. Lorenzon, S., 2005. Hyperglycemic stress response in Crustacea. Invertebrate Survival Journal 2, 132-141. Mössner, R., Lesch, K.-P., 1998. Role of serotonin in the immune system and in neuroimmune interactions. Brain, behavior, and immunity 12, 249-271. Malagoli, D., Ottaviani, E., 2014. Immune-neuroendocrine integration and its evolution, Eco-immunology. Springer, pp. 93-104. Malagoli, D., Ottaviani, E., 2017. Cross-talk among immune and neuroendocrine systems in molluscs and other invertebrate models. Horm Behav 88, 41-44. Mapanao, R., Chang, C.C., Cheng, W., 2017. The upregulation of immune responses in tyrosine hydroxylase (TH) silenced Litopenaeus vannamei. Dev Comp Immunol 67, 30-42. Mapanao, R., Chang, C.C., Cheng, W., Liu, K.F., 2018a. Silencing tyrosine hydroxylase retards depression of immunocompetence of Litopenaeus vannamei under hypothermal stress. Fish Shellfish Immunol. 72, 519-527. Mapanao, R., Cheng, W., 2016. Cloning and characterization of tyrosine hydroxylase (TH) from the pacific white leg shrimp Litopenaeus vannamei, and its expression following pathogen challenge and hypothermal stress. Fish Shellfish Immunol. 56, 506-516. Mapanao, R., Kuo, H.W., Chang, C.C., Liu, K.F., Cheng, W., 2018b. L-3,4-Dihydroxyphenylalanine (l-DOPA) induces neuroendocrinological, physiological, and immunological regulation in white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 74, 162-169. Marketon, J.I.W., Glaser, R., 2008. Stress hormones and immune function. Cell. Immunol. 252, 16-26. Marmaras, V., Fragoulis, E., 1971. Studies on the metabolism of 14C-DOPA in the hepatopancreas of decapod crustacean Upogebia littoralis. Comp. Gen. Pharmacol. 2, 52-58. Martin, G.G., Graves, B.L., 1985. Fine structure and classification of shrimp hemocytes. J. Morphol. 185, 339-348. Mason, H., 1956. Structures and functions of the phenolase complex. Nature 177, 79. Matozzo, V., Marin, M.G., 2010. The role of haemocytes from the crab Carcinus aestuarii (Crustacea, Decapoda) in immune responses: A first survey. Fish Shellfish Immunol. 28, 534-541. Millard, R.S., Ellis, R.P., Bateman, K.S., Bickley, L.K., Tyler, C.R., van Aerle, R., Santos, E.M., 2020. How do abiotic environmental conditions influence shrimp susceptibility to disease? A critical analysis focussed on White Spot Disease. J. Invertebr. Pathol., 107369. Neckameyer, W.S., Quinn, W.G., 1989. Isolation and characterization of the gene for Drosophila tyrosine hydroxylase. Neuron 2, 1167-1175. Neff, N., Hadjiconstantinou, M., 1995. Aromatic L-amino acid decarboxylase modulation and Parkinson's disease. Prog. Brain Res. 106, 91-97. Ortega, E., Giraldo, E., Hinchado, M.D., Martín, L., García, J.J., De la Fuente, M., 2007. Neuroimmunomodulation during exercise: role of catecholamines as ‘stress mediator’and/or ‘danger signal’for the innate immune response. Neuroimmunomodulation 14, 206-212. Ottaviani, E., Caselgrandi, E., Petraglia, F., Franceschi, C., 1992. Stress response in the freshwater snail Planorbarius corneus (L.)(Gastropoda, Pulmonata): interaction between CRF, ACTH, and biogenic amines. General and comparative endocrinology 87, 354-360. Ottaviani, E., Franceschi, C., 1996. The neuroimmunology of stress from invertebrates to man. Prog. Neurobiol. 48, 421-440. Pérez-Farfante, I., Kensley, B., 1997. Penaeoid and sergestoid shrimps and prawns of the world: Keys and diagnoses for the families and genera. Mémoires du Muséum National D'Histoire Naturelle, Paris. Pan, L.Q., Hu, F.W., Jing, F.T., Liu, H.J., 2008. The effect of different acclimation temperatures on the prophenoloxidase system and other defence parameters in Litopenaeus vannamei. Fish Shellfish Immunol. 25, 137-142. Pariante, C.M., Lightman, S.L., 2008. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 31, 464-468. Perazzolo, L.M., Barracco, M.A., 1997. The prophenoloxidase activating system of the shrimp Penaeus paulensis and associated factors. Dev. Comp. Immunol. 21, 385-395. Petersen, T.N., Brunak, S., Von Heijne, G., Nielsen, H., 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785. Racotta, I.S., Palacios, E., 1998. Hemolymph metabolic variables in response to experimental manipulation stress and serotonin injection in Penaeus vannamei. Journal of the World Aquaculture Society 29, 351-356. Rajan, P., Lopez, C., Lin, J.H.-Y., Yang, H.-L., 2001. Vibrio alginolyticus infection in cobia (Rachycentron canadum) cultured in Taiwan. Bulletin-European Association of Fish Pathologists 21, 228-234. Ramos MartííNez, J.I., González-Riopedre, M., Barcia, R., 2011. Role of protein kinases C (PKC) in the relationship between the neuroendocrine and immune systems in marine mussels: The model of Mytilus galloprovincialis Lamark (1819). Ital. J. Zool. 79, 162-168. Rise, M.L., Nash, G.W., Hall, J.R., Booman, M., Hori, T.S., Trippel, E.A., Gamperl, A.K., 2014. Variation in embryonic mortality and maternal transcript expression among Atlantic cod (Gadus morhua) broodstock: a functional genomics study. Mar. Genomics 18, 3-20. Robertson, L., Bray, W., Leung‐Trujillo, J., Lawrence, A., 1987. Practical molt staging of Penaeus setiferus and Penaeus stylirostris. Journal of the World Aquaculture Society 18, 180-185. Rőszer, T., 2014. The invertebrate midintestinal gland (“hepatopancreas”) is an evolutionary forerunner in the integration of immunity and metabolism. Cell and Tissue Research 358, 685-695. Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution 4, 406-425. Sanger, F., Nicklen, S., Coulson, A.R., 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74, 5463-5467. Santos, E., Keller, R., 1993. Regulation of circulating levels of the crustacean hyperglycemic hormone: evidence for a dual feedback control system. J. Comp. Physiol. B 163, 374-379. Sathyanandam, S., Vasudevan, S., Natesan, M., 2008. Serotonin modulation of hemolymph glucose and crustacean hyperglycemic hormone titers in Fenneropenaeus indicus. Aquaculture 281, 106-112. Sayers, E.W., Cavanaugh, M., Clark, K., Ostell, J., Pruitt, K.D., Karsch-Mizrachi, I., 2019. GenBank. Nucleic Acids Res. 47, D94-D99. Schreck, C.B., Tort, L., 2016. The concept of stress in fish, Fish physiology. Elsevier, pp. 1-34. Sideri, M., Tsakas, S., Markoutsa, E., Lampropoulou, M., Marmaras, V.J., 2007. Innate immunity in insects: surface-associated dopa decarboxylase-dependent pathways regulate phagocytosis, nodulation and melanization in medfly haemocytes. Immunology 123, 528-537. Sievers, F., Higgins, D.G., 2018. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27, 135-145. Smith, S.M., Vale, W.W., 2006. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 8, 383. Smith, V.J., 1991. Invertebrate immunology: phylogenetic, ecotoxicological and biomedical implications. Comparative Haematology International 1, 61-76. Sánchez-Salgado, J.L., Pereyra, M.A., Alpuche-Osorno, J.J., Zenteno, E., 2021. Pattern recognition receptors in the crustacean immune response against bacterial infections. Aquaculture, 735998. Song, Y.-L., Hsieh, Y.-T., 1994. Immunostimulation of tiger shrimp (Penaeus monodon) hemocytes for generation of microbicidal substances: analysis of reactive oxygen species. Dev. Comp. Immunol. 18, 201-209. Song, Y.-L., Li, C.-Y., 2014. Shrimp immune system-special focus on penaeidin. J. Mar. Sci. Technol. 22, 1-8. Sotnikova, T., Gainetdinov, R., 2010. Octopamine and other monoamines in invertebrates, Encyclopedia of Neuroscience. Elsevier, pp. 9-15. Spencer, R.L., Deak, T., 2017. A users guide to HPA axis research. Physiol. Behav. 178, 43-65. Steinman, L., 2004. Elaborate interactions between the immune and nervous systems. Nat. Immunol. 5, 575-581. Tassanakajon, A., 2013. Innate immune system of shrimp. Fish Shellfish Immunol. 34, 953. Tassanakajon, A., Rimphanitchayakit, V., Visetnan, S., Amparyup, P., Somboonwiwat, K., Charoensapsri, W., Tang, S., 2018. Shrimp humoral responses against pathogens: antimicrobial peptides and melanization. Dev Comp Immunol 80, 81-93. Tassanakajon, A., Somboonwiwat, K., Supungul, P., Tang, S., 2013. Discovery of immune molecules and their crucial functions in shrimp immunity. Fish Shellfish Immunol. 34, 954-967. Tong, R., Pan, S., Pan, L., Zhang, L., 2020a. Effects of biogenic amines on the immune response and immunoregulation mechanism in hemocytes of Litopenaeus vannamei in vitro. Mol. Immunol. 128, 1-9. Tong, R., Wei, C., Pan, L., Zhang, X., 2020b. Effects of dopamine on immune signaling pathway factors, phagocytosis and exocytosis in hemocytes of Litopenaeus vannamei. Dev. Comp. Immunol. 102, 103473. Tseng, I.-T., Chen, J.-C., 2004. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under nitrite stress. Fish Shellfish Immunol. 17, 325-333. Tsigos, C., Chrousos, G.P., 2002. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 53, 865-871. Valenzuela-Castillo, A., Mendoza-Cano, F., Enriquez-Espinosa, T., Grijalva-Chon, J.M., Sanchez-Paz, A., 2017. Selection and validation of candidate reference genes for quantitative real-time PCR studies in the shrimp Penaeus vannamei under viral infection. Mol Cell Probes 33, 42-50. Vargas-Albores, F., Yepiz-Plascencia, G., 2000. Beta glucan binding protein and its role in shrimp immune response. Aquaculture 191, 13-21. Vaseeharan, B., Ishwarya, R., Malaikozhundan, B., Selvaraj, D., Chen, J.-C., 2016. Phenoloxidase an important constituent in crustacean immune system-a review. J. Fish. Soc. Taiwan 43, 215-225. Vazquez, L., Alpuche, J., Maldonado, G., Agundis, C., Pereyra-Morales, A., Zenteno, E., 2009. Immunity mechanisms in crustaceans. Innate Immun. 15, 179-188. Wang, F., Li, S., Xiang, J., Li, F., 2019a. Transcriptome analysis reveals the activation of neuroendocrine-immune system in shrimp hemocytes at the early stage of WSSV infection. BMC Genomics 20, 247. Wang, K., Ren, Q., Shen, X.L., Li, B., Du, J., Yu, X.D., Du, Z.Q., 2019b. Molecular characterization and expression analysis of dopa decarboxylase involved in the antibacterial innate immunity of the freshwater crayfish, Procambarus clarkii. Fish Shellfish Immunol. 91, 19-28. Wang, L.-U., Chen, J.-C., 2005. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus at different salinity levels. Fish Shellfish Immunol. 18, 269-278. Wang, P.-H., Gu, Z.-H., Huang, X.-D., Liu, B.-D., Deng, X.-x., Ai, H.-S., Wang, J., Yin, Z.-X., Weng, S.-P., Yu, X.-Q., 2009. An immune deficiency homolog from the white shrimp, Litopenaeus vannamei, activates antimicrobial peptide genes. Mol. Immunol. 46, 1897-1904. Weeks-Perkins, B., Chansue, N., Wong-Verelle, D., 1995. Assay of immune function in shrimp phagocytes: techniques used as indicators or pesticides exposure, in: J.S. Stolen, T.C.F., S.A. Smith, J.T. Zelikoff, S.L. Kaattari, R.S. Anderson (Ed.), Techniques in fish immunology. SOS Publications, Fair Haven, NJ, USA, pp. 223-231. Wei, C., Pan, L., Zhang, X., Xu, L., Si, L., Tong, R., Wang, H., 2019. Transcriptome analysis of hemocytes from the white shrimp Litopenaeus vannamei with the injection of dopamine. Fish Shellfish Immunol. 94, 497-509. Yang, C.C., Lu, C.L., Chen, S., Liao, W.L., Chen, S.N., 2015. Immune gene expression for diverse haemocytes derived from pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 44, 265-271. Yeh, S.-P., Chiu, H.-T., Cheng, W., 2006. Norepinephrine induces transient modulation of the physiological responses of whiteleg shrimp, Litopenaeus vannamei. Aquaculture 254, 693-700. Zhang, L., Pan, L., Xu, L., Si, L.,……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80743 | - |
| dc.description.abstract | 兒茶酚胺在緊迫刺激下對動物體內恆定的調節起關鍵作用。多巴脫羧酶 (DDC)是負責多巴胺合成過程之脫羧步驟的酵素,被認為參與神經傳導物質代謝和先天免疫。然而,迄今為止對於甲殼類DDC所知甚少。因此,本研究以南美白對蝦 (簡稱白蝦,即台灣最具商業規模的甲殼類養殖物種之一) 作為題材,旨在鑑定白蝦DDC (命名為LvDDC),並探討其在緊迫壓力下的反應以及在神經內分泌-免疫系統中的角色。本研究包括三個實驗。首先,自白蝦胸神經選殖出LvDDC的全長cDNA,經序列分析後發現: LvDDC編碼一個具有吡哆醛依賴性脫羧酶保守結構域的蛋白質 (452個胺基酸),而此蛋白質與其它節肢動物DDC之序列相似度高、親緣關係相近。此外,分析LvDDC在白蝦各組織中的分佈情形,發現肝胰臟和神經系統具有相對大量的LvDDC基因表現。第二,對於接受溶藻弧菌注射或低溫處理所引起的緊迫反應,白蝦血球和肝胰臟中的LvDDC mRNA表現量在15~60 分鐘內發生顯著變化。最後,在白蝦體內注射專一性雙股RNA,靜默LvDDC基因以探討LvDDC的角色。結果顯示,在溶藻弧菌感染期間,LvDDC靜默的白蝦具有顯著較高的存活率。此外,LvDDC靜默的白蝦具有顯著較高的免疫反應表現 (包括循環血球數量、血球之酚氧化酶活性和呼吸爆發、以及血球和/或血淋巴對弧菌的吞噬活性和清除效率上升) 並具有顯著較低的血淋巴多巴胺以及葡萄糖和乳酸水平。根據上述結果,本研究表明LvDDC在甲殼類DDC中的高度保守性及其在白蝦體內所扮演的角色– (1)負責多巴胺合成、(2)參與在細菌感染和低溫引起的緊迫反應、以及 (3)參與白蝦免疫能力調節和醣類代謝。總結,LvDDC參與兒茶酚胺生物合成路徑,並在白蝦神經內分泌-免疫調控網絡中發揮重要作用。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:14:56Z (GMT). No. of bitstreams: 1 U0001-1410202112254900.pdf: 5537576 bytes, checksum: b0fd16824a46e325ed42077e58d4804c (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Acknowledgement I Chinese abstract II English abstract III List of Tables IX List of Figures X List of Abbreviations XII Chapter 1 Introduction 1.1. Background information 2 1.2. Literature review 7 1.3. Aims 24 Chapter 2 General materials and methods 26 2.1. Experimental animals 27 2.2. Haemolymph and other tissue collection 27 2.3. Total RNA isolation and reverse transcription 28 2.4. Real-time reverse-transcription polymerase chain reaction (qRT-PCR) analysis of gene expression 28 2.5. Pathogen preparation 29 2.6. Pretesting of the specific gene-silencing 30 Chapter 3 Gene cloning and characterization of DOPA decarboxylase in Litopenaeus vannamei 34 3.1. Materials and methods 35 3.2. Results 42 3.3. Brief summary 50 Chapter 4 LvDDC is involved in L. vannamei under stress 51 4.1. Materials and methods 52 4.2. Results 55 4.3. Brief summary 62 Chapter 5 LvDDC is involved in modulating immunological and physiological functions and catecholamine biosynthesis 63 5.1. Materials and methods 64 5.2. Results 73 5.3. Brief summary 90 Chapter 6 Discussion 91 6.1. Characterization of the DDC in L. vannamei 94 6.2. The involvement of LvDDC in the NEI regulatory network of L. vannamei 96 6.3. Comparison between LvDDC and the other key catecholamine biosynthetic enzymes involving in the NEI system of L. vannamei 109 6.4. Conclusion 113 References 114 Curriculum vitae 126 | |
| dc.language.iso | en | |
| dc.subject | 溶藻弧菌 | zh_TW |
| dc.subject | 南美白對蝦 | zh_TW |
| dc.subject | 基因靜默 | zh_TW |
| dc.subject | 免疫能力 | zh_TW |
| dc.subject | 多巴脫羧酶 | zh_TW |
| dc.subject | 兒茶酚胺生物合成 | zh_TW |
| dc.subject | 低溫緊迫 | zh_TW |
| dc.subject | Litopenaeus vannamei | en |
| dc.subject | immunocompetence | en |
| dc.subject | gene-silencing | en |
| dc.subject | Vibrio alginolyticus | en |
| dc.subject | hypothermal stress | en |
| dc.subject | catecholamine biosynthesis | en |
| dc.subject | DOPA decarboxylase | en |
| dc.title | 白蝦多巴脫羧酶的鑑定及其在神經內分泌-免疫網絡的角色 | zh_TW |
| dc.title | Identification of DOPA decarboxylase from Litopenaeus vannamei and its roles in neuroendocrine-immune network | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄭文騰(Hsin-Tsai Liu),黃榮富(Chih-Yang Tseng),潘志弘,宋宏紅,齊肖琪 | |
| dc.subject.keyword | 多巴脫羧酶,南美白對蝦,低溫緊迫,溶藻弧菌,基因靜默,免疫能力,兒茶酚胺生物合成, | zh_TW |
| dc.subject.keyword | DOPA decarboxylase,Litopenaeus vannamei,hypothermal stress,Vibrio alginolyticus,gene-silencing,immunocompetence,catecholamine biosynthesis, | en |
| dc.relation.page | 127 | |
| dc.identifier.doi | 10.6342/NTU202103720 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-15 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1410202112254900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
