Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 臨床動物醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80693
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李雅珍(Ya-Jane Lee)
dc.contributor.authorYa-Li Changen
dc.contributor.author張雅俐zh_TW
dc.date.accessioned2022-11-24T03:13:08Z-
dc.date.available2021-11-05
dc.date.available2022-11-24T03:13:08Z-
dc.date.copyright2021-11-05
dc.date.issued2021
dc.date.submitted2021-10-20
dc.identifier.citation1. Manuel Muñoz, I. V., José Antonio García-Erce (2009). 'An update on iron physiology.' World J Gastroenterol. 15(37): 4617-4626. 2. Martina U. Muckenthaler, S. R., Matthias W. Hentze, and Bruno Galy (2017). 'A Red Carpet for Iron Metabolism.' Cell 168(3): 344-361. 3. Zhuzhen Zhang, F. Z., Xin Guo, Peng An, Yunlong Tao, Fudi Wang (2012). 'Ferroportin1 in hepatocytes and macrophages is required for the efficient mobilization of body iron stores in mice.' Hepatology 56: 961-967. 4. David E Leaf, D. W. S. (2016). 'Catalytic iron and acute kidney injury.' Am J Physiol Renal Physiol. 311(5): 871-876. 5. Eckl, N. B. a. P. M. (2015). 'Oxidative Stress and the Homeodynamics of Iron Metabolism.' Biomolecules 5(2): 808-847. 6. Dimitrios Galarisa, A. B., Kostas Pantopoulos (2019). 'Iron homeostasis and oxidative stress: An intimate relationship.' Biochim Biophys Acta Gen Subj 1866(12). 7. Luigi Zecca, M. B. H. Y., Peter Riederer, James R Connor, Robert R Crichton (2004). 'Iron, brain ageing and neurodegenerative disorders.' Nat Rev Neurosci 5(11): 863-873. 8. Xuexian Fang, H. W., Dan Han, Enjun Xie et al (2019). 'Ferroptosis as a target for protection against cardiomyopathy.' PNAS 116(7): 2672-2680. 9. Tiejian Wu, C. T. S., Jo L Freudenheim, Paola Muti, Ellen Smit (2004). 'Serum iron, copper and zinc concentrations and risk of cancer mortality in US adults.' Ann Epidemiol. 14(3): 195-201. 10. Bhupesh Panwar, O. M. G. (2016). 'Disorders of Iron Metabolism and Anemia in Chronic Kidney Disease.' Semin Nephrol. 36(4): 252-261. 11. R Baliga, N. U., S V Shah (1993). 'Increase in bleomycin-detectable iron in ischaemia/reperfusion injury to rat kidneys.' Biochem J. 291(3): 901-905. 12. Radhakrishna Baliga, Z. Z., Mithra Baliga, Sudhir V.Shah (1995). 'Evidence for cytochrome P-450 as a source of catalytic iron in myoglobinuric acute renal failure.' Kidney International 49(2): 362-369. 13. Rawan Eid, N. T. T. A., Michael T Greenwood (2016). 'Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms.' Biochim Biophys Acta Mol Cell Res 1864(2): 399-430. 14. R Baliga, Z. Z., M Baliga, N Ueda, S V Shah (1998). 'In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity.' Kidney Int. 53(2): 394-401. 15. Joanne M Dennis, P. K. W. (2017). 'Protective Role for Antioxidants in Acute Kidney Disease.' Nutrients 9(7): 714-718. 16. Scott J. Dixon, K. M. L., Michael R. Lamprecht, Wan Seok Yang Barclay Morrison III, Brent R. Stockwell (2012). 'Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death.' Cell 149(5): 1060-1072. 17. Stockwell, S. J. D. a. B. R. (2014). 'The role of iron and reactive oxygen species in cell death.' Nature Chemical Biology 10: 9-17. 18. Tilman Drüeke, V. W.-S., Ziad Massy, Béatrice Descamps-Latscha, Alain P Guerin, Sylvain J Marchais, Valérie Gausson, Gérard M London (2001). 'Iron therapy, advanced oxidation protein products, and carotid artery intima-media thickness in end-stage renal disease.' Circulation 106(17): 2212-2217. 19. A K Salahudeen, B. O., J D Bower, L J Roberts (2001). 'Increase in plasma esterified F2-isoprostanes following intravenous iron infusion in patients on hemodialysis.' Kidney Int. 60(4): 1525-1531. 20. Kuo, X. C. L. a. K.-L. (2018). 'Oxidative stress in chronic kidney disease.' Ren Replace Ther 4(53). 21. Anila Duni, V. L., Stefanos Roumeliotis, Dimitrios Peschos, and Evangelia Dounousi (2019). 'Oxidative Stress in the Pathogenesis and Evolution of Chronic Kidney Disease: Untangling Ariadne’s Thread.' Int J Mol Sci 20(15): 3009-3011. 22. Yoshiro Naito, A. F., Hisashi Sawada and Makiko Obosh et al. (2015). 'Association between renal iron accumulation and renal interstitial fibrosis in a rat model of chronic kidney disease.' Hypertens Res. 38(7): 463-470. 23. H Wang K Nishiya, H. I., T Hosokawa, K Hashimoto, T Moriki (2001). 'Iron deposition in renal biopsy specimens from patients with kidney diseases.' Am J Physiol Renal Physiol 38(5): 1038-1044. 24. Amy Barton Pai, T. C., Charles R McQuade, Jonathan Olp, Paul Hicks (2011). 'Non-transferrin bound iron, cytokine activation and intracellular reactive oxygen species generation in hemodialysis patients receiving intravenous iron dextran or iron sucrose.' Biometals 24(4): 603-613. 25. Garabed Eknoyan, N. L. a. K.-U. E. e. a. (2012). 'KDIGO Clinical Practice Guideline for Anemia in Chronic Kidney Disease.' Kidney Int. 2(4): 281-335. 26. Rachel P L van Swelm, J. F. M. W., Dorine W Swinkels (2020). 'The multifaceted role of iron in renal health and disease.' Nat Rev Nephrol 16(2): 77-98. 27. Nazanin Abbaspour, R. H., and Roya Kelishadi (2014). 'Review on iron and its importance for human health.' J Res Med Sci. 19(2): 164-174. 28. Alexander R. Bogdan, M. M., Kazunori Hashimoto, and Yoshiaki Tsuji (2016). 'Regulators of Iron Homeostasis: New Players in Metabolism, Cell Death, and Disease.' Trends in Biochemical Sciences 41(3): 274-286. 29. Wallace, D. F. (2016). 'The Regulation of Iron Absorption and Homeostasis.' Clin Biochem Rev 37(2): 51-62. 30. Babitt, S. D. a. J. L. (2017). 'Overview of Iron Metabolism in Health and Disease.' Hemodial Int 21(1): 6-20. 31. Matthias W.Hentze, M. U. M., Bruno Galy, Clara Camaschella (2010). 'Two to Tango: Regulation of Mammalian Iron Metabolism.' Cell 142(1): 24-38. 32. Eckardt, M. N. a. K.-U. (2007). 'Hypoxia and the HIF system in kidney disease.' J Mol Med 85: 1325-1330. 33. S Fishbane, E. A. K., L J Imbriano, J K Maesaka (1996). 'The evaluation of iron status in hemodialysis patients ' J Am Soc Nephrol. 7(12): 2654-2657. 34. Alison U Kelly, S. T. M., Prinesh Patel, Dinesh Talwar (2017). 'Interpreting iron studies ' BMJ 357(1-6). 35. Wei Wang, M. A. K., Lan G Coffman, Frank M Torti, Suzy V Torti (2010). 'Serum ferritin: Past, present and future.' Biochim Biophys Acta. 1800(8): 760-769. 36. Organization, W. H. (2011). 'Serum ferritin concentrations for the assessment of iron status and iron deficiency in populations.' 37. Paul D Ray, B.-W. H., Yoshiaki Tsuji (2012). 'Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling.' Cell Signal. 24(5): 981-991. 38. Graham J, B. a. E. J. (2011). 'Oxidative stress.' Best Pract Res Clin Obstet Gynaecol 25(3): 287-299. 39. Graham J, B. a. E. J. (2011). 'Oxidative stress.' Best Pract Res Clin Obstet Gynaecol 25(3): 287-299. 40. Pierre Brissot, M. R., Caroline Le Lan, Olivier Loréal (2011). 'Non-transferrin bound iron: A key role in iron overload and iron toxicity.' Biochim Biophys Acta Biomembr 1820(3): 0-410. 41. Toshitaka Nakamura, I. N., Hidenori Ichijo (2019). 'Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases.' Biochim Biophys Acta Gen Subj 1863: 1398-1409. 42. Ilaria Liguori, G. R., and Pasquale Abete (2018). 'Oxidative stress, aging, and diseases.' Clin Interv Aging 13: 757-772. 43. Y Xie, W. H., X Song, Y Yu, J Huang, X Sun, R Kang and D Tang (2016). 'Ferroptosis: process and function.' Cell Death Dis. 23: 369-379. 44. Stockwell, S. J. D. a. B. R. (2014). 'The role of iron and reactive oxygen species in cell death.' Nature Chemical Biology 10: 9-17. 45. Matthew Dodson, R. C.-P., Donna D Zhang (20219). 'NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis.' Redox Biol. 23: 101-107. 46. Wan Seok Yang, B. R. S. (2016). 'Ferroptosis: Death by Lipid Peroxidation.' Trends Cell Biol. 26(3): 165-176. 47. Yun-Jung Bae, J.-Y. Y., and Mi-Kyung Sung (2009). 'Dietary Intake and Serum Levels of Iron in Relation to Oxidative Stress in Breast Cancer Patients.' J Clin Biochem Nutr. 12(3): 355-360. 48. Cláudia Guerreiroa, B. S., Ângela C.Crespo et al. (2015). 'Decrease in APP and CP mRNA expression supports impairment of iron export in Alzheimer's disease patients.' Biochim Biophys Acta Mol Basis Dis 1852(10): 2116-2122. 49. Buyun Liu, Y. S., Guifeng Xu, Linda G Snetselaar, Gabriele Ludewig, Robert B Wallace, Wei Bao (2019). 'Association between Body Iron Status and Leukocyte Telomere Length, a Biomarker of Biological Aging, in a Nationally Representative Sample of US Adults.' J Acad Nutr Diet. 119(4): 617-625. 50. Chun Soo Lim, N. D. V. (2004). 'The effects of iron dextran on the oxidative stress in cardiovascular tissues of rats with chronic renal failure.' Kidney Int. 65(5): 1802-1809. 51. Tilman Drüeke, V. W.-S., Ziad Massy, Béatrice Descamps-Latscha, Alain P Guerin, Sylvain J Marchais, Valérie Gausson, Gérard M London (2001). 'Iron therapy, advanced oxidation protein products, and carotid artery intima-media thickness in end-stage renal disease.' Circulation 106(17): 2212-2217. 52. A K Salahudeen, B. O., J D Bower, L J Roberts (2001). 'Increase in plasma esterified F2-isoprostanes following intravenous iron infusion in patients on hemodialysis.' Kidney Int. 60(4): 1525-1531. 53. Blanca Murillo-Ortiz, J. R. E., Wendy Ivett Hernández Vázquez, Sandra Martínez-Garza, Sergio Solorio-Meza, Froylán Albarrán-Tamayo, Edna Ramos-Rodríguez, and Luis Benítez- Bribiesca (2016). 'Impact of Oxidative Stress in Premature Aging and Iron Overload in Hemodialysis Patients.' Oxid. Med. Cell. Longev. 2016: 1-8. 54. David Tovbin, D. M., Marina Vorobiov, Cidio Chaimovitz, Naomi Meyerstein (2002). 'Induction of protein oxidation by intravenous iron in hemodialysis patients: role of inflammation.' Am J Kidney Dis. 40(5): 1005-1012. 55. Regina Michelis, R. G., Shifra Sela, Revital Shurtz-Swirski et al. (2003). 'Carbonyl stress induced by intravenous iron during haemodialysis.' Nfephrol Dial Transplant. 18(5): 924-930. 56. Rajiv Agarwal, N. V., Nadine G. Sachs, Shawn Chase (2004). 'Oxidative stress and renal injury with intravenous iron in patients with chronic kidney disease.' Kidney Int. 65(6): 2279-2289. 57. Fuad N Ziyadeh, K. M. M., Naji S Mallat et al (2012). 'Glomerular hyperfiltration and proteinuria in transfusion-independent patients with β-thalassemia intermedia.' Nephron Clin Pract. 121(3-4): c136-143. 58. R N Srivastava, S. D., A Kalia, L B Travis, N H Ansari (1995). 'Increased glomerular and urinary malondialdehyde in puromycin aminonucleoside-induced proteinuria in rats.' Pediatr Nephrol. 9(1): 48-51. 59. Eileen S. Marks, M. L. B. a. S. K. B. e. a. (2017). 'Renal iron accumulation occurs in lupus nephritis and iron chelation delays the onset of albuminuria.' Sci. Rep 7(12821). 60. Yoshiro Naito, A. F., Hisashi Sawada and Makiko Obosh et al. (2015). 'Association between renal iron accumulation and renal interstitial fibrosis in a rat model of chronic kidney disease.' Hypertens Res. 38(7): 463-470. 61. Sanne E G van Raaij, A. J. R., Bart J Biemond et al (2019). 'Iron handling by the human kidney: glomerular filtration and tubular reabsorption both contribute to urinary iron excretion.' Am J Physiol Renal Physiol 316(3): F606-F614. 62. Sanne van Raaij, R. v. S. a. K. B. e. a. (2018). 'Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease.' Sci. Rep 8(9353). 63. Yasumasa Ikeda, I. O., Soichiro Tajima, Mizuki Imao et al. (2014). 'Iron Chelation by Deferoxamine Prevents Renal Interstitial Fibrosis in Mice with Unilateral Ureteral Obstruction.' PLoS ONE 9(2). 64. Yasumasa Ikeda, Y. H., Hirofumi Hamano, Tasuku Hirayama et al (2017). 'Dietary iron restriction alleviates renal tubulointerstitial injury induced by protein overload in mice.' Sci. Rep 7(10621). 65. A O Ige, F. A. O., B O Adele, I E Emediong, A O Odetola, E O Adewoye (2019). 'Pathophysiology of iron overload-induced renal injury and dysfunction: Roles of renal oxidative stress and systemic inflammatory mediators.' Pathophysiology 26(2): 175-180. 66. Hirofumi Hamano, Y. I., Hiroaki Watanabe et al (2018). 'The uremic toxin indoxyl sulfate interferes with iron metabolism by regulating hepcidin in chronic kidney disease.' Nephrol. Dial. Transplant. 33(4): 586-597. 67. Webb, R. F. K. a. C. B. (2010). 'Oxidative stress and neutrophil function in cats with chronic renal failure.' J. Vet. Intern. Med. 24(3): 514-519. 68. Johannes M Roob, G. K., Andreas Tiran et al (2000). 'Vitamin E attenuates oxidative stress induced by intravenous iron in patients on hemodialysis.' J Am Soc Nephrol. 11(3): 539-549. 69. Anila Duni, V. L., Stefanos Roumeliotis, Dimitrios Peschos, and Evangelia Dounousi (2019). 'Oxidative Stress in the Pathogenesis and Evolution of Chronic Kidney Disease: Untangling Ariadne’s Thread.' Int J Mol Sci 20(15): 3009-3011. 70. Denise Grotto, V. J. P., Joao Bastista T, Rocha et al (2009). 'Importance of the lipid peroxidation biomarkers and methodological aspects FOR malondialdehyde quantification.' Quim. Nova 32(1): 169-174. 71. Fumiaki Ito, Y. S., and Tomoyuki Ito (2019). 'Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation.' Antioxidants 8(3). 72. Isabella Dalle-Donne, R. R., Daniela Giustarini, Aldo Milzani, Roberto Colombo (2003). 'Protein carbonyl groups as biomarkers of oxidative stress.' Clin Chim Acta. 329(1-2): 23-38. 73. A Garcia-Garcia, H. R.-R., N Madayiputhiya, A Pappa, M I Panayiotidis, R Franco (2012). 'Biomarkers of protein oxidation in human disease.' Curr Mol Med 12(6): 681-697. 74. Frank Thévenod, N. A. W. (2016). 'Iron transport in the kidney: implications for physiology and cadmium nephrotoxicity.' Metallomics. 8(1): 17-42. 75. Cabantchik, I. S. a. Z. I. (2015). 'The Labile Side of Iron Supplementation in CKD.' JASN 26(11): 2612-2619. 76. David E Leaf, M. R., Suhas S Lele et al (2019). 'Iron, Hepcidin, and Death in Human AKI.' J Am Soc Nephrol. 30(3): 493-504. 77. Richard L Amdur, H. I. F., Jayanta Gupta et al (2016). 'Inflammation and Progression of CKD: The CRIC Study.' Clin J Am Soc Nephrol. 11(9): 1546-1556. 78. Agarwal, R. (2003). 'Proinflammatory effects of oxidative stress in chronic kidney disease: role of additional angiotensin II blockade.' Am J Physiol Renal Physiol 284(4): F863-F869. 79. A Jairam, R. D., P K Aggarwal, H S Kohli, K L Gupta, V Sakhuja, V Jha (2010). 'Iron status, inflammation and hepcidin in ESRD patients: The confounding role of intravenous iron therapy.' Indian J Nephrol. 20(3): 125-131. 80. N C van der Weerd, M. P. C. G., M J Nubé, P M ter Wee, D W Swinkels, C A J M Gaillard (2015). 'Hepcidin in chronic kidney disease: not an anaemia management tool, but promising as a cardiovascular biomarker.' Neth J Med. 73(3): 108-118. 81. Hirokazu Honda, N. H., Tomas Ganz, Takanori Shibata (2019). 'Iron Metabolism in Chronic Kidney Disease Patients.' Contrib Nephrol. 7: 103-111. 82. Gafter-Gvili A., S. A., Rozen-Zvi (2019). 'Iron Deficiency Anemia in Chronic Kidney Disease.' Haematologica 142: 44-50. 83. J Gest , C. L., A Eatroff (2015). 'Iron Status of Cats with Chronic Kidney Disease.' J Vet Intern Med. 29(6): 1488-1493. 84. R Javard, C. G., L Bau-Gaudreault, M Dunn (2017). 'Acute-Phase Proteins and Iron Status in Cats with Chronic Kidney Disease.' J Vet Intern Med. 31(2): 457-464. 85. Andrew H Sparkes, S. C., Serge Chalhoub et al (2016). 'ISFM Consensus Guidelines on the Diagnosis and Management of Feline Chronic Kidney Disease.' J. Feline Med. Surg. 18(3): 219-239. 86. Bohn, A. A. (2013). 'Diagnosis of disorders of iron metabolism in dogs and cats.' Vet Clin North Am Small Anim Pract. 43(6): 1319-1330. 87. Atieh Modaresi, M. N., Zahra Sahraei (2015). 'Oxidative stress in chronic kidney disease.' Iran J Kidney Dis. 9(3): 165-179. 88. Stacey Ruiz, P. E. P., Richard A. Zager, and Nosratola D. Vaziri, M.D. (2013). 'Targeting the Transcription Factor Nrf2 to Ameliorate Oxidative Stress and Inflammation in Chronic Kidney Disease.' Kidney Int. 83(6): 1029-1041. 89. L.K., R. (2000). 'Fundamental studies of interferences in ICP-MS.' Bibliographic information available from INIS 32: 37. 90. Rogério Mendes, C. C., Carla Pestana (2009). 'Measurement of malondialdehyde in fish: A comparison study between HPLC methods and the traditional spectrophotometric test.' Food Chem. 112(4): 1038-1045. 91. Sharma, S. (2019). 'Role of redox iron towards an increase in mortality among patients: a systemic review and meta-analysis.' Blood Res. 54(2): 87-101. 92. Mungli Prakash, S. U., Ravindra Prabhu (2005). 'Serum non-transferrin bound iron in hemodialysis patients not receiving intravenous iron.' Clin Chim Acta. 360(1-2): 194-198. 93. Kruszewski, M. (2003). 'Labile iron pool: the main determinant of cellular response to oxidative stress.' Mutat Res. 531(1-2): 81-92. 94. Shah, S. V. (2004). 'Oxidants and iron in chronic kidney disease.' Kidney Int. 66: S50-S55. 95. R Baliga, Z. Z., M Baliga, N Ueda, S V Shah (1998). 'In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity.' Kidney Int. 53(2): 394-401. 96. S E G van Raaij, R. M., D W Swinkels, R P L van Swelm (2018). 'Inhibition of Nrf2 alters cell stress induced by chronic iron exposure in human proximal tubular epithelial cells.' Toxicol Lett. 295: 179-186. 97. Fritz, S. H. a. J. (2018). 'The water requirements and drinking habits of cats.' Royal Canin(28.3). 98. W Whitehouse, J. Q., S Wan, K Monaghan, R Robbins, L A Trepanier (2017). 'Urinary F 2 -Isoprostanes in Cats with International Renal Interest Society Stage 1-4 Chronic Kidney Disease.' J Vet Intern Med. 31(2): 449-456. 99. Emanuela Valle, L. P., Diana Vergnano et al (2019). 'Investigation of hallmarks of carbonyl stress and formation of end products in feline chronic kidney disease as markers of uraemic toxins.' J Feline Med Surg. 21(6): 465-474. 100. S Yu, I. P.-R. (2006). 'Dietary supplements of vitamins E and C and beta-carotene reduce oxidative stress in cats with renal insufficiency.' Vet Res Commun. 30(4): 403-413. 101. Nicolle Breusing , T. G. (2010). 'Biomarkers of protein oxidation from a chemical, biological and medical point of view.' Exp Gerontol. 45(10): 733-737. 102. A-S Bargnoux, M. M., S Badiou, A-M Dupuy, B Canaud et al (2009). 'Carbonyl stress and oxidatively modified proteins in chronic renal failure.' Ann Biol Clin (Paris) 67(2): 153-158. 103. Patrick Steven Tucker, V. J. D., Thin Han, Michael Ian Kingsley (2013). 'Clinical and research markers of oxidative stress in chronic kidney disease.' Biomarkers. 18(2): 103-115. 104. G A Andrews, P. S. C., J E Smith (1994). 'Enzyme-linked immunosorbent assay to measure serum ferritin and the relationship between serum ferritin and nonheme iron stores in cats.' Vet Pathol. 31(6): 674-678. 105. Graham, T. D. J.-W. a. D. Y. (2011). 'Diagnosis and management of iron deficiency anemia in the 21st century.' Therap Adv Gastroenterol. 4(3): 177-184. 106. R., R. A. (2015). 'The relationship between ferritin and anemia parameters in females with iron deficiency anemia and inflammation.' Jordan Med. J. 49(4): 205-214. 107. Wei Wang, M. A. K., Lan G Coffman, Frank M Torti, Suzy V Torti (2010). 'Serum ferritin: Past, present and future.' Biochim Biophys Acta. 1800(8): 760-769. 108. Le Viet Thang, N. T. K., Nguyen Van Hung et al (2020). 'Serum total iron-binding capacity and iron status in patients with non-dialysis-dependent chronic kidney disease: A cross-sectional study in Vietnam.' Asia Pac J Clin Nutr. 29(1): 48-54. 109. N Ueda, R. B., S V Shah (1996). 'Role of 'catalytic' iron in an animal model of minimal change nephrotic syndrome.' Kidney Int. 49(2): 370-373. 110. Nagata, M. (2016). 'Podocyte injury and its consequences.' Kidney Int. 89(6): 1221-1230. 111. Yanggang Yuan, X. X., Chuanyan Zhao et al (2015). 'The roles of oxidative stress, endoplasmic reticulum stress, and autophagy in aldosterone/mineralocorticoid receptor-induced podocyte injury.' Lab Invest. 95(12): 1374-1386. 112. William A Wilmer, B. H. R., Christopher J Hebert, Sunil V Rao, Karen Kumor, Lee A Hebert (2003). 'Management of glomerular proteinuria: a commentary.' J Am Soc Nephrol. 14(12): 3217-3232. 113. Shereen M Hamza, J. R. B. D. (2014). 'Systemic and renal oxidative stress in the pathogenesis of hypertension: modulation of long-term control of arterial blood pressure by resveratrol.' Front Physiol. 5(292). 114. William J. Welch, T. C., Glenn Solis et al (2006). 'Role of Extracellular Superoxide Dismutase in the Mouse Angiotensin Slow Pressor Response.' Hypertension 48(5): 934-941. 115. María Cristina Armas-Padilla, M. J. A.-H., Beatriz Sosa-Canache et al (2007). 'Nitric oxide and malondialdehyde in human hypertension.' Am J Ther. 14(2): 172-176. 116. Mee Kyoung Kim, K. H. B., Ki-Ho Song et al (2012). 'Increased serum ferritin predicts the development of hypertension among middle-aged men.' Am J Hypertens. 25(4): 492-497. 117. Yoshiro Naito, S. H., Hisashi Sawada et al (2011). 'Dietary iron restriction prevents hypertensive cardiovascular remodeling in Dahl salt-sensitive rats.' Hypertension 57(3): 497-504. 118. Maria Heloisa Massola Shimizu, T. M. C., Magali de Araujo et al (2005). 'N-acetylcysteine attenuates the progression of chronic renal failure.' Kidney Int. 68(5): 2208-2217. 119. Y Hinokio, S. S., M Hirai, C Suzuki, M Suzuki, T Toyota (2002). 'Urinary excretion of 8-oxo-7, 8-dihydro-2'-deoxyguanosine as a predictor of the development of diabetic nephropathy.' Diabetologia. 45(6): 877-882. 120. Wenyuan Zhao, S. S. C., Yuanjian Chen, Robert A Ahokas, Yao Sun (2008). 'Kidney fibrosis in hypertensive rats: role of oxidative stress.' Am J Nephrol. 28(4): 548-554. 121. Kuo, X. C. L. a. K.-L. (2018). 'Oxidative stress in chronic kidney disease.' Ren Replace Ther 4(53). 122. Wei Cao, F. F. H., Jing Nie (2011). 'AOPPs and the progression of kidney disease.' Kidney Int Suppl. 4(1): 102-106. 123. Eckl, N. B. a. P. M. (2015). 'Oxidative Stress and the Homeodynamics of Iron Metabolism.' Biomolecules 5(2): 808-847. 124. David J Leehey, D. J. P., Srivasa Chebrolu, Rajiv Agarwal (2005). 'Sodium ferric gluconate causes oxidative stress but not acute renal injury in patients with chronic kidney disease: a pilot study.' Nephrol Dial Transplant. 20(1): 135-140. 125. Xin Chen, P. B. C., Daolin Tang, and Rui Kang (2021). 'Characteristics and Biomarkers of Ferroptosis.' Front. Cell Dev. Biol. 9. 126. Seonghun Kim, S.-W. K., Jeongho Joo et al (2021). 'Characterization of ferroptosis in kidney tubular cell death under diabetic conditions.' Cell Death Dis. 12(160). 127. Salazar, J. H. (2014). 'Overview of Urea and Creatinine.' Lab Med. 45(1): e19-e20. 128. Iuchi, Y. (2012). Anemia Caused by Oxidative Stress, InTech. 129. Yoshihito Iuchi, F. O., Kunishige Onuma, Tadashi Onoda, Hironobu Asao, Masanobu Kobayashi, Junichi Fujii (2007). 'Elevated oxidative stress in erythrocytes due to a SOD1 deficiency causes anaemia and triggers autoantibody production.' Biochem J. 402(2): 219-227. 130. Hwei Jing, W.-L. H., Vin-Cent Wu et al (2020). 'Urine hemojuvelin in cats with naturally occurring kidney disease.' J Vet Intern Med. 34(3): 1222-1230. 131. Zhang, A.S. (2010). 'Control of Systemic Iron Homeostasis by the Hemojuvelin-Hepcidin Axis.' Adv Nutr. 1(1): 38-45. 132. Yusuke Ohsaki, C. T., Takefumi Mori, and Sadayoshi Ito (2017). 'The Effect of Carbonyl Stress on Renal Injury Induced by Renal Congestion.' Hypertension 70(s1). 133. Yi-Chieh Li, Y.-M. S., Jen-Ai Lee (2013). 'Gentamicin caused renal injury deeply related to methylglyoxal and N(ɛ)-(carboxyethyl)lysine (CEL).' Toxicol Lett. 219(1): 85-92.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80693-
dc.description.abstract"非運鐵蛋白結合鐵 (NTBI) 是一種能夠開啟氧化還原循環型態的鐵,在動物實驗及臨床人類實驗中已知會藉由氧化壓力路徑而對腎臟造成傷害,但在貓隻腎臟病扮演的角色仍未被研究。本篇研究的目的於評估慢性腎臟病貓的總鐵含量和血清中NTBI及血液和尿液氧化壓力是否會升高,彼此的關連性,以及這些項目在貓隻腎臟病能否作為新的預後指標。 本篇研究共收錄69隻貓,並分作兩個組別:(1) 控制組,共有17隻貓,(2) 慢性腎臟病組,共有52隻貓,而慢性腎臟病組的貓根據國際腎臟權益組織分級 (IRIS) 進行次分組,位於IRIS第二級的貓納入早期腎臟病組,而位於IRIS第三級及第四級的貓則納入晚期腎臟病組。每個病患都完整記錄病史、臨床病理學檢查結果,並進行血清NTBI、血漿carbonyl、血漿ferritin以及尿液malondialdehyde (MDA)的檢測。其中血清NTBI除以血容比(hematocrit)作比值 (serum NTBI-to-hematocrit ratio, SNHR),而尿液MDA除以尿液肌酸酐 (Creatinine)作比值 (urine MDA-to-creatinine ratio, UMCR)。 實驗結果顯示晚期腎臟病組的SNHR及血漿carbonyl比起健康控制組顯著提高 (SNHR的中位數及四分位距分別為0.200 [0.070] ×10-2 ppb及0.160 [0.050] ×10-2 ppb,P值為0.035 ; 血漿carbonyl的中位數及四分位距分別為0.160 [0.060] nmol/mg及0.110 [0.050] nmol/mg,P值小於0.001),但UMCR在任何慢性腎臟病分組中則無顯著差異。晚期腎臟病組貓隻比起控制組及早期腎臟病組貓隻有較低的血漿ferritin (血漿ferritin的中位數及四分位距分別為20.590 [11.650]、30.370 [12.600] ng/ml及21.550 [15.360] ng/ml,P值為0.012)。 此外,患有蛋白尿貓相較於沒有蛋白尿的貓有顯著提高的UMCR及SNHR (UMCR的中位數及四分位距分別為0.600 [0.340] ×10-1及0.290 [0.220] ×10-1,P值為0.004;SNHR的中位數及四分位距分別為0.200 [0.070] ×10-2 ppb及0.170 [0.050] ×10-2 ppb,P值為0.007)。同樣地,高血壓的貓比起正常血壓的貓有顯著提高的UMCR及SNHR (UMCR的中位數及四分位距分別為0.670 [0.590] ×10-1及0.380 [0.330] ×10-1,P值為0.006;SNHR的中位數及四分位距分別為0.250 [0.120] ×10-2 ppb及0.170 [0.040] ×10-2 ppb,P值為0.034)。 在90天內腎臟病惡化的貓比起沒有腎臟病惡化的貓有顯著提高的UMCR (UMCR的中位數及四分位距分別為0.550 [0.380] ×10-1及0.290 [0.20] ×10-1,P值為0.025)。同時,UMCR在CKD貓中在90天內有無惡化的比較,亦具有顯著意義的適當臨界值 (0.365×10-1)。 總結來說患有慢性腎病的貓有顯著提高的血漿carbonyl及SNHR,在此族群中,患有高血壓或蛋白尿者有顯著較高的SNHR及UMCR,並且UMCR能夠預測慢性腎病的惡化。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:13:08Z (GMT). No. of bitstreams: 1
U0001-1810202115372000.pdf: 2325293 bytes, checksum: 97c62b85385e75523480c2eb46847355 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員審定書 ………………………………………………………..I 致謝 ……………………………………………………..III 摘要 ……………………………………………………...IV ABSTRACT ………………………………………………………V CHAPER 1. INTRODUCTION 1 CHAPTER 2. LITERATURE REVIEW 4 2.1 NORMAL IRON HOMEOSTASIS 4 2.1.1 Iron function 4 2.1.2 Iron handling and regulation 4 2.1.3 Clinical parameters for interpreting iron status 7 2.2 OXIDATIVE STRESS CAUSE BY IRON 8 2.2.1 Definition of oxidative stress 8 2.2.2 The role of iron in oxidative-stress-induced toxicity 9 2.2.3 The mechanism of iron-mediated cell death and senescence 10 2.2.4 The association between CKD and iron-mediated ROS 12 2.2.5 The effect of kidney disease to oxidative stress 13 2.2.6 Biomarkers of oxidation 13 2.3 THE ROLE OF IRON IN KIDNEY DISEASE 14 2.3.1 Renal iron handling and metabolism 14 2.3.2 The effect of iron-overload to patients with CKD 15 2.3.3 The effect of CKD to iron-metabolism 16 2.3.4 Iron status in cats with CKD 16 2.3.5 New therapeutic insights in patients with CKD 17 CHAPTER 3. MATERIALS AND METHODS 18 3.1 PATIENTS AND SAMPLE COLLECTION 18 3.1.1 SAMPLE COLLECTION AND STORAGE 18 3.1.2 Control group 18 3.1.3 Chronic kidney disease (CKD) group 18 3.1.4 Study design 19 3.2 MEASUREMENT OF SERUM NTBI BY SIMPLE INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC (ICP-MS) AS PREVIOUSLY DESCRIBED 22 3.2.1. Calibration curve of NTBI 23 3.2.2. Recovery rate and precision 24 3.2.3. Limit of detection (LOD) and limit of quantification (LOQ) 24 3.2.4. ICP-MS operating conditions 24 3.3 MEASUREMENT OF URINARY MDA 26 3.3.1. Chemicals and reagents 26 3.3.2. Supplies 26 3.3.3. Apparatus 26 3.3.4. HPLC conditions 27 3.3.5. Sample preparation method 28 3.3.6. Standard solution preparation 28 3.3.7. Calibration curve 29 3.3.8. Recovery 29 3.3.9. Limit of detection (LOD) and limit of quantification (LOQ) 29 3.4. MEASUREMENT OF PLASMA CARBONYL BY COMMERCIAL PROTEIN CARBONYL ELISA KIT 30 3.5. MEASUREMENT OF PLASMA FERRITIN BY COMMERCIAL FELINE FERRITIN ELISA KIT 31 3.6. STATISTICS ANALYSIS 31 CHAPTER 4. RESULT 33 4.1. VALIDATION OF MDA, NTBI, FERRITIN AND CARBONYL MEASUREMENT METHOD 33 4.2 PATIENTS AND SAMPLE COLLECTION 35 4.3 COMPARISONS IN OXIDATIVE STRESS, SERUM NTBI AND FERRITIN BETWEEN DIFFERENT STAGES OF CKD. 36 4.4 OXIDATIVE STRESS, SERUM FERRITIN AND SERUM NTBI AND THEIR CORRELATION IN CATS WITH PROTEINURIA OR HYPERTENSION 46 4.5 CORRELATIONS BETWEEN UMCR, SNHR, FERRITIN AND OTHER CLINICOPATHOLOGICAL PARAMETERS 50 4.6 COMPARISONS BETWEEN PROGRESSION AND NON-PROGRESSION CATS IN CKD GROUP ……………………………………………………………………………..58 4.7 RECEIVER OPERATING CURVE (ROC) ANALYSIS BETWEEN PROGRESSION AND NON-PROGRESSION CATS IN CKD GROUP 60 4.8 LOGISTIC REGRESSION ANALYSES FOR DIFFERENT PARAMETERS ASSOCIATED WITH CKD PROGRESSION IN CATS 61 4.9 KAPLAN-MEIRE ANALYSIS AND PROGRESSION OF CKD 65 CHAPTER 5. DISCUSSION 67 5.1 OXIDATIVE STRESS, SERUM NTBI AND FERRITIN IN CATS WITH DIFFERENT CKD STAGES. 67 5.2 OXIDATIVE STRESS AND SERUM NTBI IN CKD CATS WITH PROTEINURIA OR HYPERTENSION 72 5.3 INVESTIGATION OF OXIDATIVE STRESS AND BLOOD PRESSURE IN CKD PROGRESSION 75 5.4 CORRELATION OF OXIDATIVE STRESS, SERUM NTBI OR FERRITIN TO OTHER PARAMETERS 77 5.5 LIMITATIONS 80 5.6 CONCLUSIONS 81 REFERENCE 82 "
dc.language.isoen
dc.subject丙二醛zh_TW
dc.subject腎臟zh_TW
dc.subject貓zh_TW
dc.subject非運鐵蛋白結合鐵zh_TW
dc.subject氧化壓力zh_TW
dc.subject儲鐵蛋白zh_TW
dc.subject羰基zh_TW
dc.subjectkidneyen
dc.subjectmalondialdehydeen
dc.subjectcarbonylen
dc.subjectoxidative stressen
dc.subjectnon transferrin-bound ironen
dc.subjectcatsen
dc.subjectferritinen
dc.title氧化壓力及非運鐵蛋白結合鐵在貓慢性腎臟病與病程進展之相關性zh_TW
dc.titleAssociation of non-transferrin bound iron with oxidative stress in the deterioration and progression of feline chronic kidney diseaseen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周濟眾(Hsin-Tsai Liu),吳允升(Chih-Yang Tseng),黃耀輝,許正一
dc.subject.keyword腎臟,貓,非運鐵蛋白結合鐵,氧化壓力,儲鐵蛋白,羰基,丙二醛,zh_TW
dc.subject.keywordkidney,cats,non transferrin-bound iron,oxidative stress,ferritin,carbonyl,malondialdehyde,en
dc.relation.page90
dc.identifier.doi10.6342/NTU202103831
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-22
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept臨床動物醫學研究所zh_TW
顯示於系所單位:臨床動物醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1810202115372000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved