請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80643完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張皓巽(Hao-Xun Chang) | |
| dc.contributor.author | Hsien-Hao Liu | en |
| dc.contributor.author | 劉軒豪 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:11:35Z | - |
| dc.date.available | 2021-11-05 | |
| dc.date.available | 2022-11-24T03:11:35Z | - |
| dc.date.copyright | 2021-11-05 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-22 | |
| dc.identifier.citation | Abbas, H. K., Bellaloui, N., Butler, A. M., Nelson, J. L., Abou-Karam, M., and Shier, W. T. 2020. Phytotoxic responses of soybean (Glycine max L.) to botryodiplodin, a toxin produced by the charcoal rot disease fungus, Macrophomina phaseolina. Toxins 12:25. Aguirre, J., Ríos-Momberg, M., Hewitt, D., and Hansberg, W. 2005. Reactive oxygen species and development in microbial eukaryotes. Trends in Microbiology 13:111-118. Ali, M., Khan, M., Rahman, A. K. M. M. U., Ahmed, M., and Ahsan, S. 2010. Study on seed quality and performance of some mungbean varieties in Bangladesh. Agriculture 1:10-15. Altenhoff, A. M., Train, C. M., Gilbert, K. J., Mediratta, I., Mendes de Farias, T., Moi, D., and Dessimoz, C. 2021. OMA orthology in 2021: website overhaul, conserved isoforms, ancestral gene order and more. Nucleic Acids Research 49: 373-379. Andrukhiv, A., Costa, A. D., West, I. C., and Garlid, K. D. 2006. Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. American Journal of Physiology-Heart and Circulatory Physiology 291:67-74. Backhouse, D., and Willetts, H. J. 1987. Development and structure of infection cushions of Botrytis cinerea. Transactions of the British Mycological Society 89:89-95. Baggio, J. S., Cordova, L. G., and Peres, N. A. 2019. Sources of inoculum and survival of Macrophomina phaseolina in Florida strawberry fields. Plant Disease 103:2417-2424. Barsottini, M. R., Pires, B. A., Vieira, M. L., Pereira, J. G., Costa, P. C., Sanitá, J., and Pereira, G. A. 2019. Synthesis and testing of novel alternative oxidase (AOX) inhibitors with antifungal activity against Moniliophthora perniciosa (Stahel), the causal agent of witches' broom disease of cocoa, and other phytopathogens. Pest Management Science 75:1295-1303. Bashir, M., and Malik, B. A. 1988. Diseases of major pulse crops in Pakistan—a review. Tropical Pest Management 34:309-314. Beas-Fernandez, R., De Santiago-De Santiago, A., Hernandez-Delgado, S., and Mayek-Perez, N. 2006. Characterization of Mexican and non-Mexican isolates of Macrophomina phaseolina based on morphological characteristics, pathogenicity on bean seeds and endoglucanase genes. Journal of Plant Pathology 88:53-60. Bhattacharya, G., K Dhar, T., Kathleen Bhattacharya, F., and A I Siddiqui, K. 1987. Mutagenic action of phaseolinone, a mycotoxin isolated from Macrophomina phaseolina. Australian Journal of Biological Sciences 40:349-354. Bray, N. L., Pimentel, H., Melsted, P., and Pachter, L. 2016. Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology 34:525-527. Blokhina, O., Virolainen, E., and Fagerstedt, K. V. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of botany 91:179-194. Brand, M. D. 2010. The sites and topology of mitochondrial superoxide production. Experimental Gerontology 45:466-472. Canessa, P., Schumacher, J., Hevia, M. A., Tudzynski, P., and Larrondo, L. F. 2014. Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the white collar complex. PLoS One 8:e84223. Chamorro, M., Domínguez, P., Medina, J. J., Miranda, L., Soria, C., Romero, F., López Aranda, J. M., Daugovish, O., Mertely, J., and De los Santos, B. 2015. Assessment of chemical and biosolarization treatments for the control of Macrophomina phaseolina in strawberries. Scientia Horticulturae 192:361-368. Chatterjee, S., Chatterjee, B. P., and Guha, A. K. 2014. A study on antifungal activity of water-soluble chitosan against Macrophomina phaseolina. International Journal of Biological Macromolecules 67:452-457. Chen, Z. X., and Pervaiz, S. 2010. Involvement of cytochrome c oxidase subunits Va and Vb in the regulation of cancer cell metabolism by Bcl-2. Cell Death and Differentiation 17:408-420. Chet, I., and Henis, Y. 1968. The control mechanism of sclerotial formation in Sclerotium rolfsii Sacc. Microbiology 54:231-236. Chi, M. H., and Craven, K. D. 2016. RacA-Mediated ROS signaling is required for polarized cell differentiation in conidiogenesis of Aspergillus fumigatus. PLoS One 11:e0149548. Chittiboyina, S., Bai, Y., and Lelièvre, S. A. 2018. Microenvironment-cell nucleus relationship in the context of oxidative stress. Frontiers in Cell and Developmental Biology 6:23. Chowdhury, S., Basu, A., and Kundu, S. 2017. Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases. Scientific Reports 7:17251. Cohen, R., Elkabetz, M., and Edelstein, M. 2016. Variation in the responses of melon and watermelon to Macrophomina phaseolina. Crop Protection 85:46-51. Cohen, R., Omari, N., Porat, A., and Edelstein, M. 2012. Management of Macrophomina wilt in melons using grafting or fungicide soil application: pathological, horticultural and economical aspects. Crop Protection 35:58-63. Crous, P. W., Slippers, B., Wingfield, M. J., Rheeder, J., Marasas, W. F. O., Philips, A. J. L., Alves, A., Burgess, T., Barber, P., and Groenewald, J. Z. 2006. Phylogenetic lineages in the Botryosphaeriaceae. Studies in Mycology 55:235-253. De Bary, A. 1887. Comparative morphology and biology of the fungi, mycetozoa and bacteria. Clarendon Press: Oxford, London, New York. De Sousa Linhares, C. M., Ambrósio, M. M. Q., Castro, G., Torres, S. B., Esteras, C., de Sousa Nunes, G. H., and Picó, B. 2020. Effect of temperature on disease severity of charcoal rot of melons caused by Macrophomina phaseolina: implications for selection of resistance sources. European Journal of Plant Pathology 158:431-441. Del Río, L. A., and López-Huertas, E. 2016. ROS generation in peroxisomes and its role in cell signaling. Plant and Cell Physiology 57: 1364-1376. Denat, L., Kadekaro, A. L., Marrot, L., Leachman, S. A., and Abdel-Malek, Z. A. 2014. Melanocytes as instigators and victims of oxidative stress. Journal of Investigative Dermatology 134:1512-1518. Dhingra, O. D., and Sinclair, J. B. 1978. Biology and pathology of Macrophomina phaseolina. Universidade Federal de Vicosa., Minas Gerais. Dirschnabel, D. E., Nowrousian, M., Cano-Domínguez, N., Aguirre, J., Teichert, I., and Kück, U. 2014. New insights into the roles of NADPH oxidases in sexual development and ascospore germination in Sordaria macrospora. Genetics 196: 729-744. Doley, K., and Jite, P. 2019. Effect of arbuscular mycorrhizal fungi on growth of groundnut and disease caused by Macrophomina phaseolina. Journal of Experimental Sciences 3:46-50. Duressa, D., Anchieta, A., Chen, D., Klimes, A., Garcia-Pedrajas, M. D., Dobinson, K. F., and Klosterman, S. J. 2013. RNA-seq analyses of gene expression in the microsclerotia of Verticillium dahliae. BMC genomics 14:1-18. Erecińska, M., Wilson, D. F., and Miyata, Y. 1976. Mitochondrial cytochrome b-c1 complex: Its oxidation-reduction components and their stoichiometry. Archives of Biochemistry and Biophysics 177:133-143. Erental, A., Dickman, M. B., and Yarden, O. 2008. Sclerotial development in Sclerotinia sclerotiorum: awakening molecular analysis of a “Dormant” structure. Fungal Biology Reviews 22:6-16. Farrugia, G., and Balzan, R. 2012. Oxidative stress and programmed cell death in yeast. Frontiers in Oncology 2:64. Fernandez, J., amd Wilson, R. A. 2014. Characterizing roles for the glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes of Magnaporthe oryzae during rice blast disease. PLoS One 9:e87300. Georgiou, C. D. 1997. Lipid peroxidation in Sclerotium rolfsii: a new look into the mechanism of sclerotial biogenesis in fungi. Mycological Research 101:460-464. Georgiou, C. D., and Petropoulou, K. P. 2001a. Effect of the antioxidant ascorbic acid on sclerotial differentiation in Rhizoctonia solani. Plant Pathology 50:594-600. Georgiou, C. D., Tairis, N., and Polycratis, A. 2001b. Production of β-carotene by Sclerotinia sclerotiorum and its role in sclerotium differentiation. Mycological Research 105:1110-1115. Georgiou, C. D., Zervoudakis, G., Tairis, N., and Kornaros, M. 2001c. β-carotene production and its role in sclerotial differentiation of Sclerotium rolfsii. Fungal Genetics and Biology 34:11-20. Georgiou, C. D., Zervoudakis, G., and Petropoulou, K. P. 2003. Ascorbic acid might play a role in the sclerotial differentiation of Sclerotium rolfsii. Mycologia 95:308-316. Georgiou, C. D., Patsoukis, N., Papapostolou, I., and Zervoudakis, G. 2006. Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integrative and Comparative Biology 46:691-712. Ghosh, T., Kumar Biswas, M., Roy, P., and Ali, M. 2018. A review on characterization, therapeutic approaches and pathogenesis of Macrophomina phaseolina. Plant Cell Biotechnology and Molecular Biology 19:72-84. Greene, V., Cao, H., Schanne, F. A. X., and Bartelt, D. C. 2002. Oxidative stress-induced calcium signalling in Aspergillus nidulans. Cellular Signalling 14:437-443. Griffiths, D. A. 1970. The fine structure of developing microsclerotia of Verticillium dahliae Kleb. Archiv für Mikrobiologie 74:207-212. Grintzalis, K., Vernardis, S. I., Klapa, M. I., and Georgiou, C. D. 2014. Role of oxidative stress in sclerotial differentiation and aflatoxin B1 biosynthesis in Aspergillus flavus. Applied and Environmental Microbiology 80:5561-5571. Gu, Z., Eils, R., and Schlesner, M. 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847-2849. Gupta, G. K., Sharma, S. K., and Ramteke, R. 2012. Biology, epidemiology and management of the pathogenic fungus Macrophomina phaseolina (Tassi) goid with special reference to charcoal rot of soybean (Glycine max (L.) Merrill). Journal of Phytopathology 160:167-180. Hansberg, W., and Aguirre, J. 1990. Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. Journal of Theoretical Biology 142:201-221. Harvey, I. C. 1975. Development and germination of chlamydospores in Pleiochaeta setosa. Transactions of the British Mycological Society 64:489-IN411. Haque, M. E. and Parvin, M. S. 2021. Comparative transcriptomics of sclerotia and mycelia of Rhizoctonia solani AG2-2IIIB. Agricultural and Biological Research 37:116-123. Heale, J. B., and Isaac, I. 1965. Environmental factors in the production of dark resting structures in Verticillium alboatrum, V. dahliae and V. tricorpus. Transactions of the British Mycological Society 48:39-50. Hou, Y., Na, R., Li, M., Jia, R., Zhou, H., Jing, L., and Zhao, J. 2017. H2O2 is involved in camp-induced inhibition of sclerotia initiation and maturation in the sunflower pathogen sclerotinia sclerotiorum. Journal of Plant Pathology 99:17-26. Hu, W., Pan, X., Li, F., and Dong, W. 2018. UPLC-QTOF-MS metabolomics analysis revealed the contributions of metabolites to the pathogenesis of Rhizoctonia solani strain AG-1-IA. PLoS One 13:e0192486. Huarte‐Bonnet, C., Paixão, F. R., Mascarin, G. M., Santana, M., Fernandes, É. K., and Pedrini, N. 2019. The entomopathogenic fungus Beauveria bassiana produces microsclerotia-like pellets mediated by oxidative stress and peroxisome biogenesis. Environmental Microbiology Reports 11:518-524. Huang, K., Czymmek, K. J., Caplan, J. L., Sweigard, J. A., and Donofrio, N. M. 2011. HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus. PLoS Pathogens 7:e1001335. Huang, Z., Lu, J., Liu, R., Wang, P., Hu, Y., Fang, A., and Yu, Y. 2021. SsCat2 encodes a catalase that is critical for the antioxidant response, QoI fungicide sensitivity, and pathogenicity of Sclerotinia sclerotiorum. Fungal Genetics and Biology 149: 103530. Hunter, B. B., Buckelew, T. P., and Dowler, K. E. N. 1976. Light and electron microscopy of the sclerotial producing imperfect genus, Cylindrocladium. Proceedings of the Pennsylvania Academy of Science 50:149-159. Inoue, K., Tsurumi, T., Ishii, H., Park, P., and Ikeda, K. 2012. Cytological evaluation of the effect of azoxystrobin and alternative oxidase inhibitors in Botrytis cinerea. FEMS Microbiology Letters 326:83-90. Isaac, I. 1949. A comparative study of pathogenic isolates of Verticillium. Transactions of the British Mycological Society 32:137-157. Islam, M. S., Haque, M. S., Islam, M. M., Emdad, E. M., Halim, A., Hossen, Q. M. M., Hossain, M. Z., Ahmed, B., Rahim, S., Rahman, M. S., Alam, M. M., Hou, S., Wan, X., Saito, J. A., and Alam, M. 2012. Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomics 13:493. Jo, S. H., Son, M. K., Koh, H. J., Lee, S. M., Song, I. H., Kim, Y. O., and Huhe, T. L. 2001. Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. Journal of Biological Chemistry 276:16168-16176. Joseph-Horne, T. I. M., Hollomon, D. W., and Wood, P. M. 2001. Fungal respiration: a fusion of standard and alternative components. Biochimica et Biophysica Acta 1504:179-195. Kaur, S., Dhillon, G. S., Brar, S. K., Vallad, G. E., Chand, R., and Chauhan, V. B. 2012. Emerging phytopathogen Macrophomina phaseolina: biology, economic importance and current diagnostic trends. Critical Reviews in Microbiology 38:136-151. Kim, H. J., Chen, C., Kabbage, M., and Dickman, M. B. 2011. Identification and characterization of Sclerotinia sclerotiorum NADPH oxidases. Applied and Environmental Microbiology 77: 7721-7729. Klotz, L. O., and Steinbrenner, H. 2017. Cellular adaptation to xenobiotics: Interplay between xenosensors, reactive oxygen species and FOXO transcription factors. Redox Biology 13:646-654. Koga, S., Nakano, M., and Tero-Kubota, S. 1992. Generation of superoxide during the enzymatic action of tyrosinase. Archives of Biochemistry and Biophysics 292:570-575. Kohn, L. M., Carbone, I., and Anderson, J. B. 1990. Mycelial interactions in Sclerotinia sclerotiorum. Experimental Mycology 14:255-267. Kou, Y., Qiu, J., and Tao, Z. 2019. Every coin has two sides: reactive oxygen species during rice-Magnaporthe oryzae interaction. International Journal of Molecular Sciences 20:1191. Kowaltowski, A. J., de Souza-Pinto, N. C., Castilho, R. F., and Vercesi, A. E. 2009. Mitochondria and reactive oxygen species. Free Radical Biology and Medicine 47:333-343. Lan, W. C., Tzeng, C. W., Lin, C. C., Yen, F. L., and Ko, H. H. 2013. Prenylated flavonoids from Artocarpus altilis: antioxidant activities and inhibitory effects on melanin production. Phytochemistry 89:78-88. Lara‐Ortíz, T., Riveros‐Rosas, H., and Aguirre, J. 2003. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Molecular Microbiology 50:1241-1255. Li, Q., Bai, Z., O’Donnell, A., Harvey, L. M., Hoskisson, P. A., and McNeil, B. 2011. Oxidative stress in fungal fermentation processes: the roles of alternative respiration. Biotechnology Letters 33:457-467. Li, Xiao., Wang, F., Liu, Q., Li, Q., Qian, Z., Zhang, X., Li, K., Li, W., and Dong, C. 2019. Developmental transcriptomics of Chinese cordyceps reveals gene regulatory network and expression profiles of sexual development-related genes. BMC Genomics 20:1-18. Li, Y., Wang, Z., Liu, X., Song, Z., Li, R., Shao, C., and Yin, Y. 2016. Siderophore biosynthesis but not reductive iron assimilation is essential for the dimorphic fungus Nomuraea rileyi conidiation, dimorphism transition, resistance to oxidative stress, pigmented microsclerotium formation, and virulence. Frontiers In Microbiology 7:931. Li, B., Tian, X., Wang, C., Zeng, X., Xing, Y., Ling, H., and Guo, S. 2017. SWATH label-free proteomics analyses revealed the roles of oxidative stress and antioxidant defensing system in sclerotia formation of Polyporus umbellatus. Scientific Reports 7:1-13. Lin, Z., Wu, J., Jamieson, P. A., and Zhang, C. 2019. Alternative oxidase is involved in the pathogenicity, development, and oxygen stress response of Botrytis cinerea. Phytopathology 109:1679-1688. Liu, B., Wang, H., Ma, Z., Gai, X., Sun, Y., He, S., and Gao, Z. 2018. Transcriptomic evidence for involvement of reactive oxygen species in Rhizoctonia solani AG1 IA sclerotia maturation. PeerJ 6:e5103. Liu, J., Yin, Y., Song, Z., Li, Y., Jiang, S., Shao, C., and Wang, Z. 2014. NADH: flavin oxidoreductase/NADH oxidase and ROS regulate microsclerotium development in Nomuraea rileyi. World Journal of Microbiology and Biotechnology 30:1927-1935. Liu, Y., Liu, J. K., Li, G. H., Zhang, M. Z., Zhang, Y. Y., Wang, Y. Y., Hou, J., Yang, S., Sun, J., and Qin, Q.-M. 2019. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development. Molecular Plant Pathology 20:731-747. Liu, Q., He, G., Wei, J., and Dong, C. 2021. Comparative transcriptome analysis of cells from different areas reveals ROS responsive mechanism at sclerotial initiation stage in Morchella importuna. Scientific Reports 11:1-13 Luo, X., Xie, C., Dong, J., and Yang, X. 2019. Comparative transcriptome analysis reveals regulatory networks and key genes of microsclerotia formation in the cotton vascular wilt pathogen. Fungal Genetics and Biology 126:25-36. Malagnac, F., Klapholz, B., and Silar, P. 2007. PaTrx1 and PaTrx3, two cytosolic thioredoxins of the filamentous ascomycete Podospora anserina involved in sexual development and cell degeneration. Eukaryotic Cell 6:2323-2331. Malagnac, F., Lalucque, H., Lepère, G., and Silar, P. 2004. Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina. Fungal Genetics and Biology 41:982-997. Marquez, N., Giachero, M. L., Gallou, A., Debat, H. J., Cranenbrouck, S., Di Rienzo, J. A., Pozo, M. J., Ducasse, D. A., and Declerck, S. 2018. Transcriptional changes in mycorrhizal and nonmycorrhizal soybean plants upon infection with the fungal pathogen Macrophomina phaseolina. Molecular Plant Microbe Interactions 31:842-855. Marschall, R., Siegmund, U., Burbank, J., and Tudzynski, P. 2016. Update on Nox function, site of action and regulation in Botrytis cinerea. Fungal Biology and Biotechnolog 3:1-15. Marschall, R., and Tudzynski, P. 2014. A new and reliable method for live imaging and quantification of reactive oxygen species in Botrytis cinerea: Technological advancement. Fungal Genetics and Biology 71:68-75. Mentges, M., Glasenapp, A., Boenisch, M., Malz, S., Henrissat, B., Frandsen, R. J. N., Güldener, U., Münsterkötter, M., Bormann, J., Lebrun, M.-H., Schäfer, W., and Martinez-Rocha, A. L. 2020. Infection cushions of Fusarium graminearum are fungal arsenals for wheat infection. Molecular Plant Pathology 21:1070-1087. Meyskens Jr, F. L., Farmer, P., and Fruehauf, J. P. 2001. Redox regulation in human melanocytes and melanoma. Pigment Cell Research 14:148-154. Nagy, P., and Fischl, G. 2002. The effect of UV and visible light irradiation on the development of microsclerotium of the fungus Macrophomina phaseolina. Cereal Research Communications 30:383-389. Nordzieke, D. E., Fernandes, T. R., El Ghalid, M., Turrà, D., and Di Pietro, A. 2019. NADPH oxidase regulates chemotropic growth of the fungal pathogen Fusarium oxysporum towards the host plant. New Phytologist 224:1600-1612. Omar, M. R., Abd-Elsalam, K. A., Aly, A. A., El-Samawaty, A. M. A., and Verreet, J. A. 2007. Diversity of Macrophomina phaseolina from cotton in Egypt: Analysis of pathogenicity, chlorate phenotypes, and molecular characterization. Journal of Plant Diseases and Protection 114:196-204. Ordóñez-Valencia, C., Ferrera-Cerrato, R., Quintanar-Zúñiga, R. E., Flores-Ortiz, C. M., Guzmán, G. J. M., Alarcón, A., and García-Barradas, O. 2015. Morphological development of sclerotia by Sclerotinia sclerotiorum: a view from light and scanning electron microscopy. Annals of microbiology 65:765-770. Orr, A. L., Vargas, L., Turk, C. N., Baaten, J. E., Matzen, J. T., Dardov, V. J., .and Brand, M. D. 2015. Suppressors of superoxide production from mitochondrial complex III. Nature Chemical Biology 11:834-836. Osato, T., Park, P., and Ikeda, K. 2017. Cytological analysis of the effect of reactive oxygen species on sclerotia formation in Sclerotinia minor. Fungal Biology 121:127-136. Oyewole, B. O., Olawuyi, O. J., Odebode, A. C., and Abiala, M. A. 2017. Influence of Arbuscular mycorrhiza fungi (AMF) on drought tolerance and charcoal rot disease of cowpea. Biotechnology Reports 14:8-15. Pandey, A. K., and Basandrai, A. K. 2021. Will Macrophomina phaseolina spread in legumes due to climate change? A critical review of current knowledge. Journal of Plant Diseases and Protection 128:9-18. Papapostolou, I., and Georgiou, C. D. 2010a. Superoxide radical is involved in the sclerotial differentiation of filamentous phytopathogenic fungi: identification of a fungal xanthine oxidase. Fungal Biology 114:387-395. Papapostolou, I., and Georgiou, C. D. 2010b. Hydrogen peroxide is involved in the sclerotial differentiation of filamentous phytopathogenic fungi. Journal of Applied Microbiology 109:1929-1936. Papapostolou, I., Sideri, M., and Georgiou, C. D. 2014. Cell proliferating and differentiating role of H2O2 in Sclerotium rolfsii and Sclerotinia sclerotiorum. Microbiological Research 169:527-532. Patsoukis, N., and Georgiou, C. 2008. The role of thiols on sclerotial differentiation of filamentous phytopathogenic fungi. The Open Mycology Journal 2:1-8. Pimentel, H., Bray, N. L., Puente, S., Melsted, P., and Pachter, L. 2017. Differential analysis of RNA-seq incorporating quantification uncertainty. Nature Methods 14: 687-690. Pittendrigh, C. S., Bruce, V. G., Rosensweig, N. S., and Rubin, M. L. 1959. Growth patterns in Neurospora: A Biological Clock in Neurospora. Nature 184:169-170. Quinlan, C. L., Gerencser, A. A., Treberg, J. R., and Brand, M. D. 2011. The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. Journal of Biological Chemistry 286:31361-31372. Ramezani, M., Shier, W. T., Abbas, H. K., Tonos, J. L., Baird, R. E., and Sciumbato, G. L. 2007. Soybean charcoal rot disease fungus Macrophomina phaseolina in mississippi produces the phytotoxin (−)-botryodiplodin but no detectable phaseolinone. Journal of Natural Products 70:128-129. Reichert, I., and Hellinger, E. 1949. On the occurrence, morphology and parasitism of Sclerotium bataticola. Palestine Journal of Botany 6:107-147. Roca, M. G., Weichert, M., Siegmund, U., Tudzynski, P., and Fleissner, A. 2012. Germling fusion via conidial anastomosis tubes in the grey mould Botrytis cinerea requires NADPH oxidase activity. Fungal Biology 116:379-387. Roze, L. V., Laivenieks, M., Hong, S. Y., Wee, J., Wong, S. S., Vanos, B., and Linz, J. E. 2015. Aflatoxin biosynthesis is a novel source of reactive oxygen species—a potential redox signal to initiate resistance to oxidative stress? Toxins 7:1411-1430. Salvatore, M. M. 2020. Secondary metabolites produced by Macrophomina phaseolina isolated from Eucalyptus globulus. Agriculture 10:72. Sarkar, T. S., Biswas, P., Ghosh, S. K., and Ghosh, S. 2014. Nitric oxide production by necrotrophic pathogen Macrophomina phaseolina and the host plant in charcoal rot disease of jute: complexity of the interplay between necrotroph–Host Plant Interactions. PLoS One 9:e107348. Short, G., and Wyllie, T. 1978. Inoculum potential of Macrophomina phaseolina. Phytopathology 68:742-746 Shu, C., Zhao, M., Anderson, J. P., Garg, G., Singh, K. B., Zheng, W., Wang, C., Yang, M., and Zhou, E. 2019. Transcriptome analysis reveals molecular mechanisms of sclerotial development in the rice sheath blight pathogen Rhizoctonia solani AG1-IA. Functional and Integrative Genomics 19:743-758. Sies, H., and Jones, D. P. 2020. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature reviews Molecular Cell Biology 21:363-383. Simonetti, E., Viso, N. P., Montecchia, M., Zilli, C., Balestrasse, K., and Carmona, M. 2015. Evaluation of native bacteria and manganese phosphite for alternative control of charcoal root rot of soybean. Microbiological Research 180:40-48. Soesanto, L., and Termorshuizen, A. J. 2001. Effect of temperature on the formation of microsclerotia of Verticillium dahliae. Journal of Phytopathology 149:685-691. Song, Z., Yin, Y., Jiang, S., Liu, J., and Wang, Z. 2014. Optimization of culture medium for microsclerotia production by Nomuraea rileyi and analysis of their viability for use as a mycoinsecticide. BioControl 59:597-605. Song, Z., Yin, Y., Jiang, S., Liu, J., Chen, H., and Wang, Z. 2013. Comparative transcriptome analysis of microsclerotia development in Nomuraea rileyi. BMC Genomics 14:411-411. Supek, F., Bošnjak, M., Škunca, N., and Šmuc, T. 2011. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6:e21800. Sumner, D. R. 1996. Sclerotia formation by Rhizoctonia species and their survival. Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. B. Sneh, S. Jabaji-Hare, S. Neate and G. Dijst, eds. Springer Netherlands, Dordrecht. Suzuki, Y., and Oda, Y. 1978. Two types of sclerotial development in Botrytis cinerea. Japanese Journal of Phytopathology 44:493-498. Takashi, N., and Tadao, U. 1978. Ecological and morphological characteristics of the sclerotia of Rhizoctonia solani Kühn produced in soil. Soil Biology and Biochemistry 10:471-478. Townsend, B. B. 1957. Nutritional factors influencing the production of sclerotia by certain fungi. Annals of Botany 21:153-166. Townsend, B. B., and Willetts, H. J. 1954. The development of sclerotia of certain fungi. Transactions of the British Mycological Society 37:213-221. Trevethick, J., and Cooke, R. C. 1973. Non-nutritional factors influencing sclerotium formation in some Sclerotinia and Sclerotium species. Transactions of the British Mycological Society 60:559-566. Vanlerberghe, G. C. 2013. Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. International Journal of Molecular Sciences 14:6805-6847. Vangalis, V., Papaioannou, I. A., Markakis, E. A., Knop, M., and Typas, M. A. 2021. The NADPH Oxidase A of Verticillium dahliae is essential for pathogenicity, normal development, and stress tolerance, and it interacts with Yap1 to regulate redox homeostasis. Journal of Fungi 7:740. Veluchamy, S., Williams, B., Kim, K., and Dickman, M. B. 2012. The CuZn superoxide dismutase from Sclerotinia sclerotiorum is involved with oxidative stress tolerance, virulence, and oxalate production. Physiological and Molecular Plant Pathology 78:14-23. Viefhues, A., Heller, J., Temme, N., and Tudzynski, P. 2014. Redox systems in Botrytis cinerea: impact on development and virulence. Molecular Plant-Microbe Interactions 27:858-874. Wang, C., Pi, L., Jiang, S., Yang, M., Shu, C., and Zhou, E. 2018. ROS and trehalose regulate sclerotial development in Rhizoctonia solani AG-1 IA. Fungal Biology 122:322-332. Wang, J., Yin, Z., Tang, W., Cai, X., Gao, C., Zhang, H., and Zhang, Z. 2017. The thioredoxin MoTrx2 protein mediates reactive oxygen species (ROS) balance and controls pathogenicity as a target of the transcription factor MoAP1 in Magnaporthe oryzae. Molecular Plant Pathology 18:1199-1209. Weinberger, M., Mesquita, A., Carroll, T., Marks, L., Yang, H., Zhang, Z., and Burhans, W. C. 2010. Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence. Aging 2:709. Willetts, H. J. 1972. The morphogenesis and possible evolutionary origins of fungal sclerotia. Biological Reviews 47:515-536. Willetts, H. J., and Bullock, S. 1992. Developmental biology of sclerotia. Mycological Research 96:801-816. Wyllie, T. D., and Brown, M. F. 1970. Ultrastructural formation of sclerotia of Macrophomina phaseoli. Phytopathology 60:524-528. Xiong, D., Wang, Y., Ma, J., Klosterman, S. J., Xiao, S., and Tian, C. 2014. Deep mRNA sequencing reveals stage-specific transcriptome alterations during microsclerotia development in the smoke tree vascular wilt pathogen, Verticillium dahliae. BMC Genomics 15:324. Xu, L., and Chen, W. 2013. Random T-DNA mutagenesis identifies a Cu/Zn superoxide dismutase gene as a virulence factor of Sclerotinia sclerotiorum. Molecular Plant Microbe Interactions 26:431-441. Xu, T., Yao, F., Liang, W. S., Li, Y. H., Li, D. R., Wang, H., and Wang, Z. Y. 2012. Involvement of alternative oxidase in the regulation of growth, development, and resistance to oxidative stress of Sclerotinia sclerotiorum. Journal of Microbiology 50:594-602. Yager, L. N. 1992. Early developmental events during asexual and sexual sporulation in Aspergillus nidulans. Biotechnology 23:19-41. Yang, X. B., Snow, J. P., and Berggren, G. T. 1989. Morphogenesis of microsclerotia and sasakii-type sclerotia in Rhizoctonia solani, anastomosis group 1, intraspecific groups IA and IB. Mycological Research 93:429-434. Yarden, O., Veluchamy, S., Dickman, M. B., and Kabbage, M. 2014. Sclerotinia sclerotiorum catalase SCAT1 affects oxidative stress tolerance, regulates ergosterol levels and controls pathogenic development. Physiological and Molecular Plant Pathology 85:34-41. Young, L., Shiba, T., Harada, S., Kita, K., Albury, M. S., and Moore, A. L. 2013. The alternative oxidases: simple oxidoreductase proteins with complex functions. Biochemical Society Transactions 41:1305-1311. Yu, G., Wang, L. G., Han, Y., and He, Q. Y. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics: A Journal of Integrative Biology 16:284-287. Zhang, Z., Chen, Y., Li, B., Chen, T., and Tian, S. 2020. Reactive oxygen species: A generalist in regulating development and pathogenicity of phytopathogenic fungi. Computational and Structural Biotechnology Journal 18:3344-3349. Zhang, J., Wang, Y., Du, J., Huang, Z., Fang, A., Yang, Y., and Yu, Y. 2019. Sclerotinia sclerotiorum thioredoxin reductase is required for oxidative stress tolerance, virulence, and sclerotial development. Frontiers in Microbiology 10:233. Zhang, F., Geng, L., Huang, L., Deng, J., Fasoyin, O. E., Yao, G., and Wang, S. 2018. Contribution of peroxisomal protein importer AflPex5 to development and pathogenesis in the fungus Aspergillus flavus. Current Genetics 64:1335-1348. Zhou, G., Song, Z., Yin, Y., Jiang, W., and Wang, Z. 2015. Involvement of an alternative oxidase in the regulation of hyphal growth and microsclerotial formation in Nomuraea rileyi CQNr01. World Journal of Microbiology and Biotechnology 31:1343-1352. Zhu, Z., Yang, M., Bai, Y., Ge, F., and Wang, S. 2020. Antioxidant‐related catalase CTA1 regulates development, aflatoxin biosynthesis, and virulence in pathogenic fungus Aspergillus flavus. Environmental Microbiology 22: 2792-2810. "……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80643 | - |
| dc.description.abstract | "微菌核 (microsclerotia) 為真菌的特殊殘存構造之一,具繁殖能力且可承受多樣環境壓力。前人研究指出微菌核與菌核之結構和發展模式相似,並認為活性氧 (Reactive oxygen species, ROS) 為刺激微菌核與菌核分化的重要因子。然而目前活性氧刺激菌核與微菌核分化的相關研究,多以子囊菌 (Ascomycetes) 糞殼菌綱(Sordariomycetes) 中的菌核病菌 (Sclerotinia sclerotium) 、黃萎病菌 (Verticillium dahliae) 與綠殭菌 (Nomuraea rileyi) 為主,且文獻多數支持過氧化氫 (hydrogen peroxide) 為主要刺激分化的活性氧種類。關於活性氧是否在演化分歧後仍參與座殼菌綱 (Dothideomycetes) 炭腐病菌之微菌核形成,目前尚無實驗探究。本研究進行核糖核酸測序 (RNA-Sequencing),分析炭腐病菌由菌絲至微菌核形成的四個時期 (MS0-MS3) 基因表現差異,並以基因表現趨勢分析 (cluster analysis) 與功能富集分析 (functional enrichment analysis) 發現六個基因群中的四個基因群與活性氧代謝具相關性,包括過氧化體 (peroxisome)、單加氧酶活性 (monooxygenase activity)、麩胱甘肽轉移酶 (glutathione transferase) 等。另於菌絲 (MS0) 與微菌核形成階段 (MS1-MS3) 差異表現基因分析,發現1683個上調基因與1552個下調基因之中,氧化還原和抗氧化物活性相關功能之比例皆顯著提升,其中MS1階段主要以超氧化物 (superoxide) 代謝,MS2與MS3階段則以過氧化氫代謝為主。總觀基因表現,分析結果支持活性氧參與炭腐病菌微菌核形成。抗氧化物抑制測試與活性氧染色試驗結果顯示,添加抗壞血酸 (ascorbic acid)、二硫蘇糖醇 (dithiothreitol) 與麩胱甘肽 (glutathione) 皆可抑制微菌核形成,且抑制率隨濃度上升而增加。基於50%微菌核抑制率之濃度下進行活性氧染色,發現NBT染色程度於三種抗氧化物處理相似,然而於二硫蘇糖醇處理組,DAB的染色程度較低與其他兩種抗氧化物處理具顯著差異,推測超氧化物可能為刺激微菌核形成的主要因子。另於培養基添加DETC與過氧化氫實驗中,僅於添加誘導超氧化物累積之DETC具有效刺激微菌核合成。本研究整合轉錄體與活性氧相關試驗結果,證實活性氧參與炭腐病菌微菌核形成,且發現超氧化物為刺激炭腐病菌之菌絲分化成微菌核的主要活性氧種類。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:11:35Z (GMT). No. of bitstreams: 1 U0001-2010202122591800.pdf: 4923114 bytes, checksum: 585705188f61cd390ceaa6be92f37915 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "誌謝 iii 摘要 iv Abstract v 目錄 vi 表目錄 viii 圖目錄 ix 第壹章 前人研究 1 1.1 導論 1 1.2 炭腐病菌的基本特性 1 1.3 菌核 (sclerotia) 釋義 2 1.4 微菌核 (microsclerotia) 釋義 3 1.5 微菌核與菌核之比較 4 1.6 微菌核與菌核的形成-光照、溫度、養分之影響 5 1.7 活性氧 (reactive oxygen species, ROS) 與型態變化的相關性 6 1.8 ROS刺激菌核與微菌核形成 7 1.9 ROS種類之菌核與微菌核形成相關性 8 第貳章 材料與方法 10 2.1 菌株與培養條件 10 2.2 微菌核四個形成階段之純化 10 2.3 微菌核RNA萃取 11 2.4 核糖核酸定序 (RNA-Sequencing, RNA-Seq) 11 2.5 抗氧化物與微菌核之形成抑制測試 12 2.6 ROS誘導物與微菌核之形成促進測試 13 2.7 微菌核形成之H2O2與O2-染色試驗 13 第參章 結果 14 3.1 微菌核純化與轉錄體定序 14 3.2 群集分析顯示微菌核形成特定基因群與ROS具相關 15 3.3 微菌核形成之表現差異基因參與ROS代謝反應 16 3.4 抑制ROS形成能降低微菌核的形成 17 3.5 ROS種類於微菌核形成之相異性 17 3.6 ROS染色顯示O2-刺激炭腐病菌微菌核形成 18 3.7 O2-與H2O2代謝基因於炭腐病菌微菌核形成之表現 19 第肆章 討論 21 4.1 應用RNA-Seq探討微菌核形成與微菌核純化方法之建立 21 4.2 微菌核與菌核形成主要基因群與ROS代謝具相關性 22 4.3 抗氧化物抑制微菌核與菌核形成 23 4.4 O2-與H2O2於誘導微菌核與菌核形成之重要性 23 4.5 ROS代謝途徑之基因參與微菌核及菌核形成 24 參考文獻 28 表 43 圖 68 " | |
| dc.language.iso | zh-TW | |
| dc.subject | 微菌核 | zh_TW |
| dc.subject | 超氧化物 | zh_TW |
| dc.subject | 炭腐病菌 | zh_TW |
| dc.subject | 轉錄體 | zh_TW |
| dc.subject | 活性氧 | zh_TW |
| dc.subject | Microsclerotia | en |
| dc.subject | Macrophomina phaseolina | en |
| dc.subject | Reactive Oxygen Species (ROS) | en |
| dc.subject | Transcriptomics | en |
| dc.subject | Superoxide | en |
| dc.title | 整合轉錄體學與活性氧抑制實驗以探討炭腐病菌微菌核之形成 | zh_TW |
| dc.title | Integration of RNA-Seq and Reactive Oxygen Species Inhibition Assay to Study Microsclerotia Development of Macrophomina phaseolina | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曾敏南(Hsin-Tsai Liu),林盈宏(Chih-Yang Tseng),劉瑞芬 | |
| dc.subject.keyword | 炭腐病菌,微菌核,活性氧,超氧化物,轉錄體, | zh_TW |
| dc.subject.keyword | Macrophomina phaseolina,Microsclerotia,Reactive Oxygen Species (ROS),Superoxide,Transcriptomics, | en |
| dc.relation.page | 91 | |
| dc.identifier.doi | 10.6342/NTU202103947 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-22 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2010202122591800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
