Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8064
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賀培銘
dc.contributor.authorShu-Jung Yangen
dc.contributor.author楊書容zh_TW
dc.date.accessioned2021-05-19T18:05:05Z-
dc.date.available2024-08-20
dc.date.available2021-05-19T18:05:05Z-
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-16
dc.identifier.citation[1] H. Kawai, Y. Matsuo and Y. Yokokura, “A Self-consistent Model of the Black Hole Evaporation,” Int. J. Mod. Phys. A 28, 1350050 (2013) [arXiv:1302.4733 [hep-th]].
[2] H. Kawai and Y. Yokokura, “Phenomenological Description of the Interior of the Schwarzschild Black Hole,” arXiv:1409.5784 [hep-th].
[3] P. M. Ho, “Comment on Self-Consistent Model of Black Hole Formation and Evaporation,” arXiv:1505.02468 [hep-th].
[4] H. Kawai and Y. Yokokura, “Interior of Black Holes and Information Recovery,” arXiv:1509.08472 [hep-th].
[5] P. M. Ho, “The Absence of Horizon in Black-Hole Formation,” arXiv:1510.07157 [hep-th].
[6] P. M. Ho, “Asymptotic Black Holes,” Class. Quant. Grav. 34, no. 8, 085006 (2017) doi:10.1088/1361-6382/aa641e [arXiv:1609.05775 [hep-th]].
[7] P. H. Lambert, “Introduction to Black Hole Evaporation,” PoS Modave 2013, 001 (2013) doi:10.22323/1.201.0001 [arXiv:1310.8312 [gr-qc]].
[8] J. G. Russo, L. Susskind and L. Thorlacius, “The Endpoint of Hawking radiation,” Phys. Rev. D 46, 3444 (1992) doi:10.1103/PhysRevD.46.3444 [hep-th/9206070].
[9] S. D. Mathur, “The Information paradox: A Pedagogical introduction,” Class. Quant. Grav. 26, 224001 (2009) [arXiv:0909.1038 [hep-th]].
[10] U. H. Gerlach, “The Mechanism of Black Body Radiation from an Incipient Black Hole,” Phys. Rev. D 14, 1479 (1976). doi:10.1103/PhysRevD.14.1479
[11] C. R. Stephens, G. ’t Hooft and B. F. Whiting, “Black hole evaporation without information loss,” Class. Quant. Grav. 11, 621 (1994) doi:10.1088/0264-9381/11/3/014 [gr-qc/9310006].
[12] G. ’t Hooft, “The Scattering matrix approach for the quantum black hole: An Overview,” Int. J. Mod. Phys. A 11, 4623 (1996) doi:10.1142/S0217751X96002145 [gr-qc/9607022].
[13] O. Lunin and S. D. Mathur, “AdS / CFT duality and the black hole information paradox,” Nucl. Phys. B 623, 342 (2002) [hep th/0109154]. O. Lunin and S. D. Mathur, “Statistical interpretation of Bekenstein entropy for systems with a stretched horizon,” Phys. Rev. Lett. 88, 211303 (2002) [hep-th/0202072].
[14] T. Vachaspati, D. Stojkovic and L. M. Krauss, “Observation of incipient black holes and the information loss problem,” Phys. Rev. D 76, 024005 (2007) doi:10.1103/PhysRevD.76.024005 [gr-qc/0609024].
[15] C. Barcelo, S. Liberati, S. Sonego and M. Visser, “Fate of gravitational collapse in semiclassical gravity,” Phys. Rev. D 77, 044032 (2008) doi:10.1103/PhysRevD.77.044032 [arXiv:0712.1130 [gr-qc]].
[16] T. Kruger, M. Neubert and C. Wetterich, “Cosmon Lumps and Horizonless Black Holes,” Phys. Lett. B 663, 21 (2008) doi:10.1016/j.physletb.2008.03.051 [arXiv:0802.4399 [astro-ph]].
[17] S. Yi, “Black hole: Never forms, or never evaporates,” JCAP 1101, 031 (2011) [arXiv:1102.2609 [physics.gen-ph]]
[18] F. Fayos and R. Torres, “A quantum improvement to the gravitational collapse of radiating stars,” Class. Quant. Grav. 28, 105004 (2011). doi:10.1088/0264-9381/28/10/105004
[19] L. Mersini-Houghton, “Backreaction of Hawking Radiation on a Gravitationally Collapsing Star I: Black Holes?,” PLB30496 Phys Lett B, 16 September 2014 [arXiv:1406.1525 [hep-th]]. L. Mersini-Houghton and H. P. Pfeiffer, “Back-reaction of the Hawking radiation flux on a gravitationally collapsing star II: Fireworks instead of firewalls,” arXiv:1409.1837 [hep-th].
[20] A. Saini and D. Stojkovic, “Radiation from a collapsing object is manifestly unitary,” Phys. Rev. Lett. 114, no. 11, 111301 (2015) [arXiv:1503.01487 [gr-qc]].
[21] V. Baccetti, R. B. Mann and D. R. Terno, “Role of evaporation in gravitational collapse,” Class. Quant. Grav. 35, no. 18, 185005 (2018) doi:10.1088/1361-6382/aad70e [arXiv:1610.07839 [gr-qc]].
[22] V. Baccetti, R. B. Mann and D. R. Terno, “Do event horizons exist?,” Int. J. Mod. Phys. D 26, no. 12, 1743008 (2017) doi:10.1142/S0218271817430088, 10.1142/S0218271817170088 [arXiv:1706.01180 [gr-qc]].
[23] P. C. W. Davies and S. A. Fulling, “Radiation from a moving mirror in twodimensional space-time conformal anomaly,” Proc. Roy. Soc. Lond. A 348, 393 (1976).
[24] P. C. W. Davies, S. A. Fulling and W. G. Unruh, “Energy Momentum Tensor Near an Evaporating Black Hole,” Phys. Rev. D 13, 2720 (1976). doi:10.1103/PhysRevD.13.2720
[25] David J. Griffiths, “Introduction to Electrodynamics”, Cambridge University Press.
[26] C. N. Yang and D. Feldman, “The S Matrix in the Heisenberg Representation,” Phys. Rev. 79, 972 (1950). doi:10.1103/PhysRev.79.972
[27] T. C. Cheng, P. M. Ho and M. C. Yeh, “Perturbative approach to higher derivative and nonlocal theories,” Nucl. Phys. B 625, 151 (2002) doi:10.1016/S0550-3213(02)00020-2 [hep-th/0111160]. T. C. Cheng, P. M. Ho and M. C. Yeh, “Perturbative approach to higher derivative theories with fermions,” Phys. Rev. D 66, 085015 (2002) doi:10.1103/PhysRevD.66.085015 [hep-th/0206077].
[28] M. W. Choptuik, “Universality and scaling in gravitational collapse of a massless scalar field,” Phys. Rev. Lett. 70, 9 (1993). doi:10.1103/PhysRevLett.70.9 C. Gundlach, “Critical phenomena in gravitational collapse,” Adv. Theor. Math. Phys. 2, 1 (1998) [gr qc/9712084]. For a review, see: C. Gundlach and J. M. Martin- Garcia, “Critical phenomena in gravitational collapse,” Living Rev. Rel. 10, 5 (2007) doi:10.12942/lrr-2007-5 [arXiv:0711.4620 [gr qc]].
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8064-
dc.description.abstract由Kawai、Matsuo及Yokokura所提出的KMY模型藉由計算半古典愛因斯坦方程得到自洽的黑洞演化,並發現此模型中之黑洞並不存在視界面(horizon)。 本論文主要藉由不同初始條件探討KMY模型中所有黑洞類型的可能性,透過數值模擬以及解析表述,我們發現有兩種黑洞類型,一是在KMY模型中已被提出的漸近黑洞類型(asymptotic black hole),另一則是類薄殼黑洞(pseudo thin shell)。若塌縮物質的初始能量密度小於某臨界值,將形成漸近黑洞,反之則形成類薄殼黑洞。zh_TW
dc.description.abstractBy solving the semi-classical Einstein equation to get a self-consistent evolution process for black holes, the earlier work of Kawai, Matsuo and Yokokura introduced the notion of a black hole where there is no horizon. In this thesis, we use both numerical simulation and analytic expression to probe the possibility of other solutions to the semi-classical Einstein equation. We find that there are two types of solutions corresponding to different initial conditions. Whenever the initial energy density of the collapsing matter is smaller than a critical value, we arrive at an asymptotic black hole. We also derive the analytic expression for the second kind of black hole. They appear when the initial energy density is higher than the critical value, and they will be called pseudo thin shells.en
dc.description.provenanceMade available in DSpace on 2021-05-19T18:05:05Z (GMT). No. of bitstreams: 1
ntu-108-R05222083-1.pdf: 1413794 bytes, checksum: 64a31e99c6d74be9185d3ec763b07aac (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents1 Introduction 5
2 The Conventional Model Of Black Hole 9
2.1 Schwarzschild Metric 9
2.2 Hawking Radiation 10
2.3 Information Loss Paradox 13
3 The KMY Model 14
3.1 No Horizon In The KMY Model 20
3.2 Implication Of The KMY Model On Information Loss Paradox 21
4 Unphysicalness Of Ideal Thin Shell 22
4.1 Ideal Thin Shell 23
4.1.1 Constant Schwarzschild Radius 24
4.1.2 Shrinking Schwarzschild Radius 25
4.2 Pseudo-Thin Shell 26
4.3 Make Sense Of Thin Shells 30
5 The First Asymptotic States: Slope-1 Shell 33
5.1 Purpose Of Numerical Simulation 36
6 Numerical Simulation Setup 37
6.1 Each Discrete Shell As Pseudo-thin Shell 37
6.2 Removing Higher Derivatives 38
6.3 How To Interpret The Profile 40
6.4 Massive Core Inside The Collapsing Shells 42
7 Asymptotic States 44
7.1 a-r Graph In Static Background 44
7.2 a-r Graph in the KMY Model 47
7.3 Details Of The Profiles 52
7.4 Small Slope 52
7.5 Large Slope 55
8 Stability Of The Decaying Rate 58
9 Discussion and Conclusion 63
Bibliography 65
Appendix 69
dc.language.isoen
dc.titleKMY模型中的黑洞類型zh_TW
dc.titleClassification Of Black Holes In KMY Modelen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃宇廷,高賢忠
dc.subject.keywordKMY模型,霍金輻射,反饋作用,半古典愛因斯坦方程,漸近黑洞類型,zh_TW
dc.subject.keywordthe KMY model,Hawking radiation,back reaction,semi-classical Einstein equation,asymptotic black hole states,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201902989
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-08-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
dc.date.embargo-lift2024-08-20-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf1.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved