請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80692完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鍾立來(Lap-Loi Chung) | |
| dc.contributor.author | Dan Chiao | en |
| dc.contributor.author | 喬丹 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:13:05Z | - |
| dc.date.available | 2021-11-05 | |
| dc.date.available | 2022-11-24T03:13:05Z | - |
| dc.date.copyright | 2021-11-05 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-20 | |
| dc.identifier.citation | [1] 內政部營建署,「建築物耐震設計規範」(2011)。 [2] Chung LL, Yang CY, Chen HM, Lu LY, “Dynamic behavior of nonlinear rolling isolation system,” Structural Control and Health Monitoring, Vol. 16, Issue 1, pp. 32-54 (2009). [3] Yang CY, Hsieh CH, Chung LL, Chen HM, Wu LY, “Effectiveness of an eccentric rolling isolation system with friction damping,” Journal of Vibration and Control, Vol. 18, Issue 14, 2149-2163 (2012). [4] Skinner RI,Robinson WH,MC Verry GH, “An introduction to seismic isolation,” Chichester,England:John Wiley and Sons(1993). [5] Ryan KL, Kelly JM, Chopra AK, “Formulation and implementation of a lead-rubber bearing model including material and geometric nonlinearities,” Proceedings of the 17th Analysis and Computation Specialty Conference, St. Louis, Missouri, USA (2006). [6] Shen J, Tsai MH, Chang KC, Lee GC, “Performance of a seismically isolated bridge under near-fault earthquake ground motions,”Journal of Structural Engineering, 130: 861-868 (2004). [7] Robinson, W. H., “Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes,” Earthquake Engineering Structural Dynamics, 10(4), 593–604 (1982). [8] Shoaei, P., Tahmasebi Orimi, H., Zahrai, S. M., “Seismic reliability-based design of inelastic base-isolated structures with lead-rubber bearing systems,” Soil Dynamics and Earthquake Engineering, 115, 589–605 (2018). [9] Wang YP, Chung LL, Liao WH, “Seismic response analysis of bridges isolated with friction pendulum bearing,” Earthquake Engineering and Structural Dynamics, 27: 1069–1093 (1998). [10] Imbsen, R. A., “Use of Isolation for Seismic Retrofitting Bridges,” Journal of Bridge Engineering, 6(6), 425–438 (2001). [11] Jangid, R. S., “Optimum friction pendulum system for near-fault motions,” Engineering Structures, 27(3), 349–359 (2005). [12] Pranesh MURNAL and Ravi SINHA, “Behavior of structures isolated using VFPI during near source ground motion,”13th World Conference on Earthquake Engineer, Vancouver, B.C., Canada, Paper No. 3105 (2004). [13] Soni, D. P., Mistry, B. B., Jangid, R. S., Panchal, V. R., “Seismic response of the double variable frequency pendulum isolator,” Structural Control and Health Monitoring, 18(4), 450–470 (2010). [14] Lu L. Y., Shih M. H. and Wu C. Y., “Near Fault Seismic Isolation using Sliding Bearing with Variable Curvatures,” Proc. Of 13th World Conference on Earthquake Engineering, Paper No.3264 (2004). [15] Hosseini, M., Soroor, A., “Using orthogonal pairs of rollers on concave beds (OPRCB) as a base isolation system-part I: analytical, experimental and numerical studies of OPRCB isolators,” The Structural Design of Tall and Special Buildings, 20(8), 928–950 (2010). [16] Tsai CS, Lin Y-C, Chen W-S, Su HC., “Tri-directional shaking table tests of vibration sensitive equipment with static dynamics interchangeable-ball pendulum system,” Earthquake Eng Eng Vib, 9, 103–112 (2010). [17] Hong, S. Hur, D. J., “Dynamic Behavior of a Simple Rolling Seismic Isolator with a Position Restoring Device,” Applied Sciences, 8(10), 1910. (2018). [18] Londhe, Y. B., Jangid, R. S., “Effectiveness of elliptical rolling rods for base isolation,” Journal of Structural Engineering, Vol. 124, Issue 4, 469-472 (1998). [19] Londhe, Y. B., Jangid, R. S., “Dynamic response of structures supported on elliptical rolling rods,” Doboku Gakkai Ronbunshu, (612), 11–20 (1999). [20] Butterworth JW, “Seismic response of a non-concentric rolling isolator system,” Advances in Structural Engineering, Vol. 9, Issue 1, 39-54 (2006). [21] Aruna R, Naseef U, Vasant M, “Performance of bi-directional elliptical rolling rods for base isolation of buildings under near-fault earthquakes,” Advances in Structural Engineering, 10-15 (2017). [22] Tsai MH, Wu SY, Chang KC, Lee GC, “Shaking table tests of a scaled bridge model with rolling type seismic isolation bearings, ” Eng Struct; 29(9):694–702 (2007). [23] Lee GC, Ou YC, Niu T, Song J, Liang Z, “Characterization of a roller seismic isolation bearing with supplemental energy dissipation for highway bridges, ” J Struct Eng ASCE; 136(5):502–10 (2010). [24] Wang SJ, Hwang JS, Chang KC, Shiau CY, Lin WC, Tsai MS, et al, “Sloped multiroller isolation devices for seismic protection of equipment and facilities, ”Earthq Eng Struct Dyn 2014;43(10):1443–61. [25] Wang, S.-J., Yu, C.-H., Lin, W.-C., Hwang, J.-S., Chang, K.-C., “A generalized analytical model for sloped rolling-type seismic isolators,” Engineering Structures, 138, 434–446 (2017). [26] Wang, S.-J., Yu, C.-H., Cho, C.-Y., Hwang, J.-S., “Effects of design and seismic parameters on horizontal displacement responses of sloped rolling-type seismic isolators,” Structural Control and Health Monitoring, e2342 (2019). [27] 盧煉元、施明祥、張婉妮,「近斷層震波對滑動式隔震結構之影響評估」,結構工程,第十八卷,第四期,第 23-48 頁 (2003)。 [28] Constantinou, M., Mokha, A., Reinhorn, A., “Teflon Bearings in Base Isolation II: Modeling,” Journal of Structural Engineering, 116(2), 455–474 (1990). [29] 許瞬程,「滾動隔震多自由度結構振動台試驗研究」,國立臺灣科技大學營建工程學系碩士論文 (2010)。 [30] William J. Palm III, 張智星 審閱,翁展翔 譯,「MATLAB在工程上的應用」。 [31] 游豐碩,「近斷層地震對結構減震系統效益之影響研究」,國立臺灣大學土木工程學系碩士論文 (2016)。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80692 | - |
| dc.description.abstract | " 傳統線性隔震系統因其回復力與位移呈線性關係,使隔震系統具有特定頻率,當地表外力頻率接近該隔震系統之特定頻率時,可能因共振效應使系統反應超過容許值。因此,許多非線性隔震系統之相關研究逐漸產出,本研究所探討之偏心滾動隔震系統(Eccentric Rolling Isolation System, ERIS)即屬其一。於機構上,隔震平台以偏心梢接於圓形隔震器上,隔震平台上可裝置隔震標的物,例如建築結構或機電設備。過去對於ERIS之初步研究,已由數值模擬初步驗證,相較於線性系統,ERIS確實能減緩共振反應,以應對近斷層地震。然而,其隔震頻率受圓形隔震器之半徑主導,故需要占用較大的空間,不利實務應用。再者,先前於理論上,假設上部結構重遠大於圓形隔震器,進而忽略後者。然而,若考慮於設備隔震應用之前提下,兩者重量差距縮小,可能不滿足原研究對質量忽略之假設,分析模擬亦無法掌握實際動力特性。有鑑於此,本研究將圓形隔震器質量納入理論考量,修正理論推導,進一步模擬並掌握圓形隔震器慣性對隔震性能之影響。本研究首先以能量法重新推導考慮圓形隔震器質量之運動方程式,系統採庫倫摩擦模型模擬系統之消能行為。經參數敏感度分析,探討系統設計參數,包含隔震器半徑、偏心比與質量比對系統動力行為之影響。隨著偏心比之降低、半徑增加與質量比增加可延長隔震系統基本震動週期。於強迫振動之模擬,考慮數筆包含近斷層與遠域震波並配合不同振幅,確認隔震系統之性能。最終,以小型振動台試驗,以四組不同參數組合之隔震系統試體進行試驗。由試驗量測與數值擬合之結果,成功驗證理論與分析之正確性。證明考慮圓形隔震器質量量之必要性,以及其所帶來之機構尺寸縮減之效益,大幅提升實務應用之可行性。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:13:05Z (GMT). No. of bitstreams: 1 U0001-1810202117571500.pdf: 9729864 bytes, checksum: 5af8bc96b1c027ed237ec97fbbaa9d5d (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 vi 圖目錄 ix 表目錄 xiv 第一章 緒論 1 1.1 研究動機與背景 1 1.2 文獻回顧 2 1.3 本文內容 3 第二章 偏心滾動隔震系統理論 5 2.1 運動方程式推導 5 2.2 數值模擬方法 8 2.3 圓形隔震器滾動慣性之影響 10 第三章 數值模擬與參數敏感度分析 16 3.1 系統參數及隔震性能指標 16 3.2 自由振動之參數敏感度 17 3.2.1 頻率分析 17 3.2.2 力與位移關係 18 3.3 簡諧震波下之參數敏感度 21 3.4 地震震波下之參數敏感度 24 3.4.1 偏心比對系統反應之影響 25 3.4.2 圓形隔震器半徑對系統反應之影響 27 3.4.3 質量比對系統反應之影響 28 3.4.4 摩擦係數對系統反應之影響 30 3.5 地震震波下隔震系統比較 32 3.5.1 設計流程 32 3.5.2 ERIS修正圓形隔震器慣性前、後比較 34 3.5.3 修正後ERIS與線性系統比較 35 第四章 振動台實驗結果及擬合 67 4.1 振動台實驗介紹 67 4.1.1 實驗構架 67 4.1.2 實驗設備 68 4.1.3 實驗項目 68 4.2 實驗量測數據前處理 69 4.2.1 實驗量測加速度歷時濾波 69 4.2.2 摩擦係數識別 70 4.3 實驗結果擬合 72 4.3.1 自由振動 72 4.3.2 簡諧震波 73 4.3.3 地震震波 76 4.3.4 擬合結果之探討 83 第五章 結論與未來展望 138 5.1 結論 138 5.2 未來展望 139 參考文獻 141 附錄 A 145 附錄 B 152 附錄 C 157 | |
| dc.language.iso | zh-TW | |
| dc.subject | 摩擦消能 | zh_TW |
| dc.subject | 隔震 | zh_TW |
| dc.subject | 非線性 | zh_TW |
| dc.subject | 滾動 | zh_TW |
| dc.subject | 偏心 | zh_TW |
| dc.subject | 振動台試驗 | zh_TW |
| dc.subject | shaking table test | en |
| dc.subject | nonlinearity | en |
| dc.subject | frictional damping | en |
| dc.subject | isolation | en |
| dc.subject | eccentricity | en |
| dc.subject | rolling | en |
| dc.title | 偏心滾動隔震系統之數值模擬及實驗驗證 | zh_TW |
| dc.title | Numerical and Experimental Verification of Eccentric Rolling Isolation System | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 楊卓諺(Cho-Yen Yang) | |
| dc.contributor.oralexamcommittee | 張家銘(Hsin-Tsai Liu),盧煉元(Chih-Yang Tseng) | |
| dc.subject.keyword | 隔震,非線性,滾動,偏心,振動台試驗,摩擦消能, | zh_TW |
| dc.subject.keyword | isolation,nonlinearity,rolling,eccentricity,shaking table test,frictional damping, | en |
| dc.relation.page | 164 | |
| dc.identifier.doi | 10.6342/NTU202103834 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1810202117571500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
