請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80733完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李昆達(Kung-Ta Lee) | |
| dc.contributor.author | Yen-Ning Chang | en |
| dc.contributor.author | 張晏寧 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:14:34Z | - |
| dc.date.available | 2021-11-05 | |
| dc.date.available | 2022-11-24T03:14:34Z | - |
| dc.date.copyright | 2021-11-05 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-15 | |
| dc.identifier.citation | Andrijany, V. S., Indrayanto, G., Soehono, L. A. (1998). Simultaneous effect of calcium, magnesium, copper and cobalt ions on sapogenin steroids content in callus cultures of Agave amaniensis. Plant Cell Tissue and Organ Culture, 55(2), 103-108. Baldwin, I. T. (1989). Mechanism of damage-induced alkaloid production in wild tobacco. Journal of Chemical Ecology 15(5), 1661-1680. Bourgaud, F., Gravot, A., Milesi, S., Gontier, E. (2001). Production of plant secondary metabolites: a historical perspective. Plant Science, 161(5), 839-851. Clarke, E. G. C. (1970). Chapter 7 The forensic chemistry of alkaloids. The Alkaloids: Chemistry and Physiology, 12. Constabel, C. P., Yip, L., Ryan, C. A. (1998). Prosystemin from potato, black nightshade, and bell pepper: primary structure and biological activity of predicted systemin polypeptides. Plant Molecular Biology, 36(1), 55-62. Couto, D., Zipfel, C. (2016, Sep). Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology, 16(9), 537-552. Dewey, R. E., Xie, J. (2013). Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. Phytochemistry, 94, 10-27. Facchini, P. J., Bohlmann, J., Covello, P. S., De Luca, V., Mahadevan, R., Page, J. E., Ro, D. K., Sensen, C. W., Storms, R., Martin, V. J. (2012). Synthetic biosystems for the production of high-value plant metabolites. Trends in Biotechnology, 30(3), 127-131. Farmer, E. E., Ryan, C. A. (1990). Interplant communication - airborne methyl jasmonate induces synthesis of proteinase-inhibitors in plant-leaves. Proceedings of the National Academy of Sciences of the United States of America, 87(19), 7713-7716. Ganapathi, T. R., Suprasanna, P., Rao, P. S., Bapat, V. A. (2004). Tobacco (Nicotiana tabacum L.)-A model system for tissue culture interventions and genetic engineering. Indian Journal of Biotechnology, 3, 171-184. Gundlach, H., Muller, M. J., Kutchan, T. M., Zenk, M. H. (1992). Jasmonic acid is a signal transducer in elicitor-induced plant-cell cultures. Proceedings of the National Academy of Sciences of the United States of America, 89(6), 2389-2393. Huang, Q. J., Wang, Y. (2016). Overexpression of TaNAC2D displays opposite responses to abiotic stresses between seedling and mature stage of transgenic Arabidopsis. Frontiers in Plant Science, 7. Kabera1, J. N., , E. S., , A. R. M. a. X. H. (2014). Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties Journal of Pharmacy and Pharmacology, 2, 377-392. Kang, L. (1995). The chemical defenses of plants to phytophagous insects. Chinese Bulletin of Botany, 12 (4), p. 22-27. Lanfermeijer, F. C., Staal, M., Malinowski, R., Stratmann, J. W., Elzenga, J. T. M. (2008, Jan). Micro-electrode flux estimation confirms that the Solanum pimpinellifolium cu3 mutant still responds to systemin. Plant Physiology, 146(1), 129-139. Lin, Y.-J. (2020). Effect of peptides on alkaloids occurrence in hairy root cultures National Taiwan University]. Taipei, Taiwan. Malinowski, R., Higgins, R., Luo, Y., Piper, L., Nazir, A., Bajwa, V. S., Clouse, S. D., Thompson, P. R., Stratmann, J. W. (2009). The tomato brassinosteroid receptor BRI1 increases binding of systemin to tobacco plasma membranes, but is not involved in systemin signaling. Plant Molecular Biology, 70(5), 603-616. Morrone, D., Hillwig, M. L., Mead, M. E., Lowry, L., Fulton, D. B., Peters, R. J. (2011). Evident and latent plasticity across the rice diterpene synthase family with potential implications for the evolution of diterpenoid metabolism in the cereals. Biochemical Journal, 435(3), 589-595. Narvaez-Vasquez, J., Ryan, C. A. (2004). The cellular localization of prosystemin: a functional role for phloem parenchyma in systemic wound signaling. Planta, 218(3), 360-369. Olsson, O. N. a. O. (1997). Getting to the root: The role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiologia Plantarum, 100, 463-473. Park, E. S., Moon, W. S., Song, M. J., Kim, M. N., Chung, K. H., Yoon, J. S. (2001). Antimicrobial activity of phenol and benzoic acid derivatives. International Biodeterioration Biodegradation, 47(4), 209-214. Pearce, G., Moura, D. S., Stratmann, J., Ryan, C. A. (2001). Production of multiple plant hormones from a single polyprotein precursor. Nature, 411(6839), 817-820. Pearce, G., Strydom, D., Johnson, S., Ryan, C. A. (1991). A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science, 253(5022), 895-897. Rani, P. U., Jyothsna, Y. (2010). Biochemical and enzymatic changes in rice plants as a mechanism of defense. Acta Physiologiae Plantarum, 32(4), 695-701. Renaud, S., Delorgeril, M. (1992). Wine, alcohol, platelets, and the French paradox for coronary heart-disease. Lancet, 339(8808), 1523-1526. Saitoh, F., Noma, M., Kawashima, N. (1985). The alkaloid contents of sixty Nicotiana species. Phytochemistry, 24(3), 477-480. Scheer, J. M., Ryan, C. A. (2002, Jul 9). The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proceedings of the National Academy of Sciences of the United States of America, 99(14), 9585-9590. Scheer, J. M., Ryan, C. A., Jr. (2002). The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proceedings of the National Academy of Sciences of the United States of America, 99(14), 9585-9590. Sears, J. E., Boger, D. L. (2015). Total synthesis of vinblastine, related natural products, and key analogues and development of inspired methodology suitable for the systematic study of their structure-function properties. Accounts of Chemical Research, 48(3), 653-662. Shi, M., Kwok, K. W., Wu, J. Y. (2007). Enhancement of tanshinone production in Salvia miltiorrhiza Bunge (red or Chinese sage) hairy-root culture by hyperosmotic stress and yeast elicitor. Biotechnology and Applied Biochemistry, 46, 191-196. Shoji, T. (2020). Nicotine Biosynthesis, Transport, and Regulation in Tobacco: Insights into the Evolution of a Metabolic Pathway. In The Tobacco Plant Genome (pp. 147-156). Steppuhn, A., Gase, K., Krock, B., Halitschke, R., Baldwin, I. T. (2004). Nicotine's defensive function in nature. PLOS Biology, 2(8), E217. Sui, X., Zhang, H., Song, Z., Gao, Y., Li, W., Li, M., Zhao, L., Li, Y., Wang, B. (2019, Sep 10). Ethylene response factor NtERF91 positively regulates alkaloid accumulations in tobacco (Nicotiana tabacum L.). Biochem Biophys Res Commun, 517(1), 164-171. Tabata, H. (2004). Paclitaxel production by plant-cell-culture technology. Biomanufacturing. Advances in Biochemical Engineering, 87. Tang, Y. M., Liu, Q. P., Liu, Y., Zhang, L. L., Ding, W. (2017, Nov 16). Overexpression of NtPR-Q Up-Regulates Multiple Defense-Related Genes in Nicotiana tabacum and Enhances Plant Resistance to Ralstonia solanacearum. Frontiers in Plant Science, 8. Wang, L., Einig, E., Almeida-Trapp, M., Albert, M., Fliegmann, J., Mithofer, A., Kalbacher, H., Felix, G. (2018, Mar). The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects. Nature Plants, 4(3), 152-156. Wasternack, C., Song, S. S. (2017). Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. Journal of Experimental Botany, 68(6), 1303-1321. Xu, B. F., Timko, M. P. (2004). Methyl jasmonate induced expression of the tobacco putrescine N-methyltransferase genes requires both G-box and GCC-motif elements. Plant Molecular Biology, 55(5), 743-761. Yeh, P.-H. (2018). Metabolomic analysis reveals nicotine production machinery in Nicotiana tabacum hairy roots. National Taiwan University]. Zhang, H., Zhang, H., Lin, J. (2020). Systemin-mediated long-distance systemic defense responses. New Phytologist, 226(6), 1573-1582. Zhou, M. L., Zhu, X. M., Shao, J. R., Tang, Y. X., Wu, Y. M. (2011). Production and metabolic engineering of bioactive substances in plant hairy root culture. Applied Microbiology and Biotechnology, 90(4), 1229-1239. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80733 | - |
| dc.description.abstract | 植物在面臨危險諸如環境壓力、受損及食草動物攻擊時,植物會生產二級代謝物。當Nicotiana tabacum受到損傷或是食草動物攻擊時,會釋出茄科植物特有的信號胜肽──系統素並從受傷細胞傳遞至整株植株,誘導茉莉酸信號途徑進而刺激下游防禦途徑以生產尼古丁;而外添加茉莉酸甲酯刺激茉莉酸信號途徑同樣會增加菸草的尼古丁累積。為了想進一步提升菸草毛狀根中的尼古丁累積量,實驗室先前研究嘗試對菸草毛狀根同時添加系統素及茉莉酸甲酯,然而,在實驗結果卻發現,比起只添加茉莉酸甲酯,混合添加茉莉酸甲酯及系統素含有較低的尼古丁累積量,額外的系統素添加並未增加更多尼古丁累積反而抑制來自茉莉酸甲酯的刺激。為了更深入了解此一現象,首先進行了不同菸草組織的確認,以不同株菸草毛狀根及菸草幼苗實驗,結果顯示在尼古丁含量上有類似模式,確認此現象可能存在於不同菸草組織。為了解其中抑制及調節機制,選取有關系統素誘導、尼古丁合成及傳送、多個植物激素誘導基因等進行基因表現分析。根據基因表現量分析結果,混合添加組比起單添加茉莉酸甲酯組在茉莉酸標記基因及尼古丁生合成基因表現量上調,其基因表現結果與代謝物結果相反,且乙烯標記基因表現量也有上調的情形。因此,我們提出假說,額外添加系統素於茉莉酸甲酯的背景下,系統素可能對茉莉酸信號途徑及乙烯信號途徑產生影響,且造成影響位於核酸層級以及代謝物層級前,導致了尼古丁累積量的下降。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:14:34Z (GMT). No. of bitstreams: 1 U0001-1510202102525600.pdf: 1801835 bytes, checksum: a77e01ed800b43d4c59c0a29afba6013 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝 i Abstract ii 中文摘要 iv Content v List of Tables and Figures vii Chapter 1: Introduction 1 1.1. Classification and production of plant secondary metabolites 1 1.2. Hairy root cultures 3 1.3. Plant defense response and jasmonate 4 1.4. Systemin in Solanaceae 5 1.5. Nicotine biosynthesis and transportation in Nicotiana tabacum 6 Chapter 2: Materials and methods 8 2.1. Plant materials 8 2.1.1. Hairy root culture 8 2.1.2. Seedling germination 8 2.2. Peptide and plant hormone application 9 2.2.1. Peptide and plant hormone preparation 9 2.2.2. Systemin and plant hormone treatment 9 2.3. Nicotine quantification 10 2.3.1. Nicotine extraction 10 2.3.2. UPLC condition 10 2.4. Gene expression analysis 11 2.4.1. RNA extraction and purification 11 2.4.2. First strand cDNA synthesis 12 2.4.3. Reverse transcription quantitative real-time PCR (RT-qPCR) 12 Chapter 3: Results 14 3.1. Effect of MeJA/TomSys treatment of methyl jasmonate and TomSys in tobacco hairy root clone 32 and 230. 14 3.2. Comparing effect of dosage of MeJA and TomSys between different clone of tobacco hairy roots. 15 3.3. Method development in tobacco seedlings 16 3.4. Effect of mixed treatment of methyl jasmonate and systemin on metabolites in tobacco seedlings. 18 3.5. Effect of different dosage of TomSys single treatment on metabolite in tobacco seedlings. 18 3.6. Effect of mixed treatment in JA-induced nicotine biosynthesis related gene of gene expression 19 3.7. Effect of mixed treatment in other hormone of gene expression 21 Chapter 4: Discussion 23 4.1. Treatment of MeJA and TomSys in different clone or tissue. 23 4.2. TomSys treatment induced response in tobacco. 25 4.3. Comparison between metabolites and gene expression results. 26 4.4. Marker gene of jasmonate-signaling pathway did not up-regulate after treating exogenous MeJA in seedlings. 27 Chapter 5: Conclusion 29 Abbreviation 30 References 42 | |
| dc.language.iso | en | |
| dc.subject | 二級代謝物 | zh_TW |
| dc.subject | 尼古丁 | zh_TW |
| dc.subject | 系統素 | zh_TW |
| dc.subject | 茉莉酸甲酯 | zh_TW |
| dc.subject | 毛狀根 | zh_TW |
| dc.subject | 菸草 | zh_TW |
| dc.subject | systemin | en |
| dc.subject | secondary metabolites | en |
| dc.subject | methyl jasmonate | en |
| dc.subject | hairy roots | en |
| dc.subject | nicotine | en |
| dc.subject | Nicotiana tabacum | en |
| dc.title | Systemin 對茉莉酸甲酯誘導菸草毛狀根及幼苗中的尼古丁累積之影響 | zh_TW |
| dc.title | The Effect of Systemin on the Methyl Jasmonate-induced Nicotine Accumulation in Tobacco Hairy Roots and Seedlings | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊健志(Hsin-Tsai Liu),劉啟德(Chih-Yang Tseng),賴爾珉,陳佩燁 | |
| dc.subject.keyword | 系統素,毛狀根,茉莉酸甲酯,菸草,尼古丁,二級代謝物, | zh_TW |
| dc.subject.keyword | systemin,hairy roots,methyl jasmonate,Nicotiana tabacum,nicotine,secondary metabolites, | en |
| dc.relation.page | 46 | |
| dc.identifier.doi | 10.6342/NTU202103745 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-15 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1510202102525600.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
