Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80673
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳文方(Wen-Fang Wu)
dc.contributor.authorHsin-Hsiang Pengen
dc.contributor.author彭新翔zh_TW
dc.date.accessioned2022-11-24T03:12:29Z-
dc.date.available2021-11-04
dc.date.available2022-11-24T03:12:29Z-
dc.date.copyright2021-11-04
dc.date.issued2021
dc.date.submitted2021-10-26
dc.identifier.citation[1] 中華民國行政院經濟部能源局, 能源統計資料, 2021, (Accessed on: 2021/06/25). [Online]. Available: https://www.moeaboe.gov.tw/ [2] Enerdata, Global Energy Statistical Yearbook, 2020, (Accessed on: 2021/06/25). [Online]. Available: https://yearbook.enerdata.net/ [3] 中華民國行政院經濟部能源局,全國電力資源供需報告, 2021, (Accessed on: 2021/06/25). [Online]. Available: https://www.moeaboe.gov.tw/ [4] H. Ritchie and M. Roser, “Energy mix,” Our World in Data, 2020. [Online]. Available: https://ourworldindata.org/energy-mix/ (Accessed on: 2021/06/25). [5] T. Gönen, Electric Power Distribution Engineering. Boca Raton, FL: CRC Press, 2014. [6] M. B. Nissen, “High performance development as distributed generation,” IEEE Potentials, vol. 28, no. 6, pp. 25–31, 2009. [7] 臺灣電力股份有限公司, “電網供電資訊:台電供電系統簡介.” [Online]. Available: https://www.taipower.com.tw/tc/page.aspx?mid=211 (Accessed on: 2021/05/01). [8] F.-H. Guan, D.-M. Zhao, X. Zhang, B.-T. Shan, and Z. Liu, “Research on distributed generation technologies and its impacts on power system,” in 2009 International Conference on Sustainable Power Generation and Supply. IEEE,2009, pp. 1–6. [9] M. Z. Jacobson, “Review of solutions to global warming, air pollution, and energy security,” Energy Environmental Science, vol. 2, no. 2, pp. 148–173,2009. [10] X.-G. He, K.-R. Feng, X.-Y. Li, A. B. Craft, Y. Wada, P. Burek, E. F.Wood, and J. Sheffield, “Solar and wind energy enhances drought resilience and groundwater sustainability,” Nature Communications, vol. 10, no. 1, Nov.2019. [Online]. Available: https://doi.org/10.1038/s41467-019-12810-5/ [11] H. Ritchie and M. Roser, “Renewable energy,” Our World in Data,2020. [Online]. Available: https://ourworldindata.org/renewable-energy (Accessed on: 2021/06/25). [12] IEA, Net Zero by 2050, 2021, (Accessed on: 2021/06/25). [Online]. Available: https://www.iea.org/reports/net-zero-by-2050 [13] GWEC, Global Wind Report 2019, 2019, (Accessed on: 2021/06/25). [Online]. Available: https://gwec.net/global-wind-report-2019/ [14] IEA, Renewables 2019: Analysis and Forecasts to 2024, Oct. 2019. [Online]. Available: https://doi.org/10.1787/b3911209-en [15] IEA, Global EV Outlook, 2021, (Accessed on: 2021/06/25). [Online]. Available: https://www.iea.org/reports/global-ev-outlook-2021 [16] E. Hertwich, J. A. de Larderel, A. Arvesen, P. Bayer, J. Bergesen, E. Bouman,T. Gibon, G. Heath, C. Peña, P. Purohitet al., Green Energy Choices: The Benefits, Risks, and Trade-offs of Low-carbon Technologies for Electricity Production. Report of the International Resource Panel, United Nations Environment, 2016. [17] Z.-Y. Wu, C. Wang, P. Wolfram, Y.-X. Zhang, X. Sun, and E. Hertwichb, “Assessing electric vehicle policy with region-specific carbon footprints,” Applied Energy, vol. 256, p. 113923, 2019. [18] P. Asmus, “Microgrids, virtual power plants and our distributed energy future,” The Electricity Journal, vol. 23, no. 10, pp. 72–82, Dec. 2010. [Online]. Available: https://doi.org/10.1016/j.tej.2010.11.001 [19] D. Pudjianto, C. Ramsay, and G. Strbac, “Virtual power plant and system integration of distributed energy resources,” IET Renewable Power Generation, vol. 1, no. 1, p. 10, 2007. [Online]. Available: https://doi.org/10.1049/iet-rpg:20060023 [20] D. Pudjianto, G. Strbac, and D. Boyer, “Virtual power plant: managing synergies and conflicts between transmission system operator and distribution system operator control objectives,” CIRED - Open Access Proceedings Journal, vol. 2017, no. 1, pp. 2049–2052, Oct. 2017. [Online]. Available: https://doi.org/10.1049/oap-cired.2017.0829 [21] M. Braun and P. Strauss, “A review on aggregation approaches of controllable distributed energy units in electrical power systems, ”International Journal of Distributed Energy Resources, vol. 4, no. 4, pp. 297–319, 2008. [22] K.-W. Lu, “An integrated environmental assessment of virtual power plant,” Master’s Thesis, National Taiwan University, Graduate Institute of Environmental Engineering, Jan. 2010. [23] C.-Y. Wei, “Study on operation strategy of virtual power plants in electricity markets,” Master’s Thesis, National Sun Yat-sen University, Graduate Institute of Communications Engineering, Jan. 2014. [24] S.-K. Lin, “Operation planning of virtual power plant with demand response,” Master’s Thesis, National Sun Yat-sen University, Department of Electrical Engineering, Jan. 2015. [25] H.-C. Jhong, “The economic benefits analysis and policy recommendation of virtual power plants,” Master’s Thesis, National Chung Hsing University, Department of Applied Economics, Jul. 2016, in Chinese. [26] C. Justus, W. Hargraves, and A. Yalcin, “Nationwide assessment of potential output from wind-powered generators,” Journal of Applied Meteorology, vol. 15,no. 7, pp. 673–678, 1976. [27] K. Nigim and P. Parker, “Heuristic and probabilistic wind power availability estimation procedures: Improved tools for technology and site selection,” Renewable Energy, vol. 32, no. 4, pp. 638–648, 2007. [28] R. Panda, T. Sarkar, and A. Bhattacharya, “Stochastic study of the wind-energy potential of India, ” Energy, vol. 15, no. 10, pp. 921–930, 1990. [29] M. B. H. Kumar, S. Balasubramaniyan, S. Padmanaban, and J. B. Holm-Nielsen, “Wind energy potential assessment by Weibull parameter estimation using multiverse optimization method: A case study of tirumala region in India,” Energies, vol. 12, no. 11, p. 2158, 2019. [30] 莊月璇, “台灣地區風速機率分佈之研究,” Master’s Thesis, National Central University, Department of Civil Engineering, 2001. [31] A. A. Teyabeen, “Statistical analysis of wind speed data,” in IREC2015 The Sixth International Renewable Energy Congress. IEEE, 2015, pp. 1–6. [32] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, “STL: A seasonal-trend decomposition, ”Journal of official statistics, vol. 6, no. 1, pp.3–73, 1990. [33] G. Foster, “Wavelets for period analysis of unevenly sampled time series, ”The Astronomical Journal, vol. 112, p. 1709, 1996. [34] H. Liu, H.-Q. Tian, and Y.-F. Li, “Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction,” Applied Energy,vol. 98, pp. 415–424, 2012. [35] A. Kusiak, H.-Y. Zheng, and Z. Song, “Short-term prediction of wind farm power: A data mining approach, ”IEEE Transactions on Energy Conversion, vol. 24, no. 1, pp. 125–136, Mar. 2009. [36] J. Hu, J. Wang, and G. Zeng, “A hybrid forecasting approach applied to windspeed time series,” Renewable Energy, vol. 60, pp. 185–194, 2013. [37] H. Liu, Q.-H. Tian, D.-F. Pan, and Y.-F. Li, “Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks,” Applied Energy, vol. 107, pp. 191–208, 2013. [38] Y.-H. Ting, “Wind speed forecasting by time series,” Master’s Thesis, National Chi Nan University, Department of Information Management, July 2015. [39] P. Patrinos, S. Trimboli, and A. Bemporad, “Stochastic MPC for real-time market-based optimal power dispatch,” in2011 50th IEEE Conference on Decision and Control and European Control Conference. IEEE, 2011, pp. 7111–7116. [40] H. Renaudineau, F. Donatantonio, J. Fontchastagner, G. Petrone, G. Spagn-uolo, J.-P. Martin, and S. Pierfederici, “A PSO-based global MPPT technique for distributed PV power generation,” IEEE Transactions on Industrial Electronics, vol. 62, no. 2, pp. 1047–1058, 2015. [41] H.-C. Chang, “Application of model predictive control for electrical vehicle charging station operation planning,” Master’s Thesis, National Sun Yat-sen University, Department of Electrical Engineering, Jul. 2014, in Chinese. [42] S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation, ”IEEE transactions on pattern analysis and machine intelligence, vol. 11, no. 7, pp. 674–693, 1989. [43] H. Wang, Z.-J. Hu, M.-Y. Hu, and Z.-Y. Zhang, “Short-term prediction of wind farm power based on PSO-SVM,” in 2012 Asia-Pacific Power and Energy Engineering Conference. IEEE, Mar. 2012. [Online]. Available: https://doi.org/10.1109/appeec.2012.6307114 [44] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series Analysis: Forecasting and Control. John Wiley Sons, 2015. [45] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin classifiers,” in Proceedings of the fifth annual workshop on Computational learning theory, 1992, pp. 144–152. [46] N. Cristianini, J. Shawe-Tayloret al., An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2000. [47] G. R. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan, “Learning the kernel matrix with semidefinite programming,” Journal of Ma-chine learning research, vol. 5, no. Jan, pp. 27–72, 2004. [48] H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, and V. Vapnik, “Support vector regression machines,” in Advances in neural information processing systems, 1997, pp. 155–161. [49] K.-M. Wang, T.-W. Kuo, S.-P. Hung, J.-Y. Hsu, and C.-H. Sun, “The study of the optimal operation of electricity market under the electricity liberalization policy in Taiwan, ”Monthly journal of Taipower’s engineering, vol. 805, pp.61–81, 2015. [50] M. Shahidehpour, H. Yamin, and Z.-Y. Li, Market Operations in Electric Power Systems: Forecasting, Scheduling, and Risk Management. John Wiley Sons,2003. [51] T. Li and M. Shahidehpour, “Strategic bidding of transmission-constrained GENCOs with incomplete information, ”IEEE Transactions on power Systems, vol. 20, no. 1, pp. 437–447, 2005. [52] H. Qian, J.-H. Zhang, J.-S. Lai, and W.-S. Yu, “A high-efficiency grid-tie battery energy storage system, ”IEEE transactions on power electronics, vol. 26,no. 3, pp. 886–896, 2010. [53] 許家興, “電動車電池類型與電池基礎介紹, ”電動車與車輛電子研究報告, 財團法人車輛研究測試中心, 2009. [54] J. D. Dogger, B. Roossien, and F. D. Nieuwenhout, “Characterization of li-ion batteries for intelligent management of distributed grid-connected storage, ”IEEE Transactions on Energy Conversion, vol. 26, no. 1, pp. 256–263, 2010. [55] J. Richalet, A. Rault, J. Testud, and J. Papon, “Model predictive heuristiccontrol,” Automatica (Journal of IFAC), vol. 14, no. 5, pp. 413–428, 1978. [56] 臺灣電力股份有限公司, “臺灣電力股份有限公司電價表.” [Online]. Available: https://www.taipower.com.tw/upload/238/2018070210412196443.pdf (Accessed on: 2019/12/11).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80673-
dc.description.abstract"由於近年來持續成長的電力需求以及民眾環保意識的抬頭,加上傳統集中式電力系統的缺點日漸浮現,各國紛紛開始關注能充分利用再生能源且具有良好環境效益的分散式發電 (Distributed Generation, DG) 技術,也致使虛擬電廠 (Virtual Power Plant, VPP) 概念的生成。本研究以一整合風力電場並以電動汽車做為儲能裝置的虛擬電廠為分析探討對象,以時間電價 (Time-of-Use, TOU) 做為調度規劃基礎,參與電力市場交易。為考量實際系統變化調整控制參數,本研究選擇使用模型預測控制 (Model Predictive Control, MPC),針對發電數量具動態變化的風力電場,規劃其移動時域 (Receding Horizon) 內的儲能裝置容量以獲得最佳收益;而為鼓勵將電動車併入虛擬電廠參與電力市場交易,本研究提出以電動車額外充電作為紅利,取代對電動車車主直接的金錢補助;針對短期風速的預測,本研究透過小波轉換分解時間序列訊號,並結合傳統時間序列預測與支持向量迴歸預測的一種 ARIMA-SVR 組合預測模型,讓我們得以根據現有風速資料預測風力電場的發電量。在案例模擬中,本研究使用澎湖縣東吉島氣象站 2018 年間的歷史風速資料,經短期風力預測與收益模型分析後,驗證所提最佳化收益分析方法的可行性。分析結果顯示,針對短期風速的預測,採用小波分解 ARIMA-SVR 組合預測模型相較於傳統單一預測模型,在預測能力上有所提升;而整合電動汽車作為儲能裝置的虛擬電廠確能獲得較高收益。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:12:29Z (GMT). No. of bitstreams: 1
U0001-1910202104575400.pdf: 2083556 bytes, checksum: c737cfa0f70f907ec3635e243877d911 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員審定書 i 致謝 iii 摘要 v Abstract vii 目錄 ix 圖目錄 xiii 表目錄 xv 第一章 緒論 1 1.1 前言 1 1.2 研究背景 3 1.2.1 電力系統發展 3 1.2.2 再生能源發展 6 1.2.3 電動汽車發展 8 1.2.4 我國能源情勢 10 1.3 研究動機 12 1.4 研究目的 12 1.5 本文架構 13 第二章 文獻回顧 15 2.1 虛擬電廠概念 15 2.2 風電預測評估 17 2.3 電力調度規劃 19 2.4 小結 20 第三章 研究方法 21 3.1 研究流程概述 21 3.2 風力發電預測 21 3.2.1 小波時頻分析 22 3.2.2 時間序列模型 26 3.2.3 支持向量迴歸 33 3.2.4 模型評價方法 38 3.3 收益模型分析 40 3.3.1 自由電力市場 40 3.3.2 風機功率模型 43 3.3.3 電動汽車電池 44 3.3.4 模型預測控制 46 3.4 小結 50 第四章 模型建構 51 4.1 風力電場發電預測 51 4.1.1 時間序列預測建模流程 51 4.1.2 支持向量迴歸建模流程 52 4.1.3 組合預測模型建模流程 52 4.2 虛擬電廠收益分析 55 4.2.1 虛擬電廠架構概述 55 4.2.2 風力電場等效模型 56 4.2.3 電動汽車等效模型 56 4.2.4 電力市場收益模型 57 4.2.5 預測控制求解流程 61 4.3 小結 63 第五章 案例分析 65 5.1 模擬情境概述 65 5.2 風速預測分析 67 5.2.1 風速資料取得 67 5.2.2 歷史風速概述 67 5.2.3 單一預測模型 69 5.2.4 組合預測模型 72 5.2.5 模型誤差比較 76 5.3 電廠收益分析 77 5.3.1 電動汽車儲能影響 77 5.3.2 電動汽車數量需求 78 5.4 小結 80 第六章 結論與建議 81 6.1 研究總結 81 6.2 研究限制 82 參考文獻 85 附錄A — 再生能源場址 93 A.1 臺灣風力發電場址資料 94 A.2 臺灣太陽光電場址資料 96 附錄B — 風力機組規格 99 B.1 Enercon E40/600 Model 99 B.2 Enercon E44/900 Model 100
dc.language.isozh-TW
dc.subject風力電場zh_TW
dc.subject時間序列預測zh_TW
dc.subject虛擬電廠zh_TW
dc.subject模型預測控制zh_TW
dc.subject電動車zh_TW
dc.subjectVirtual Power Planten
dc.subjectModel Predictive Controlen
dc.subjectTime Series Predictionen
dc.subjectElectric Vehicleen
dc.subjectWind Farmen
dc.title整合電動車與風力電場之虛擬電廠收益分析zh_TW
dc.titleProfit Analysis of a Virtual Power Plant Consisting of a Wind Farm and Electric Vehiclesen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃奎隆(Hsin-Tsai Liu),陳湘鳳(Chih-Yang Tseng)
dc.subject.keyword虛擬電廠,風力電場,電動車,時間序列預測,模型預測控制,zh_TW
dc.subject.keywordVirtual Power Plant,Wind Farm,Electric Vehicle,Time Series Prediction,Model Predictive Control,en
dc.relation.page101
dc.identifier.doi10.6342/NTU202103859
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1910202104575400.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved