Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80653
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童心欣(Hsin-Hsin Tung)
dc.contributor.authorTRAN THI PHUONG QUYNHen
dc.contributor.author陳氏芳瓊zh_TW
dc.date.accessioned2022-11-24T03:11:52Z-
dc.date.available2021-11-05
dc.date.available2022-11-24T03:11:52Z-
dc.date.copyright2021-11-05
dc.date.issued2021
dc.date.submitted2021-10-24
dc.identifier.citation1. Wu, J.; Yang, J. S.; Muruganandham, M.; Wu, C. C., The oxidation study of 2-propanol using ozone-based advanced oxidation processes. Separation and Purification Technology 2008, 62 (1), 39-46. 2. Raghuvanshi, S.; Gupta, S., Growth kinetics of acclimated mixed culture for degradation of isopropyl alcohol (IPA). Journal of Biotechnology Biomaterials 2013, S13 (2). 3. Jammalamadaka, D.; Raissi, S., Ethylene Glycol, Methanol and Isopropyl Alcohol Intoxication. The American Journal of the Medical Sciences 2010, 339 (3), 276-281. 4. Matteucci, M. J., Chapter 89. Isopropyl alcohol. McGraw Hill: Poisoning Drug Overdose (sixth edition), 2012. 5. Turner, P.; Saeed, B.; Kelsey, M. C., Dermal absorption of isopropyl alcohol from a commercial hand rub: implications for its use in hand decontamination. Journal of Hospital Infection 2004, 56 (4), 287-290. 6. Lin, C.-C.; Tsai, C.-W., Degradation of isopropyl alcohol using UV and persulfate in a large reactor. Separation and Purification Technology 2019, 209, 88-93. 7. Bornhorst, J. A.; Mbughuni, M. M., Chapter 3 - Alcohol biomarkers: Clinical issues and analytical methods. In Critical Issues in Alcohol and Drugs of Abuse Testing (Second Edition), Dasgupta, A., Ed. Academic Press: 2019; pp 25-42. 8. Zhigang, T.; Rongqi, Z.; Zhanting, D., Separation of isopropanol from aqueous solution by salting-out extraction. Journal of Chemical Technology Biotechnology 2001, 76 (7), 757-763. 9. Lin, S. H.; Wang, C. S., Recovery of isopropyl alcohol from waste solvent of a semiconductor plant. Journal of Hazardous Materials 2004, 106 (2), 161-168. 10. Kuila, S. B.; Ray, S. K., Separation of isopropyl alcohol–water mixtures by pervaporation using copolymer membrane: Analysis of sorption and permeation. Chemical Engineering Research and Design 2013, 91 (2), 377-388. 11. Hsu, Y.-L.; Wu, H.-Z.; Ye, M.-H.; Chen, J.-P.; Huang, H.-L.; Lin, P. H.-P., An industrial-scale biodegradation system for volatile organics contaminated wastewater from semiconductor manufacturing process. Journal of the Taiwan Institute of Chemical Engineers 2009, 40 (1), 70-76. 12. Wang, Y.; Du, B.; Wang, J.; Wang, Y.; Gu, H.; Zhang, X., Synthesis and characterization of a high capacity ionic modified hydrogel adsorbent and its application in the removal of Cr(VI) from aqueous solution. Journal of Environmental Chemical Engineering 2018, 6 (6), 6881-6890. 13. Wang, Y.; Lin, N.; Gong, Y.; Wang, R.; Zhang, X., Cu–Fe embedded cross-linked 3D hydrogel for enhanced reductive removal of Cr(VI): Characterization, performance, and mechanisms. Chemosphere 2021, 280, 130663-130674. 14. Yang, Y.; Zheng, Z.; Ji, W.; Yang, M.; Ding, Q.; Zhang, X., The study of bromate adsorption onto magnetic ion exchange resin: Optimization using response surface methodology. Surfaces and Interfaces 2019, 17, 100385-100393. 15. Ruiz, A.; Ogden, K. L., Biotreatment of copper and isopropyl alcohol in waste from semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing 2004, 17 (4), 538-543. 16. Liu, N.; Jing, C.; Li, Z.; Huang, W.; Gao, B.; You, F.; Zhang, X., Effect of synthesis conditions on the photocatalytic degradation of Rhodamine B of MIL-53(Fe). Materials Letters 2019, 237, 92-95. 17. Sun, T.; Chen, K., Removal of isopropyl alcohol (IPA) in UPW by synergistic photocatalytic oxidation and adsorption. The Canadian Journal of Chemical Engineering 2014, 92 (7), 1174-1180. 18. Xiao, Y.; Xu, H. Y.; Xie, H. M.; Yang, Z. H.; Zeng, G. M., Comparison of the treatment for isopropyl alcohol wastewater from silicon solar cell industry using SBR and SBBR. International Journal of Environmental Science and Technology 2015, 12 (7), 2381-2388. 19. Wang, Y.; Wang, J.; Du, B.; Wang, Y.; Xiong, Y.; Yang, Y.; Zhang, X., Synthesis of hierarchically porous perovskite-carbon aerogel composite catalysts for the rapid degradation of fuchsin basic under microwave irradiation and an insight into probable catalytic mechanism. Applied Surface Science 2018, 439, 475-487. 20. Wang, Y.; Wang, R.; Lin, N.; Wang, Y.; Zhang, X., Highly efficient microwave-assisted Fenton degradation bisphenol A using iron oxide modified double perovskite intercalated montmorillonite composite nanomaterial as catalyst. Journal of Colloid and Interface Science 2021, 594, 446-459. 21. Wang, Y.; Wang, Y.; Yu, L.; Wang, J.; Du, B.; Zhang, X., Enhanced catalytic activity of templated-double perovskite with 3D network structure for salicylic acid degradation under microwave irradiation: Insight into the catalytic mechanism. Chemical Engineering Journal 2019, 368, 115-128. 22. Wang, Y.; Yu, L.; Wang, R.; Wang, Y.; Zhang, X., Reactivity of carbon spheres templated Ce/LaCo0.5Cu0.5O3 in the microwave induced H2O2 catalytic degradation of salicylic acid: Characterization, kinetic and mechanism studies. Journal of Colloid and Interface Science 2020, 574, 74-86. 23. Ameta, S. C., Chapter 1 - Introduction. In Advanced oxidation processes for wastewater treatment, Ameta, S. C.; Ameta, R., Eds. Academic Press: 2018; pp 1-12. 24. Deng, Y.; Zhao, R., Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports 2015, 1 (3), 167-176. 25. Levchuk, I.; Sillanpää, M., Chapter 1 - Titanium dioxide–based nanomaterials for photocatalytic water treatment. In Advanced Water Treatment, Sillanpää, M., Ed. Elsevier: 2020; pp 1-56. 26. Mohammadi, L.; Bazrafshan, E.; Noroozifar, M.; Moghaddama, A. R.; Feizabad, A. R.; Mahvi, A., Optimization of the catalytic ozonation process using copper oxide nanoparticles for the removal of benzene from aqueous solutions. Global Journal of Environmental Science and Management 2017, 3, 403-416. 27. Poyatos, J. M.; Muñio, M. M.; Almecija, M. C.; Torres, J. C.; Hontoria, E.; Osorio, F., Advanced oxidation processes for wastewater treatment: State of the art. Water, Air, Soil Pollution 2009, 205 (1), 187. 28. Wu, J. J.; Yang, J. S.; Muruganandham, M., Kinetics and modeling of IPA oxidation using Ozone-based advanced oxidation processes. Industrial Engineering Chemistry Research 2008, 47 (6), 1820-1827. 29. Cheng, K.-Y.; Hsieh, L.-L.; Yao, K. S.; Lin, C.-H.; Chang, E.-J.; Chang, C.-Y., Decomposition of wastewater containing isopropyl alcohol using the gamma-ray/hydrogen peroxide process. Sustainable Environment Research 2010, 20 (3), 151-156. 30. Ku, Y.; Huang, Y.-J.; Chen, H.-W.; Chou, Y.-C., Ozone transfer and decomposition of isopropyl alcohol by H2O2/ozone process in a rotating packed contactor. Journal of Advanced Oxidation Technologies 2008, 11 (2), 377-383. 31. Mousset, E.; Wang, Z.; Olvera-Vargas, H.; Lefebvre, O., Advanced electrocatalytic pre-treatment to improve the biodegradability of real wastewater from the electronics industry—A detailed investigation study. Journal of Hazardous Materials 2018, 360. 32. Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R., Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today 1999, 53 (1), 51-59. 33. Liu, Z.; Meng, H.; Zhang, H.; Cao, J.; Zhou, K.; Lian, J., Highly efficient degradation of phenol wastewater by microwave induced H2O2-CuOx/GAC catalytic oxidation process. Separation and Purification Technology 2018, 193, 49-57. 34. Parolin, F.; Nascimento, U. M.; Azevedo, E. B., Microwave-enhanced UV/H2O2 degradation of an azo dye (tartrazine): optimization, colour removal, mineralization and ecotoxicity. Environmental Technology 2013, 34 (9-12), 1247-1253. 35. Xu, D.; Cheng, F.; Lu, Q.; Dai, P., Microwave enhanced catalytic degradation of methyl orange in aqueous solution over CuO/CeO2 catalyst in the absence and presence of H2O2. Industrial Engineering Chemistry Research 2014, 53 (7), 2625–2632. 36. Zhao, D.; Cheng, J.; Hoffmann, M. R., Kinetics of microwave-enhanced oxidation of phenol by hydrogen peroxide. Frontiers of Environmental Science Engineering in China 2011, 5 (1), 57-64. 37. Tran, Q. T. P.; Chuang, Y.-H.; Tan, S.; Hsieh, C.-H.; Yang, T.-Y.; Tung, H.-h., Degradation kinetics and pathways of isopropyl alcohol by microwave-assisted oxidation process. Industrial Engineering Chemistry Research 2021, 60 (34), 12461-12473. 38. Tran, Q. T. P.; Hsieh, C.-H.; Yang, T.-Y.; Tung, H.-h., Optimization of isopropyl alcohol degradation by microwave-induced catalytic oxidation process. Journal of water reuse and desalination 2019, 9 (3), 213-224. 39. NCBI, PubChem Compound Summary for CID 3776, Isopropyl alcohol. https://pubchem.ncbi.nlm.nih.gov/compound/Isopropyl-alcohol, 2021. 40. CDC, Chemical disinfectants - Guideline for disinfection and sterilization in healthcare facilities. https://www.cdc.gov/infectioncontrol/guidelines/disinfection/disinfection-methods/chemical.html, 2008. 41. Perri D; Klimaszyk D; Kołaciński Z; J, S., McMaster Textbook of Internal Medicine - Isopropyl alcohol. https://empendium.com/mcmtextbook/chapter/B31.II.20.2.4., 2019. 42. Slaughter, R. J.; Mason, R. W.; Beasley, D. M.; Vale, J. A.; Schep, L. J., Isopropanol poisoning. Clinical toxicology (Philadelphia, Pa.) 2014, 52 (5), 470-478. 43. Church, A. S.; Witting, M. D., Laboratory testing in ethanol, methanol, ethylene glycol, and isopropanol toxicities. The Journal of emergency medicine 1997, 15 (5), 687-692. 44. Chang, Y.-J.; Lin, C.-H.; Hwa, M.-Y.; Hsieh, Y.; Cheng, T.; Chang, C., Study on the decomposition of isopropyl alcohol by using microwave/Fe3O4 catalytic system. Journal of environmental management 2010, 20 (2), 63-68. 45. Den, W.; Ko, F.-H.; Huang, T.-y., Treatment of organic wastewater discharged from semiconductor manufacturing process by ultraviolet/hydrogen peroxide and biodegradation. Semiconductor Manufacturing, IEEE Transactions on 2002, 15 (4), 540-551. 46. Wu, C.-H.; Lu, J.; Lo, J., Analysis of volatile organic compounds in wastewater during various stages of treatment for high-tech industries. Chromatographia 2002, 56 (1), 91-98. 47. Wu, Q.-Y.; Zhou, Y.-T.; Li, W.; Zhang, X.; Du, Y.; Hu, H.-Y., Underestimated risk from ozonation of wastewater containing bromide: Both organic byproducts and bromate contributed to the toxicity increase. Water Research 2019, 162, 43-52. 48. Shivatharsiny, Y.; Peng, R.; Koodali, R., Removal of hazardous pollutants from wastewaters: Applications of TiO2-SIO2 mixed oxide materials. Journal of Nanomaterials 2014, 2014 (3), 1-42. 49. Shestakova, M.; Sillanpää, M., Electrode materials used for electrochemical oxidation of organic compounds in wastewater. Reviews in Environmental Science and Bio/Technology 2017, 16 (2), 223-238. 50. Amor, C.; Marchão, L.; Lucas, M. S.; Peres, J. A., Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review. Water 2019, 11 (2), 205-236. 51. Oh, W.-D.; Dong, Z.; Lim, T.-T., Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Applied Catalysis B: Environmental 2016, 194, 169-201. 52. Babuponnusami, A.; Muthukumar, K., A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering 2014, 2 (1), 557-572. 53. Ribeiro, A. R.; Nunes, O. C.; Pereira, M. F. R.; Silva, A. M. T., An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environment International 2015, 75, 33-51. 54. Remya, N.; Lin, J. G., Current status of microwave application in wastewater treatment - A review. Chemical Engineering Journal 2011, 166 (3), 797-813. 55. Wang, N.; Wang, P., Study and application status of microwave in organic wastewater treatment – A review. Chemical Engineering Journal 2016, 283, 193-214. 56. Lo Kwang, V.; Ning, R.; de Oliveira Cristina Kei, Y.; De Zetter, M.; Srinivasan, A.; Liao Ping, H., Application of microwave oxidation process for sewage sludge treatment in a continuous-flow system. Journal of Environmental Engineering 2017, 143 (9), 04017050-1-9. 57. Liao, P.; Wong, W.; Lo, K., Release of phosphorus from sewage sludge using microwave technology. Journal of Environmental Engineering and Science 2011, 4, 77-81. 58. Wojciechowska, E., Application of microwaves for sewage sludge conditioning. Water research 2005, 39, 4749-54. 59. Mudhoo, A.; Sharma, S., Microwave irradiation technology in waste sludge and wastewater treatment research. Critical Reviews in Environmental Science and Technology 2011, 41, 999–1066. 60. Kocbek, E.; Garcia, H. A.; Hooijmans, C. M.; Mijatović, I.; Lah, B.; Brdjanovic, D., Microwave treatment of municipal sewage sludge: Evaluation of the drying performance and energy demand of a pilot-scale microwave drying system. Science of The Total Environment 2020, 742, 140541. 61. Ju, Y.; Zhu, Y.; Zhou, H.; Ge, S.; Xie, H., Microwave pyrolysis and its applications to the in situ recovery and conversion of oil from tar-rich coal: An overview on fundamentals, methods, and challenges. Energy Reports 2021, 7, 523-536. 62. Lam, S. S.; Chase, H., A review on waste to energy processes using microwave pyrolysis. Energies 2012, 5, 4209-4232. 63. Ethaib, S.; Omar, R.; Kamal, S. M.; Awang Biak, D. R.; Zubaidi, S. L., Microwave-assisted pyrolysis of biomass waste: A mini review. Processes 2020, 8 (9), 1190. 64. Li, H.; Zhao, Z.; Xiouras, C.; Stefanidis, G.; Xingang, L.; Gao, X., Fundamentals and applications of microwave heating to chemicals separation processes. Renewable and Sustainable Energy Reviews 2019, 114, 109316. 65. Bedin, S.; Zanella, K.; Bragagnolo, N.; Taranto, O., Implication of microwaves on the extraction process of rice bran protein. Brazilian Journal of Chemical Engineering 2019, 36, 1653-1665. 66. Dai, Y.-M.; Chen, K.-T.; Chen, C.-C., Study of the microwave lipid extraction from microalgae for biodiesel production. Chemical Engineering Journal 2014, 250, 267-273. 67. Wang, Q.; Oshita, K.; Takaoka, M., Effective lipid extraction from undewatered microalgae liquid using subcritical dimethyl ether. Biotechnology for Biofuels 2021, 14 (1), 17. 68. Moret, S.; Conchione, C.; Srbinovska, A.; Lucci, P., Microwave-based technique for fast and reliable extraction of organic contaminants from food, with a special focus on hydrocarbon contaminants. Foods 2019, 8 (10), 503. 69. Kroužek, J.; Durdak, V.; Hendrych, J.; Mašín, P.; Sobek, J.; Špaček, P., Pilot scale applications of microwave heating for soil remediation. Chemical Engineering and Processing - Process Intensification 2018, 130, 53-60. 70. Lafaille, R.; Bozkurt, Y. C.; Pruitt, E.; Lewis, J.; Bernier, R.; Kong, D.; Westerhoff, P.; Dahlen, P.; Apul, O., Repeatable use assessment of silicon carbide as permanent susceptor bed in ex situ microwave remediation of petroleum-impacted soils. Case Studies in Chemical and Environmental Engineering 2021, 4, 100116. 71. Palma, V.; Barba, D.; Cortese, M.; Martino, M.; Renda, S.; Meloni, E., Microwaves and heterogeneous catalysis: A review on selected catalytic processes. Catalysts 2020, 10, 246. 72. Li, H.; Zhang, C.; Pang, C.; Li, X.; Gao, X., The advances in the special microwave effects of the heterogeneous catalytic reactions. Frontiers in Chemistry 2020, 8 (355), 1-8. 73. Leonelli, C.; Komarneni, S., Inorganic syntheses assisted by microwave heating. Inorganics 2015, 3 (4), 388-391. 74. Bilecka, I.; Niederberger, M., Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2010, 2, 1358-74. 75. Gupta, M.; Paul, S.; Gupta, R., General characteristics and applications of microwaves in organic synthesis. Acta Chimica Slovenica 2009, 56, 749-764. 76. Vialkova, E.; Obukhova, M.; Belova, L., Microwave irradiation in technologies of wastewater and wastewater sludge treatment: A review. Water 2021, 13 (13), 1784. 77. Milh, H.; Eyck, K.; Dewil, R., Degradation of 4-chlorophenol by microwave-enhanced advanced oxidation processes: Kinetics and influential process parameters. Water 2018, 10 (3), 247-259. 78. Tang, C.-W.; Liu, T.-C.; Wu, R.-C.; Shu, Y.-Y.; Wang, C.-B., Efficient microwave enhanced degradation of 4-nitrophenol in water over coupled nickel oxide and solid acid catalysts. Sustainable Chemistry and Pharmacy 2018, 8, 10-15. 79. Homem, V.; Alves, A.; Santos, L., Microwave-assisted Fenton’s oxidation of amoxicillin. Chemical Engineering Journal 2013, 220, 35-44. 80. Iboukhoulef, H.; Amrane, A.; Kadi, H., Microwave-enhanced Fenton-like system, Cu(II)/H2O2, for olive mill wastewater treatment. Environmental Technology 2013, 34 (5-8), 853-860. 81. Sanz, J.; Lombraña, J. I.; De Luis, A. M.; Ortueta, M.; Varona, F., Microwave and Fenton's reagent oxidation of wastewater. Environmental Chemistry Letters 2003, 1 (1), 45-50. 82. Mello, P. A.; Barin, J. S.; Guarnieri, R. A., Chapter 2 - Microwave Heating. In Microwave-Assisted Sample Preparation for Trace Element Analysis, Flores, É. M. d. M., Ed. Elsevier: Amsterdam, 2014; pp 59-75. 83. Borrell, A.; Salvador, M., Advanced ceramic materials sintered by microwave technology. In Sintering Technology - Method and Application, Intechopen: 2018. 84. Stefanidis, G. D.; Muñoz, A. N.; Sturm, G. S. J.; Stankiewicz, A., A helicopter view of microwave application to chemical processes: reactions, separations, and equipment concepts. Reviews in Chemical Engineering 2014, 30 (3), 233-259. 85. Prasannakumar, B.; Iyyaswami, R.; Thanapalan, M., An optimization study on microwave irradiated decomposition of phenol in the presence of H2O2. Journal of Chemical Technology Biotechnology 2009, 84 (1), 83-91. 86. Yang, S.; Wang, P.; Yang, X.; Wei, G.; Zhang, W.; Shan, L., A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation. Journal of Environmental Sciences 2009, 21 (9), 1175-1180. 87. Lee, Y.-C.; Lo, S.-L.; Chiueh, P.-T.; Chang, D.-G., Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate. Water Research 2009, 43 (11), 2811-2816. 88. Bi, X. Y.; Yang, H. Y.; Sun, P. S., Microwave – induced oxidation progress for treatment of imidacloprid pesticide wastewater. Applied Mechanics and Materials 2012, 229-231, 2489-2492. 89. Biswas, S.; Mishra, U., Treatment of copper contaminated municipal wastewater by using UASB reactor and sand-chemically carbonized rubber wood sawdust column. BioMed Research International 2016, 2016, 5762781. 90. Bi, X. Y.; Wang, P.; Jiang, H.; Xu, H. Y.; Shi, S. J.; Huang, J. L., Treatment of phenol wastewater by microwave-induced ClO2-CuOx/Al2O3 catalytic oxidation process. Journal of Environmental Sciences-China 2007, 19 (12), 1510-5. 91. Bi, X.; Wang, P.; Jiang, H., Catalytic activity of CuOn–La2O3/γ-Al2O3 for microwave assisted ClO2 catalytic oxidation of phenol wastewater. Journal of Hazardous Materials 2008, 154 (1), 543-549. 92. Bo, L.; Quan, X.; Chen, S.; Zhao, H.; Zhao, Y., Degradation of p-nitrophenol in aqueous solution by microwave assisted oxidation process through a granular activated carbon fixed bed. Water Research 2006, 40 (16), 3061-3068. 93. Han, D.-H.; Cha, S.-Y.; Yang, H.-Y., Improvement of oxidative decomposition of aqueous phenol by microwave irradiation in UV/H2O2 process and kinetic study. Water Research 2004, 38 (11), 2782-2790. 94. Zhang, X.; Wang, Y.; Li, G.; Qu, J., Oxidative decomposition of azo dye C.I. Acid Orange 7 (AO7) under microwave electrodeless lamp irradiation in the presence of H2O2. Journal of Hazardous Materials 2006, 134 (1), 183-189. 95. Haag, W. R.; Yao, C. C. D., Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environmental Science Technology 1992, 26 (5), 1005-1013. 96. Zhang, A.; Li, Y., Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: Effects of reaction conditions and sludge matrix. Science of The Total Environment 2014, 493, 307-323. 97. Bautista, P.; Mohedano, A. F.; Gilarranz, M. A.; Casas, J. A.; Rodriguez, J. J., Application of Fenton oxidation to cosmetic wastewaters treatment. Journal of Hazardous Materials 2007, 143 (1), 128-134. 98. De, A. K.; Chaudhuri, B.; Bhattacharjee, S.; Dutta, B. K., Estimation of ⋅OH radical reaction rate constants for phenol and chlorinated phenols using UV/H2O2 photo-oxidation. Journal of Hazardous Materials 1999, 64 (1), 91-104. 99. Younis, S.; El-azab, W.; El-Gendy, N.; Aziz, S. Q.; Moustafa, Y. M. M.; Aziz, H. A.; Abu Amr, S., Application of response surface methodology to enhance phenol removal from refinery wastewater by microwave process. International Journal of Microwave Science and Technology 2014. 100. Cho, I.-H.; Zoh, K.-D., Photocatalytic degradation of azo dye (reactive red 120) in TiO2/UV System: Optimization and modeling using a response surface methodology (RSM) based on the central composite design. Dyes and Pigments 2007, 75, 533-543. 101. Arslan, F. N.; Kara, H., Central composite design and response surface methodology for the optimization of Ag+-HPLC/ELSD method for triglyceride profiling. Journal of Food Measurement and Characterization 2017, 11 (2), 902-912. 102. Sellers, R. M., Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate. Analyst 1980, 105, 950-954. 103. Dai, Z.; Wang, M.; Jia, R.; Zhou, P., Degradation of methyl red in water by microwave radiation and hydrogen peroxide. Journal of Petrochemical Universities 2014, 27 (6), 11-15. 104. Eskicioglu, C.; Prorot, A.; Marin, J.; Droste, R.; Kennedy, K., Synergetic pretreatment of sewage sludge by microwave irradiation in presence of H2O2 for enhanced anaerobic digestion. Water Research 2008, 42 (18), 4674-4682. 105. Gu, D. M.; Guo, C. S.; Feng, Q. Y.; Zhang, H.; Xu, J., Degradation of Ketamine and Methamphetamine by the UV/H2O2 system: Kinetics, Mechanisms and Comparison. Water 2020, 12 (11), 2999-3012. 106. Qiu, W.; Zheng, M.; Sun, J.; Tian, Y.; Fang, M.; Zheng, Y.; Zhang, T.; Zheng, C., Photolysis of enrofloxacin, pefloxacin and sulfaquinoxaline in aqueous solution by UV/H2O2, UV/Fe(II), and UV/H2O2/Fe(II) and the toxicity of the final reaction solutions on zebrafish embryos. Science of the Total Environment 2019, 651, 1457-1468. 107. Regulska, E.; Brus, D. M.; Rodziewicz, P.; Sawicka, S.; Karpinska, J., Photocatalytic degradation of hazardous Food Yellow 13 in TiO2 and ZnO aqueous and river water suspensions. Catalysis Today 2016, 266, 72-81. 108. Qiu, Y.; Zhou, J.; Cai, J.; Xu, W.; You, Z.; Yin, C., Highly efficient microwave catalytic oxidation degradation of p-nitrophenol over microwave catalyst of pristine α-Bi2O3. Chemical Engineering Journal 2016, 306, 667-675. 109. Qi, C.; Liu, X.; Lin, C.; Zhang, H.; Li, X.; Ma, J., Activation of peroxymonosulfate by microwave irradiation for degradation of organic contaminants. Chemical Engineering Journal 2017, 315, 201-209. 110. Stefan, M. I.; Bolton, J. R., Mechanism of the degradation of 1,4-Dioxane in dilute aqueous solution using the UV/Hydrogen Peroxide process. Environmental Science Technology 1998, 32 (11), 1588-1595. 111. Henryk Zegota; Man Nien Schuchmann; Dorothea Schulz; Sonntag, C. V., Acetonylperoxyl radicals, CH3COCH2O2: A study on the y-radiolysis and pulse radiolysis of acetone in oxygenated aqueous solutions. Zeitschrift für Naturforschung B 2014, 41 (8), 1015-1022. 112. Stefan, M. I.; Bolton, J. R., Reinvestigation of the Acetone degradation mechanism in dilute aqueous solution by the UV/H2O2 process. Environmental Science Technology 1999, 33 (6), 870-873. 113. Bogan, D. J.; Havel, J. J.; Coveleskie, R. A.; Celii, F.; Stammerjohn, B. J.; Sanders, W. A.; Williams, F. W.; Carhart, H. W., Quantitative product study of russell termination reactions of peroxy radicals in the gas phase. Proceedings of the Combustion Institute 1981, 18 (1), 843-844. 114. Lim, H. J.; Carlton, A. G.; Turpin, B. J., Isoprene forms secondary organic aerosol through cloud processing:  Model simulations. Environmental Science Technology 2005, 39 (12), 4441-4446. 115. Lim, Y.; Tan, Y.; Turpin, B., Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase. Atmospheric Chemistry and Physics 2013, 13, 8651-8667. 116. Hoque, M.; Kawamura, K.; Uematsu, M., Spatio-temporal distributions of dicarboxylic acids, ω-oxocarboxylic acids, pyruvic acid, α-dicarbonyls and fatty acids in the marine aerosols from the North and South Pacific. Atmospheric Research 2016, 185, 158-168. 117. Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J., Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal. Atmospheric Chemistry and Physics 2012, 12 (2), 801-813. 118. Zuraski, K.; Hui, A. O.; Grieman, F. J.; Darby, E.; Møller, K. H.; Winiberg, F. A. F.; Percival, C. J.; Smarte, M. D.; Okumura, M.; Kjaergaard, H. G.; Sander, S. P., Acetonyl peroxy and hydro peroxy self- and cross-reactions: Kinetics, mechanism, and chaperone enhancement from the perspective of the hydroxyl radical product. The Journal of Physical Chemistry A 2020, 124 (40), 8128-8143. 119. Chen, W.-H.; Shen, C.-T., Partial oxidation of methanol over a Pt/Al2O3 catalyst enhanced by sprays. Energy 2016, 106, 1-12. 120. Arslan-Alaton, I.; Tureli, G.; Olmez-Hanci, T., Treatment of azo dye production wastewaters using Photo-Fenton-like advanced oxidation processes: Optimization by response surface methodology. Journal of Photochemistry and Photobiology A: Chemistry 2009, 202 (2), 142-153. 121. Ivanescu, A. E.; Li, P.; George, B.; Brown, A. W.; Keith, S. W.; Raju, D.; Allison, D. B., The importance of prediction model validation and assessment in obesity and nutrition research. International Journal of Obesity (London) 2016, 40 (6), 887-894. 122. Körbahti, B. K., Response surface optimization of electrochemical treatment of textile dye wastewater. Journal of hazardous materials 2007, 145 (1), 277-86. 123. Gao, L.; Jiang, Z.; Zhou, J., Microwave catalyzed oxidative degradation of methyl orange in simulated wastewater using microwave catalytic TiO2/AC and mechanistic studies. Current Microwave Chemistry 2016, 3 (1), 38-46. 124. Sarrai, A. E.; Hanini, S.; Merzouk, N. K.; Tassalit, D.; Szabó, T.; Hernádi, K.; Nagy, L., Using central composite experimental design to optimize the degradation of Tylosin from aqueous solution by Photo-Fenton reaction. Materials (Basel) 2016, 9 (6), 428. 125. Menéndez, J. A.; Arenillas, A.; Fidalgo, B.; Fernández, Y.; Zubizarreta, L.; Calvo, E. G.; Bermúdez, J. M., Microwave heating processes involving carbon materials. Fuel Processing Technology 2010, 91 (1), 1-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80653-
dc.description.abstract"異丙醇(Isopropyl alcohol, IPA)為半導體製程廠廢水中廣泛常見的污染物,因此本研究利用微波強化高級氧化處理(Microwave-enhanced advanced oxidation processes, MW-enhanced AOPs)並結合過氧化氫(H2O2),比較在微波催化劑對異丙醇降解效率的影響。在 MW/H2O2 系統中反應90 分鐘內可將IPA完全降解,相較之下,單獨使用微波照射、單獨使用H2O2氧化,或以加熱(Thermal, TH)合併H2O2的系統,其去除IPA的效率分別為4.8%、6.1%和68.2%。IPA降解動力學在MW/H2O2和TH/H2O2系統中遵循擬一階動力反應,而其他系統為擬零階動力反應。在特定H2O2劑量下,降解效率隨著H2O2劑量增加而上升,過量的過氧化氫會捕捉氫氧自由基 而抑制IPA的氧化。MW/H2O2系統降解IPA的中間產物包含丙酮與短鏈有機酸等分別進行定性與定量分析,並以總有機碳的質量平衡來進行確認降解途徑。 對於此微波異相催化氧化系統,H2O2和活性碳(AC)的角色分別為氧化劑和微波吸收劑。本研究另外對於操作參數(過氧化氫濃度-[H2O2]、IPA初始濃度-[IPA]i、催化劑量- AC dosage)對 IPA 礦化的影響以Design-Expert® software version 12設計最佳化操作並以反應曲面方法論(Response surface methodology, RSM)進行優化。本研究所獲得最佳設計條件為:[H2O2] = 0.132 M, 活性碳劑量 = 108 - 123 g/L, [IPA]i = 36.82 - 100 mM, 照射時間= 4 min和照射溫度= 80°C,結果顯示活性碳劑量和初始 IPA濃度為主要去除IPA的影響因子。反應變化曲線中回歸線的R2 = 0.9948 和調整後的R2 = 0.9902顯示模式符合二次式適配。以MW/AC/H2O2組合反應系統相較於其他組合系統去除IPA效率最高和最快。最後,本研究針對高濃度IPA污水設計一上流式連續流微波催化反應器。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:11:52Z (GMT). No. of bitstreams: 1
U0001-2010202114501700.pdf: 5710474 bytes, checksum: e16c066c796c411be51c0b8362bca0d2 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"Certificate of dissertation approval from the oral defense committee/國立臺灣大學博士學位論文 i Acknowledgements ii Abstract (Chinese)/ 摘要 iii Abstract (English) v Table of content vii List of tables x List of figures xii List of abbreviation xvi Chapter 1 Introduction 1 1.1 Background/Problem statement 1 1.2 Research objectives 3 1.3 Dissertation organization 3 Chapter 2 Literature review 5 2.1 Characteristics of isopropyl alcohol and its applications 5 2.2 Treatment of IPA-containing wastewater from the semiconductor industry 6 2.3 Microwave-enhanced advanced oxidation processes in organic wastewater treatment 17 2.3.1 Advanced oxidation processes 17 2.3.2 Microwave theory and mechanism 19 2.3.3 Application of MW-enhanced AOPs in organic wastewater treatment 21 2.4 Novelty of the study 27 Chapter 3 Materials and methods 29 3.1 Chemicals and materials 30 3.2 Batch microwave-assisted oxidation experiments 31 3.2.1 Experimental details 31 3.2.2 IPA degradation in real wastewater 33 3.2.3 Kinetic analysis 33 3.3 Batch microwave-assisted heterogeneous catalytic oxidation experiments 36 3.3.1 Experimental details 36 3.3.2 Central composite design and response surface methodology study 38 3.4 Continuous-flow mode microwave-assisted heterogeneous catalytic oxidation experiments 39 3.4.1 Apparatus 39 3.4.2 Experimental details 40 3.5 Analytical methods 43 3.5.1 Identification and quantification of IPA and its metabolites 43 3.5.2 Determination of total organic carbon concentration 43 3.5.3 Determination of chemical oxygen demand concentration 44 3.5.4 Determination of hydrogen peroxide concentration 44 3.5.5 Brunauer-Emmett-Teller (BET) specific surface area analysis 44 Chapter 4 Results and discussion 46 4.1 Microwave-assisted oxidation process – Batch study 46 4.1.1 Degradation kinetics of IPA in the MW-assisted oxidation process 46 4.1.2 Evolution of degradation products over the course of the MW-assisted oxidation process 53 4.1.3 Possible degradation pathways of IPA in the MW-assisted oxidation process 57 4.2 Microwave-assisted heterogeneous catalytic oxidation process – Batch study 62 4.2.1 Preliminary tests - Heterogeneous catalyst screening 62 4.2.2 Mathematical model construction for optimization of IPA degradation in MW/AC/H2O2 system 64 4.2.3 Effect of selected variables 69 4.2.4 Optimization of MW-assisted heterogeneous catalytic oxidation process using RSM approach 75 4.2.5 Comparison of different treatment processes on TOC removal 76 4.2.6 Possible degradation mechanism of IPA in the MW/AC/H2O2 system 77 4.3 Microwave-assisted heterogeneous catalytic oxidation – Continuous flow study 80 4.3.1 Investigation of influencing factors 80 4.3.2 MW-assisted regeneration of AC catalyst 86 Chapter 5 Significance, conclusions and suggestions 90 5.1 Research significance 90 5.2 Conclusions 91 5.3 Suggestions 93 References 94 Appendix I. Degradation products study 110 Appendix II. Continuous flow study 116"
dc.language.isoen
dc.subject降解途徑zh_TW
dc.subject異丙醇zh_TW
dc.subject微波zh_TW
dc.subject高級氧化處理zh_TW
dc.subject中央複合設計zh_TW
dc.subject反應曲面方法論zh_TW
dc.subject降解動力學zh_TW
dc.subjectmicrowaveen
dc.subjectdegradation kineticsen
dc.subjectcentral composite design and response surface methodologyen
dc.subjectadvanced oxidation processen
dc.subjectisopropyl alcoholen
dc.subjectdegradation pathwaysen
dc.title以微波強化高級氧化處理異丙醇廢水zh_TW
dc.titleMicrowave-enhanced advanced oxidation processes for isopropyl alcohol wastewater treatmenten
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.oralexamcommittee闕蓓德(Hsin-Tsai Liu),于昌平(Chih-Yang Tseng),侯嘉洪,林伯勳
dc.subject.keyword異丙醇,微波,高級氧化處理,中央複合設計,反應曲面方法論,降解動力學,降解途徑,zh_TW
dc.subject.keywordisopropyl alcohol,microwave,advanced oxidation process,central composite design and response surface methodology,degradation kinetics,degradation pathways,en
dc.relation.page117
dc.identifier.doi10.6342/NTU202103927
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2010202114501700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved