Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8065
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor杜宜殷zh_TW
dc.contributor.advisorYi-Yin Doen
dc.contributor.author關旂zh_TW
dc.contributor.authorChi Kuanen
dc.date.accessioned2021-05-19T18:05:08Z-
dc.date.available2024-08-20-
dc.date.copyright2019-08-26-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation陳欣郁. 2015. 應用文心蘭基因默化轉殖延緩老化及抵抗喜姆比蘭嵌紋病毒與齒舌蘭輪斑病毒. 國立臺灣大學生物資源暨農學院園藝暨景觀學系博士論文.
許榮華、吳省寬、游婷媛、林于倫、徐懷恩、李泰昌、王美琪、郭雅芩、林瑞松. 2010. 外銷文心蘭切花生產品質之關鍵. p. 17-32. 刊於:汪澤宏等編. 2010花卉研究團隊研究現況與展望研討會專刊. 行政院農業委員會農業試驗所. 台中.
黃肇家. 1998. 文心蘭切花之乙烯生成以及外加乙烯與去除花藥蓋對花朵品質之影響. 中華農業研究. 47:125-134.
Abdel-Ghany, S.E., P. Muller-Moule, K.K. Niyogi, M. Pilon, and T. Shikanai. 2005. Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17:1233-1251.
Alexa A, Rahnenfuhrer J. 2019. topGO: Enrichment Analysis for Gene Ontology. R package version 2.36.0. https://bioconductor.org/packages/topGO.html
Ai, C. and L. Kong. 2018. CGPS: A machine learning-based approach integrating multiple gene set analysis tools for better prioritization of biologically relevant pathways. J. Genet. Genomics 45:489-504.
Anders, S. and W. Huber. 2010. Differential expression analysis for sequence count data. Genome biol. 11:R106.
Aukerman, M.J. and H. Sakai. 2003. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15.
Bi, F., X. Meng, C. Ma, and G. Yi. 2015. Identification of miRNAs involved in fruit ripening in Cavendish bananas by deep sequencing. BMC Genomics 16:776.
Binder, B.M., F.I. Rodriguez, and A.B. Bleecker. 2010. The copper transporter RNA1 is essential for biogenesis of ethylene receptors in Arabidopsis. J. Biol. Chem. 285:37263-37270.
Bishopp, A., A.P. Mahonen, and Y. Helariutta. 2006. Signs of change: Hormone receptors that regulate plant development. Dev. 133:1857-1869.
Blighe K. 2019. EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. R package version 1.2.0. https://github.com/kevinblighe/EnhancedVolcano.
Bolger, A.M., M. Lohse, and B. Usadel. 2014. Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics 30:2114-2120.
Bovy, A.G., G.C. Angenent, H.J. Dons, and A.-C. Van Altvorst. 1999. Heterologous expression of the Arabidopsis ETR1-1 allele inhibits the senescence of carnation flowers. Mol. Breed. 5:301-308.
Bryant, D.M., K. Johnson, T. Ditommaso, T. Tickle, M.B. Couger, D. Payzin-Dogru, T.J. Lee, N.D. Leigh, T.H. Kuo, F.G. Davis, J. Bateman, S. Bryant, A.R. Guzikowski, S.L. Tsai, S. Coyne, W.W. Ye, R.M. Freeman, Jr., L. Peshkin, C.J. Tabin, A. Regev, B.J. Haas, and J.L. Whited. 2017. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18:762-776.
Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T.L. Madden. 2009. Blast+: Architecture and applications. BMC Bioinformatics 10:421.
Camargo-Ramirez, R., B. Val-Torregrosa, and B. San Segundo. 2018. MiR858-mediated regulation of flavonoid-specific MYB transcription factor genes controls resistance to pathogen infection in Arabidopsis. Plant Cell Physiol. 59:190-204.
Chang, Y.-Y., Y.-W. Chu, C.-W. Chen, W.-M. Leu, H.-F. Hsu, and C.-H. Yang. 2011. Characterization of Oncidium ‘Gower Ramsey’ transcriptomes using 454 GS-FLX pyrosequencing and their application to the identification of genes associated with flowering time. Plant and Cell Physiol. 52:1532-1545.
Chao, Q., M. Rothenberg, R. Solano, G. Roman, W. Terzaghi, and J.R. Ecker. 1997. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89:1133-1144.
Chao, Y.T., C.L. Su, W.H. Jean, W.C. Chen, Y.C. Chang, and M.C. Shih. 2014. Identification and characterization of the MicroRNA transcriptome of a moth orchid Phalaenopsis aphrodite. Plant Mol. Biol. 84:529-548.
Chen, S.Y., H.C. Tsai, R. Raghu, Y.Y. Do, and P.L. Huang. 2011. cDNA cloning and functional characterization of ETHYLENE-INSENSITIVE3 orthologs from Oncidium Gower Ramsey involved in flower cutting and pollinia cap dislodgement. Plant Physiol. Biochem. 49:1209-1219.
Czimmerer, Z., J. Hulvely, Z. Simandi, E. Varallyay, Z. Havelda, E. Szabo, A. Varga, B. Dezso, M. Balogh, A. Horvath, B. Domokos, Z. Torok, L. Nagy, and B.L. Balint. 2013. A versatile method to design stem-loop primer-based quantitative PCR assays for detecting small regulatory RNA molecules. PLoS One 8:e55168
Dai, X., Z. Zhuang, and P.X. Zhao. 2018. PsRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Res. 46:W49-W54.
Friedlander, M.R., S.D. Mackowiak, N. Li, W. Chen, and N. Rajewsky. 2012. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40:37-52.
Garcia-Molina, A., S. Xing, and P. Huijser. 2014. Functional characterisation of Arabidopsis SPL7 conserved protein domains suggests novel regulatory mechanisms in the Cu deficiency response. BMC Plant Biol. 14:231.
Grabherr, M.G., B.J. Haas, M. Yassour, J.Z. Levin, D.A. Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. Di Palma, B.W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, and A. Regev. 2011. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29:644-652.
Guo, C., Y. Xu, M. Shi, Y. Lai, X. Wu, H. Wang, Z. Zhu, R.S. Poethig, and G. Wu. 2017. Repression of miR156 by miR159 regulates the timing of the juvenile-to-adult transition in Arabidopsis. Plant Cell 29:1293-1304.
Guo, H. and J.R. Ecker. 2003. Plant responses to ethylene gas are mediated by SCF EBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell 115:667-677.
Guo, H. and J.R. Ecker. 2004. The ethylene signaling pathway: New insights. Curr. Opin. Plant Biol. 7:40-49.
Hofacker, I.L. 2003. Vienna RNA secondary structure server. Nucleic Acids Res. 31:3429-3431.
Huerta-Cepas, J., K. Forslund, L.P. Coelho, D. Szklarczyk, L.J. Jensen, C. Von Mering, and P. Bork. 2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 34:2115-2122.
Jagadeeswaran, G., Y.F. Li, and R. Sunkar. 2014. Redox signaling mediates the expression of a sulfate-deprivation-inducible microRNA395 in Arabidopsis. Plant J. 77:85-96.
Jones-Rhoades, M.W. and D.P. Bartel. 2004. Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Mol. Cell 14:787-799.
Jones-Rhoades, M.W., D.P. Bartel, and B. Bartel. 2006. MicroRNA and their regulatory roles in plants. Annu. Rev. Plant Biol. 57:19-53.
Kawashima, C.G., N. Yoshimoto, A. Maruyama-Nakashita, Y.N. Tsuchiya, K. Saito, H. Takahashi, and T. Dalmay. 2009. Sulphur starvation induces the expression of MicroRNA-395 and one of its target genes but in different cell types. Plant J. 57:313-321.
Kim, J.H., H.R. Woo, J. Kim, P.O. Lim, I.C. Lee, S.H. Choi, D. Hwang, and H.G. Nam. 2009. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323:1053-1057.
Koyama, T., N. Mitsuda, M. Seki, K. Shinozaki, and M. Ohme-Takagi. 2010. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 22:3574-3588.
Langmead, B. and S.L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:357-359.
Langmead, B., C. Trapnell, M. Pop, and S.L. Salzberg. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10:R25.
Li, B. and C.N. Dewey. 2011. RSEM: Accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12:323.
Li, Z., J. Peng, X. Wen, and H. Guo. 2013. ETHYLENE-INSENSITIVE3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25:3311-3328.
Liang, G., F. Yang, and D. Yu. 2010. MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J. 62:1046-1057.
Liu, N., L. Tu, L. Wang, H. Hu, J. Xu, and X. Zhang. 2017. MicroRNA 157-targeted SPL genes regulate floral organ size and ovule production in cotton. BMC Plant Biol. 17:7.
Liu, Y.X., M. Wang, and X.J. Wang. 2014. Endogenous small RNA clusters in plants. Genomics Proteomics Bioinformatics 12:64-71.
Maruyama-Nakashita, A., Y. Nakamura, T. Tohge, K. Saito, and H. Takahashi. 2006. Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 18:3235-3251.
Mason, M.G. and G.E. Schaller. 2005. Histidine kinase activity and the regulation of ethylene signal transduction. Can. J. Bot. 83:563-570.
Pei, H., N. Ma, J. Chen, Y. Zheng, J. Tian, J. Li, S. Zhang, Z. Fei, and J. Gao. 2013a. Integrative analysis of miRNA and mRNA profiles in response to ethylene in rose petals during flower opening. PLoS One 8:e64290.
Pei, H., N. Ma, J. Tian, J. Luo, J. Chen, J. Li, Y. Zheng, X. Chen, Z. Fei, and J. Gao. 2013b. An NAC transcription factor controls ethylene-regulated cell expansion in flower petals. Plant Physiol. 163:775-791.
Qi, Y., X. He, X.J. Wang, O. Kohany, J. Jurka, and G.J. Hannon. 2006. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443:1008-1012.
Robinson, M.D., D.J. Mccarthy, and G.K. Smyth. 2010. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139-140.
Rodrıguez, F.I., J.J. Esch, A.E. Hall, B.M. Binder, G.E. Schaller, and A.B. Bleecker. 1999. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:996-998.
Rodriguez, R.E., M.A. Mecchia, J.M. Debernardi, C. Schommer, D. Weigel, and J.F. Palatnik. 2010. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Dev. 137:103-112.
Rogers, H.J. 2013. From models to ornamentals: How is flower senescence regulated? Plant Mol. Biol. 82:563-574.
Rubio-Somoza, I. and D. Weigel. 2011. MicroRNA networks and developmental plasticity in plants. Trends in Plant Sci. 16:258-264.
Schommer, C., J.F. Palatnik, P. Aggarwal, A. Chételat, P. Cubas, E.E. Farmer, U. Nath, and D. Weigel. 2008. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol. 6:e230.
Shannon, P., A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498-2504.
Shaw, J.-F., H.-H. Chen, M.-F. Tsai, C.-I. Kuo, and L.-C. Huang. 2002. Extended flower longevity of Petunia hybrida plants transformed with boers, a mutated ERS gene of Brassica oleracea. Mol. Breed. 9:211-216.
Shibuya, K., M. Nagata, N. Tanikawa, T. Yoshioka, T. Hashiba, and S. Satoh. 2002. Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.). J. Exp. Bot. 53:399-406.
Shibuya, K., K.G. Barry, J.A. Ciardi, H.M. Loucas, B.A. Underwood, S. Nourizadeh, J.R. Ecker, H.J. Klee, and D.G. Clark. 2004. The central role of PhEIN2 in ethylene responses throughout plant development in Petunia. Plant Physiol. 136:2900-2912.
Van Doorn, W.G. and E.J. Woltering. 2008. Physiology and molecular biology of petal senescence. J. Exp. Bot. 59:453-480.
Wang, H. and H. Wang. 2015. The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Mol. Plant 8:677-688.
Wang, Y., W. Zou, Y. Xiao, L. Cheng, Y. Liu, S. Gao, Z. Shi, Y. Jiang, M. Qi, and T. Xu. 2018. MicroRNA1917 targets CTR4 splice variants to regulate ethylene responses in tomato. J. Exp. Bot. 69:1011-1025.
Wang, Y.X., Q. Wang, L.P. Gao, B.Z. Zhu, Z. Ju, Y.B. Luo, and J.H. Zuo. 2017. Parsing the regulatory network between small RNAs and target genes in ethylene pathway in tomato. Front. Plant Sci. 8:527.
Wawrzynska, A., G. Moniuszko, and A. Sirko. 2015. Links between ethylene and sulfur nutrition-a regulatory interplay or just metabolite association? Front. Plant Sci. 6:1053.
Wawrzynska, A. and A. Sirko. 2016. EIN3 interferes with the sulfur deficiency signaling in Arabidopsis thaliana through direct interaction with the SLIM1 transcription factor. Plant Sci. 253:50-57.
Wen, M., Y. Shen, S. Shi, and T. Tang. 2012. miREvo: An integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinformatics 13:140.
Yang, C.-P., Z.-Q. Xia, J. Hu, Y.-F. Zhuang, Y.-W. Pan, and J.-P. Liu. 2018. Transcriptome analysis of Oncidium petals provides new insights into the initiation of petal senescence. J. Hortic. Sci. Biotech. 94:1-12.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8065-
dc.description.abstract文心蘭 (Oncidesa) 是富有經濟價值的切花,其花部老化受乙烯影響。藉由RNA干擾技術默化乙烯訊息傳導途徑中關鍵的轉錄因子ETHYLENE INSENSITIVE3 (EIN3) 基因具有延長花期的效果。為瞭解默化EIN3對其他基因表現的影響與小核糖核酸 (small RNA, sRNA) 的調控機制,本研究分析文心蘭南西OgEIL1默化轉殖株與未轉殖株間轉錄體 (transcriptome) 與 sRNA資料庫的表現差異,嘗試建構OgEIL1在文心蘭中的調控網絡。經高通量定序葉片與花部轉錄體後,以de novo組裝法組裝出587,771條轉錄本 (transcripts)。在sRNA資料庫中,葉片比對出177條已知的miRNA,並預測出8條新的miRNA,花部中則比對出31條已知miRNA與20條新的miRNA。從轉錄本與miRNA的差異表現分析 (differentially expressed analysis) 得知,葉與花部位間的差異表現基因比OgEIL1默化轉殖株與未轉殖株間差異表現基因多。經基因本體 (gene ontology) 註解富集檢定 (enrichment test) ,OgEIL1默化轉殖株中相對未轉殖株表現量較高的序列多和硫代謝相關。OgEIL1默化轉殖株與未轉殖株於葉片和花部共比對出52與9條差異表現miRNA,其中miR395a與miR408在OgEIL1默化轉殖株葉片與花部中表現量皆較未轉殖株高,而miR156a、miR157d與miR396a則在兩部位皆較未轉殖株低。此外,受EIN3負向調控的miR164家族基因表現分析,顯示在OgEIL1默化轉殖株葉片中,miR164a、miR164b與miR164c有上調的情形。經預測文心蘭差異表現miRNA於轉錄體中的作用目標基因為EIL、NAC、AP2等與乙烯相關的轉錄因子。zh_TW
dc.description.abstractOncidesa is a popular orchid with high economic value in cut-flower markets around the world. Ethylene involves petal senescence of Oncidesa. When ETHYLENE INSENSTIVE3 (EIN3), the key transcriptional factor in ethylene signal transduction, was knocked down by gene silencing, the shelf-life of Oncidesa had been prolonged. To understand gene expression and regulation of small RNA, we analyzed transcriptomes of OgEIL1 RNA interfering transgenic and non-transgenic plant, and tried to construct the OgEIL1 regulatory network in Oncidesa. By high-throughput sequencing and de novo assembling, we got 587,771 transcripts in Oncidesa transcriptome. Among the sRNA sequence of Oncidesa, a total of 177 and 31 known miRNAs were annotated in leaf and flower, respectively. After predicted by software, 8 and 20 putative novel miRNAs were identified in leaf and flower, respectively. There are more differentially expressed transcripts and miRNAs between organs than between transgenic and non-transgenic plant. According to gene ontology enrichment test of differentially expression transcipts in OgEIL1 RNA interfering plant, many enriched GO terms were related to sulfur metabolic process. Comparison of the miRNAs expression level between the transgenic plant and non-transgenic Oncidesa revealed that miR395a and miR408 were up-regulated and miR156a, miR157a, miR157d and, miR396a were down-regulated in both organs. Tthe expression level of miR164 family genes which are negatively regulated were analyzed. The data showed that miR164a, miR164b, and miR164c-5p were up-regulation in the OgEIL1 RNA interfering transgenic plant. The target transcripts of differentially expressed miRNAs were identified and some of them are transcription factors involving in ethylene response, such as EIL, NAC and AP2.en
dc.description.provenanceMade available in DSpace on 2021-05-19T18:05:08Z (GMT). No. of bitstreams: 1
ntu-108-R06628107-1.pdf: 5953761 bytes, checksum: 14d1ffd208c07bf06b71c82df56edebc (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 -I
摘要 -II
Abstract -III
壹、前言 -1
貳、前人研究 -2
一、乙烯對文心蘭切花老化之影響 -2
二、乙烯受器與轉錄因子 -2
三、小核糖核酸簡介與調控模式 -3
四、miRNA與老化相關轉錄因子之關聯 -4
五、與乙烯相關的miRNA -4
六、文心蘭轉錄體分析 -5
參、材料與方法 -6
一、植物材料 -6
二、試驗方法 -6
(一) OgEIL1默化轉殖株花性調查 -6
(二) 文心蘭葉片RNA之萃取 -6
(三) 文心蘭花部樣品RNA之萃取 -7
(四) 文心蘭轉錄體定序 -8
(五) 轉錄體序列分析流程 -8
(六) sRNA序列分析流程 -10
肆、結果 -14
一、文心蘭OgEIL1默化轉殖株開花特性調查 -14
二、文心蘭轉錄體分析 -14
(一) 文心蘭轉錄體定序與組裝結果 -14
(二) 文心蘭轉錄體註解與表現量分析 -14
(三) 文心蘭轉錄體差異表現量分析 -15
(四) 文心蘭OgEIL1轉殖株與未轉殖株間差異表現序列富集分析 -15
(五) 文心蘭花部與葉片間差異表現序列富集分析 -16
(六) 文心蘭中EIL轉錄因子比對結果 -17
三、文心蘭sRNA序列分析 -17
(一) 文心蘭sRNA定序結果 -17
(二) 文心蘭sRNA之分布情形 -18
(三) 文心蘭sRNA註解結果 -18
(四) 轉殖株中差異表現miRNA與其作用目標基因 -19
(五) 差異表現miRNA作用目標基因之預測與註解 -19
(六) OgEIL1默化轉殖株中差異表現miRNA驗證 -19
(七) miR164於文心蘭中的表現量與作用目標基因 -20
(八) 乙烯處理對文心蘭miR164與乙烯關聯基因之影響 -20
(九) miRNA與轉錄因子的調控網絡 -20
伍、討論 -21
一、OgEIL1默化轉殖株與未轉殖株轉錄體分析 -21
二、OgEIL1於OgEIL1默化轉殖株與未轉殖株間的表現差異 -21
三、文心蘭sRNA轉錄體定序結果 -22
四、OgEIL1與硫代謝之關聯 -22
五、乙烯訊息傳導與銅的關聯 -23
六、與乙烯相關的差異表現miRNA -24
七、差異表現miRNA與轉錄因子的關聯 -25
八、OgEIL1與miR164間的調控關聯 -26
陸、未來展望 -28
柒、 參考資料 -131
-
dc.language.isozh_TW-
dc.subject花部老化zh_TW
dc.subjectOgEIL1zh_TW
dc.subject微核糖核酸zh_TW
dc.subject轉錄體zh_TW
dc.subject轉錄因子zh_TW
dc.subjectFlower senescenceen
dc.subjectTranscription factoren
dc.subjectTranscriptomeen
dc.subjectMicroRNAen
dc.subjectOgEIL1en
dc.title文心蘭乙烯訊息傳導途徑中小核糖核酸與其目標基因之辨識zh_TW
dc.titleIdentification of Small RNAs and Target Genes in Ethylene Signal Transduction in Oncidesa Gower Ramseyen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.coadvisor黃鵬林zh_TW
dc.contributor.coadvisorPung-Ling Huangen
dc.contributor.oralexamcommittee張春梵;劉祖惠;陳靖宏zh_TW
dc.contributor.oralexamcommitteeChun-Fan Chang;Tsu-Hui Liu;Jing-Hong Chenen
dc.subject.keywordOgEIL1,微核糖核酸,轉錄體,轉錄因子,花部老化,zh_TW
dc.subject.keywordOgEIL1,MicroRNA,Transcriptome,Transcription factor,Flower senescence,en
dc.relation.page147-
dc.identifier.doi10.6342/NTU201903115-
dc.rights.note未授權-
dc.date.accepted2019-08-16-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
dc.date.embargo-lift2029-12-31-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
5.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved