Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80642
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳政鴻(Cheng-Hung Wu)
dc.contributor.authorJan Leggenen
dc.contributor.author揚磊zh_TW
dc.date.accessioned2022-11-24T03:11:33Z-
dc.date.available2021-11-03
dc.date.available2022-11-24T03:11:33Z-
dc.date.copyright2021-11-03
dc.date.issued2021
dc.date.submitted2021-10-26
dc.identifier.citationArens, R. (2011) ‘Learning SVM Ranking Functions from User Feedback Using Document Metadata and Active Learning in the Biomedical Domain’, in Fürnkranz, J. and Hüllermeier, E. (eds) Preference Learning, Berlin, Heidelberg, Springer Berlin Heidelberg, pp. 363–383. Bernroider, E. W. and Schmöllerl, P. (2013) ‘A technological, organisational, and environmental analysis of decision making methodologies and satisfaction in the context of IT induced business transformations’, European Journal of Operational Research, vol. 224, no. 1, pp. 141–153. Boser, B. E., Guyon, I. M. and Vapnik, V. N. (1992) ‘A training algorithm for optimal margin classifiers’, Proceedings of the fifth annual workshop on Computational learning theory - COLT '92. New York, NY, USA, ACM Press. Brinker, K. (2003) ‘Incorporating Diversity in Active Learning with Support Vector Machines’, in Fawcett, T. and Mishra, N. (eds) Proceedings / Twentieth International Conference on Machine Learning: August 21 - 24, 2003, Washington, DC, USA, Menlo Park, Calif., AAAI Press. Chou, Y.-L., Lin, T.-Y., Wu, J.-Z. and Wu, C.-H. (2020) ‘An interactive method for multicriteria dispatching problems with unknown preference functions’, Computers Industrial Engineering, vol. 144, p. 106462 [Online]. DOI: 10.1016/j.cie.2020.106462. Cortes, C. and Vapnik, V. (1995) ‘Support-vector networks’, Machine Learning, vol. 20, no. 3, pp. 273–297 [Online]. DOI: 10.1007/BF00994018. Dembczyński, K., Kotłowski, W., Słowiński, R. and Szeląg, M. (2011) ‘Learning of Rule Ensembles for Multiple Attribute Ranking Problems’, in Fürnkranz, J. and Hüllermeier, E. (eds) Preference Learning, Berlin, Heidelberg, Springer Berlin Heidelberg, pp. 217–247. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R. and Lin, C.-J. (2008) ‘LIBLINEAR: A library for large linear classification’, Journal of Machine Learning Research, no. 9, pp. 1871–1874. Fürnkranz, J. (2002) ‘Round Robin Classification’, Journal of Machine Learning Research, no. 2, pp. 721–747. Fürnkranz, J. and Hüllermeier, E. (2011) ‘Preference Learning: An Introduction’, in Fürnkranz, J. and Hüllermeier, E. (eds) Preference Learning, Berlin, Heidelberg, Springer Berlin Heidelberg, pp. 1–17. Geoffrion, A. M., Dyer, J. S. and Feinberg, A. (1972) ‘An Interactive Approach for MultiCriterion Optimization, with an Application to the Operation of an Academic Department’, Management Science, vol. 19, 4-part-1, pp. 357–368. Heckel, R., Shah, N. B., Ramchandran, K. and Wainwright, M. J. (2019) ‘Active ranking from pairwise comparisons and when parametric assumptions do not help’, The Annals of Statistics, vol. 47, no. 6. Ho, W. (2008) ‘Integrated analytic hierarchy process and its applications – A literature review’, European Journal of Operational Research, vol. 186, no. 1, pp. 211–228. Hsu, C.-W., Chang, C.-C. and Lin, C.-J. (2003) A practical guide to support vector classification. Hsu, C.-W. and Lin, C.-J. (2002) ‘A comparison of methods for multiclass support vector machines’, IEEE transactions on neural networks, vol. 13, no. 2, pp. 415–425. Ishizaka, A. and Siraj, S. (2018) ‘Are multi-criteria decision-making tools useful? An experimental comparative study of three methods’, European Journal of Operational Research, vol. 264, no. 2, pp. 462–471. Joachims, T. (2002) ‘Optimizing search engines using clickthrough data’, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '02. New York, NY, USA, ACM Press. Jones, N., Brun, A., Boyer, A. and Hamad, A. (2011) ‘An Exploratory Work in Using Comparisons Instead of Ratings’, E-Commerce and Web Technologies. Berlin, Heidelberg, 2011. Berlin, Heidelberg, Springer Berlin Heidelberg, pp. 184–195. Korhonen, P., Wallenius, J. and Zionts, S. (1984) ‘Solving the Discrete Multiple Criteria Problem using Convex Cones’, Management Science, vol. 30, no. 11, pp. 1336–1345. Kremer, J., Steenstrup Pedersen, K. and Igel, C. (2014) ‘Active learning with support vector machines’, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 4, no. 4, pp. 313–326. Ma, L., Song, D., Liao, L. and Wang, J. (2017) ‘PSVM: a preference-enhanced SVM model using preference data for classification’, Science China Information Sciences, vol. 60, no. 12. Mahmood, K., Karaulova, T., Otto, T. and Shevtshenko, E. (2017) ‘Performance Analysis of a Flexible Manufacturing System (FMS)’, Procedia CIRP, vol. 63, pp. 424–429. Negahban, S., Oh, S. and Shah, D. (2017) ‘Rank Centrality: Ranking from Pairwise Comparisons’, Operations Research, vol. 65, no. 1, pp. 266–287. Roberts, R. and Goodwin, P. (2002) ‘Weight approximations in multi-attribute decision models’, Journal of Multi-Criteria Decision Analysis, vol. 11, no. 6, pp. 291–303. Saaty, T. L. (2008) ‘Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process’, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, vol. 102, no. 2, pp. 251–318. Saha, A., Shivanna, R. and Bhattacharyya, C. (2019) ‘How Many Pairwise Preferences Do We Need to Rank a Graph Consistently?’, Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4830–4837. Schohn, G. and Cohn, D. A. (2000) ‘Less is More: Active Learning with Support Vector Machines’, ICML. Shah, N. B. and Wainwright, M. J. (2018) ‘Simple, robust and optimal ranking from pairwise comparisons’, Journal of Machine Learning Research, no. 18, pp. 1–38. Zionts, S. and Wallenius, J. (1976) ‘An Interactive Programming Method for Solving the Multiple Criteria Problem’, Management Science, vol. 22, no. 6, pp. 652–663.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80642-
dc.description.provenanceMade available in DSpace on 2022-11-24T03:11:33Z (GMT). No. of bitstreams: 1
U0001-2110202100263900.pdf: 5080151 bytes, checksum: bae880457398b95cf5dd2c99419cf782 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 ...I Abstract ...II Contents ... III List of Figures ...V List of Tables ... VI Chapter 1 Introduction ... 1 1.1 Problem Background ... 2 1.2 Related Work ... 3 1.3 Research Objective ... 5 1.4 Research Contribution ... 6 1.5 Organization of the Thesis ... 8 Chapter 2 Background Knowledge ... 9 2.1 Interactive Centroid Method (ICM) ... 9 2.2 SVM Classification ... 12 2.3 Preference Learning ... 14 Chapter 3 Methodology ... 16 3.1 Assumptions and Limitations ... 16 3.2 Method Flow ... 17 3.3 Data Description ... 18 3.3.1 Training Data Extraction ... 19 3.3.2 Conversion to Pairwise Preference Relations ... 20 3.3.3 Training Data and Class Balancing ... 23 3.4 Learning and Prediction ... 24 3.4.1 SVC Training ... 24 3.4.2 SVC Ranking for new Demand Case ... 25 3.5 Final Interactive Comparison (Relaxed Points) ... 27 3.6 Illustrative Example ... 31 Chapter 4 Numerical Study and Sensitivity Analysis ... 42 4.1 Numerical Study Settings ... 42 4.2 Result Analysis ... 43 4.2.1 Raw Results without Final Interactive Comparison ... 43 4.2.1.1 Raw Results: Linear Preference Functions ... 44 4.2.1.2 Raw Results: Quadratic Preference Functions ... 46 4.2.2 Results with Final Interactive Comparison ... 47 4.2.2.1 Final Results: Linear Preference Functions ... 48 4.2.2.2 Final Results: Quadratic Preference Functions ... 49 4.3 Sensitivity Analysis ... 51 4.3.1 Impact of the Number of Training Demand Cases ... 51 4.3.2 Impact of Feature Scaling and Parameter Tuning ... 53 4.3.3 Impact of SVC Implementation ... 55 4.3.4 Impact of Release Rate for New Demand Cases ... 55 4.3.5 Impact of Movement Ratio in Final Interactive Comparison ... 57 Chapter 5 Conclusion and Future Research ... 60 Reference ... 62 Appendix A: Frontier LP Models ... 66 Appendix B: SVC Method Pseudo Code ... 67 Appendix C: Linear Preference Functions ... 72 Appendix D: Quadratic Preference Functions ... 75
dc.language.isoen
dc.subject偏好學習zh_TW
dc.subject多標準決策zh_TW
dc.subject未知的偏好函數zh_TW
dc.subject支援向量機zh_TW
dc.subjectMulti-criteria Decision-makingen
dc.subjectPreference Learningen
dc.subjectSupport Vector Machinesen
dc.subjectUnknown Preference Functionsen
dc.title決策者偏好學習與多目標排程最佳化zh_TW
dc.titlePreference Learning and Optimization for Multiple Objective Scheduling Problemsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪一薰(Hsin-Tsai Liu),陳文智(Chih-Yang Tseng),周育樂
dc.subject.keyword多標準決策,未知的偏好函數,支援向量機,偏好學習,zh_TW
dc.subject.keywordMulti-criteria Decision-making,Unknown Preference Functions,Support Vector Machines,Preference Learning,en
dc.relation.page77
dc.identifier.doi10.6342/NTU202103950
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2110202100263900.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved