請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80740完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳正平(Jen-Ping Chen) | |
| dc.contributor.author | Yung-Hsin Hu | en |
| dc.contributor.author | 胡永新 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:14:49Z | - |
| dc.date.available | 2021-11-04 | |
| dc.date.available | 2022-11-24T03:14:49Z | - |
| dc.date.copyright | 2021-11-04 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-31 | |
| dc.identifier.citation | 陳正平、朱定中、蔡宜君,2015:104年度輔助空氣品質及境外污染物預報系統。53-56頁。EPA-104-L102-02-101 Altshuller, A. (1987). Potential contribution of sulfate production in cumulus cloud droplets to ground level particle sulfur concentrations, U.S. Environmental Protection Agency, Washington, D.C., EPA/600/J-87/076 (NTIS PB88125554). Berg L. K., Shrivastava M., Easter R. C., Fast J. D. ,Chapman E. G., Liu Y. Ferrare R. A. (2015). A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli, Geosci. Model Dev., 8, 409-429. Chang,S.C., Chou,C.C.K., Chen, C.C., Lee, C.T. (2010). Temporal characteristics from continuous measurements of PM2.5 and speciation at the Taipei Aerosol Supersite from 2002 to 2008, Atmospheric Environment 44, 1088-1096. Conklin M. H. and Hoffmann M. R. (1988). Metal ion-S(IV) chemistry III.Thermodynamics and kinetics of transient iron(III)-sulfur(IV) complexes. Envir. Sci. Technol. 22, 891-898. Hegg, D. A. (1985). Importance of liquid-phase oxidation of SO2 in the troposphere, J. Geophys. Res. 90, 3773-3779. Hoffmann M. R. and Calvert J. G. (1985). Chemical transformation modules for Eulerian acid deposition models,Vol. 2, the aqueous-phase chemistry. EPA/600/3-85/017,U.S. Environ. Prc’t. Agency, Research Triangle Park, North Carolina. Huie R. E. and Neta P. (1987). Rate constants for some oxidations of S(IV) by radicals in aqueous solutions. Atmospheric Environment 21, 1743-1747. Hung, H.M. Hoffmann, M. R. (2015). Oxidation of Gas-Phase SO2 on the Surfaces of Acidic Microdroplets: Implications for Sulfate and Sulfate Radical Anion Formation in the Atmospheric Liquid Phase, Environ. Sci. Technol., 49, 13768−13776. Langner J. Rodhe H. (1991). A Global Three-Dimensional Model of the Tropospheric Sulfur Cycle, Journal of Atmospheric Chemistry, 13, 225-263. Lelieveld, J. (1991). Multi-phase process in the atmospheric sulfur cycle, Interactions of C, N, P and S Biogeochemical Cycles and Global Change. 305-331. Li, N., Chen J.P., Tsai I.C.,He Q., Chi S. Y., Lin Y. C., Fu T. M. (2016). Potential impacts of electric vehicle on Taiwan's air quality. Sci. Total Environ., 566-567, 919-928. doi:10.1016/j.scitotenv.2016.05.105. Lind J. A., Kok G. L. and Lazrus A. L. (1987). Aqueous phase oxidation of sulfur(IV) by hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid. J. geophys. Res. 92, 4171-4177. Loughner, C. P., Dale, Allen, J., Kenneth. E. Pickering, Zhang D.L., Shou Y. X.and Russell, R. D. (2011) Impact of fair-weather cumulus clouds and the Chesapeake Bay breeze on pollutant transport and transformation., Atmospheric Environment, 45, 4060-4072. Martin L. R. and Hill M. W. (1987). The iron-catazed oxidation of sulfur: reconciliation of the literature rates. Atmospheric Enoironment 21, 1487-1490. Martin L. R. and Hill M. W. (1987). The effect of ionic strength on the manganese catazed oxidation of sulfur(IV). Atmospheric Environment 21, 2267-2270. Pandis, S. N. and Seinfeld, J. H. (1989). Sensitivity Anasis of a Chemical Mechanism for Aqueous-Phase Atmospheric Chemistry, Journal of Geophysical Research, vol. 94, 1105-1126. Pedersen, J. G., Malinowski, S. P., and Grabowsk W. W. (2016). Resolution and domain-size sensitivity in implicit large-eddy simulation of the stratocumulus-topped boundary layer, Journal of Advances in Modeling Earth Systems, 8, 885-903. Pope, C. A., and Dockery D. W. (2006). Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manage. Assoc. 56:709–742. Rajendra.K. P. and Leo.A. M. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 151 pp. Seinfeld, J.H. and Pandis, S.N. (2006). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd Edition, John Wiley Sons, New York. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt,M. Tignor and Miller H.L., (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp. Talbot C., B.Zeid E. Smith J. (2012). Nested Mesoscale Large-Eddy Simulations with WRF: Performance in Real Test Cases, Journal of hydrometeorology, Vol 13, 1421-1441. Wang,J.-L. , Zhang,Y.-H. , Shao, M. Liu, X.-L. (2012). The quantitative relationship between visibility and mass concentration of PM2.5 in Beijing, WIT Transactions on Ecology and the Environment, Vol 86, 595-610. Wood, R. (2012). Stratocumulus Clouds, Month weather review, Vol 140, 2373-2423. Yue, G. K., Hamill, P. (1979). The homogeneous nucleation rates of H2SO4-H20 aerosol particles in air, J. Aerosol S, Vol. 10, 609-614. Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma, Y. L. and Kimoto, T. (2014). Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China, Atmos. Chem. Phys, 2031-2049. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80740 | - |
| dc.description.abstract | 本研究旨在探討邊界層層積雲對近地面硫酸根氣膠的影響。首先針對氣象模式WRF 3.8.1版本所模擬的邊界層大渦紊流傳輸與層積雲形成對模式解析度的敏感度,以2018年3月28日臺灣中部地區的個案進行模擬。當水平向解析度由3公里提高到1公里後,層積雲平均液態水含量減少,同時在3公里高度以下垂直速度的變異度明顯增加。垂直速度的變異度變大代表模式能解析出較小的渦流系統因而增加垂直向傳送。當模式垂直向解析度增加時,平均的液態水含量稍微降低,而垂直速度的變異度則相差不大。以WRF的模擬結果來驅動空氣污染模式CMAQ 4.7.1版進行化學場的模擬分析顯示,在平原區由於火力發電廠穩定排放二氧化硫,因此在火力發電廠附近及下風處的硫酸根濃度較上風處高。雲的位置及高度對近地面硫酸根也有顯著影響。清晨受低雲及霧水內液態氧化反應影響使近地面硫酸根濃度上升,但9點後因熱力作用霧水消散以及海風帶入新鮮空氣使近地面硫酸根濃度下降。午後因邊界層頂層積雲內液態氧化反應而成的硫酸根因大渦紊流而下傳回近地面使近地面硫酸根濃度增加。入夜後,層積雲消散近地面硫酸根濃度下降,但午夜後低雲及霧水生成使近地面硫酸根濃度再次上升。而洋面上顯著的硫酸根濃度變化主要與陸地上的二氧化硫濃度與風場的方向有關。白天海面上的硫酸根濃度變化較不明顯,但是入夜後陸風將二氧化硫擴散到海面,再加上火力發電廠附近的低雲液態氧化產升的硫酸根一起傳輸到洋面上,使午夜後洋面的硫酸根濃度明顯上升。 將模擬與2018中央研究院環境變遷研究中心於臺灣中部進行的採樣分析資料進行比較,發現在接近火力發電廠及其風向下游處的硫酸根濃度相差不大,但內陸地區的硫酸根氣膠明顯的低估,可能原因是模式明顯低估內陸的雲水。但內陸地區的近地面二氧化硫也低於觀測,顯示總硫濃度也偏低,不只是雲化學的影響。由於火力發電廠排放的二氧化硫氣體順北北東風下游擴散而不經過內陸,內陸也沒有明顯的二氧化硫排放源,因此也可能是模式低估了上風處二氧化硫排放。 在解析度的影響方面,水平解析度1公里垂直30層的模擬平均濃度值最高,而水平解析度3公里垂直45層的平均值最低,但差異只有0.3 g m-3。將硫酸根液態氧化形機制關閉,發現三組模擬的硫酸根氣膠濃度都有明顯下降,12小時的平均濃度大約降了24至29個百分比左右,而在平原南區液態氧化所形成的硫酸根可占總濃度五至七成,代表層積雲液態氧化反應對於近地面硫酸根氣膠濃度有明顯之影響。但模式解析度也有間接影響:當水平解析度增加時,可以解析出較小的渦流系統,將低層排放的二氧化硫較快速地送入雲中進行反應;但因所解析的大渦紊流更細緻,使得硫酸根氣膠高濃度的區域範圍較窄。而當提升垂直方向的解析度為45層時,對於底層大氣掌握度較高,因此較接近實際觀測使氣溫溫度較30層高,但水氣向上的通量卻沒有顯著增加使得雲水凝結減少,因此液態氧化反應量下降,造成硫酸根濃度減少。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:14:49Z (GMT). No. of bitstreams: 1 U0001-1410202117313400.pdf: 6610759 bytes, checksum: fffd3511a58725d0758b8d9a9f43b852 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii 英文摘要 v 圖表目錄 x 第一章 緒論 1 第二章 研究方法 4 2.1 模擬個案介紹 4 2.2 模擬設計 4 2.2.1 WRF設計 4 2.2.2 CMAQ設計 6 第三章 模擬結果 8 3.1 氣象場模擬結果 8 3.2 化學模擬結果 10 3.2.1 PM2.5觀測與模擬結果分析 10 3.2.2 氣膠濃度分布 10 3.2.3 硫酸液態化學開關實驗 11 3.3氣象與化學機制綜合分析 13 第四章 分析與討論 16 4.1平原及海上硫酸根分佈的差異 18 4.2 內陸地面硫酸根氣膠低估原因分析 21 第五章 結論與未來展望 23 5.1 結論 23 5.2 未來展望 25 參考文獻 27 表 32 圖 33 | |
| dc.language.iso | zh-TW | |
| dc.subject | 層積雲 | zh_TW |
| dc.subject | 氣膠 | zh_TW |
| dc.subject | 硫酸根 | zh_TW |
| dc.subject | 液態氧化反應 | zh_TW |
| dc.subject | 邊界層 | zh_TW |
| dc.subject | 大渦紊流 | zh_TW |
| dc.subject | sulfate | en |
| dc.subject | stratocumulus | en |
| dc.subject | large eddy | en |
| dc.subject | planetary boundary layer | en |
| dc.subject | liquid phase oxidant reaction | en |
| dc.subject | Aerosol | en |
| dc.title | 邊界層層積雲對臺灣中部地表氣膠濃度的影響 | zh_TW |
| dc.title | Influence of Sulfate Production in PBL-top Stratocumulus on Surface Aerosol Concentration over Central Taiwan | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪惠敏(Hsin-Tsai Liu),周崇光(Chih-Yang Tseng) | |
| dc.subject.keyword | 氣膠,硫酸根,液態氧化反應,邊界層,大渦紊流,層積雲, | zh_TW |
| dc.subject.keyword | Aerosol,sulfate,liquid phase oxidant reaction,planetary boundary layer,large eddy,stratocumulus, | en |
| dc.relation.page | 78 | |
| dc.identifier.doi | 10.6342/NTU202103729 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-31 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1410202117313400.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
