Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80629
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖婉君(Wanjiun Liao)
dc.contributor.authorKeh-Yeun Liaoen
dc.contributor.author廖克允zh_TW
dc.date.accessioned2022-11-24T03:11:12Z-
dc.date.available2021-11-04
dc.date.available2022-11-24T03:11:12Z-
dc.date.copyright2021-11-04
dc.date.issued2021
dc.date.submitted2021-10-29
dc.identifier.citationH. Chen, S. Chen, and E. S. Rosenberg, “Redirected walking strategies in irregularly shaped and dynamic physical environments,” in 25th IEEE Conference on Virtual Reality and 3D User Interfaces (VR ‘18). Workshop on Everyday Virtual Reality, 2018. J. Lee, M. Kim, and J. Kim, “A study on immersion and vr sickness in walking interaction for immersive virtual reality applications,” Symmetry, vol. 9, no. 5, p.78, 2017. N. C. Nilsson, T. Peck, G. Bruder, E. Hodgson, S. Serafin, M. Whitton,F.Steinicke, and E. S. Rosenberg, “15 years of research on redirected walking in immersive virtual environments,” IEEE computer graphics and applica-tions, vol. 38, no. 2, pp. 44–56, 2018. E. Langbehn, P. Lubos, G. Bruder, and F. Steinicke, “Bending the curve: Sensitivity to bending of curved paths and application in room-scale vr,” IEEE transactions on visualization and computer graphics, vol. 23, no. 4, pp. 1389–1398, 2017. F. Steinicke, G. Bruder, J. Jerald, H. Frenz, and M. Lappe, “Estimation of detection thresholds for redirected walking techniques,” IEEE transactions on visualization and computer graphics, vol. 16, no. 1, pp. 17–27, 2009. T. Grechkin, J. Thomas, M. Azmandian, M. Bolas, and E. Suma, “Revisiting detection thresholds for redirected walking: Combining translation and cur-vature gains,” in Proceedings of the ACM Symposium on Applied Perception, 2016, pp. 113–120. P. Schmitz, J. Hildebrandt, A. C. Valdez, L. Kobbelt, and M. Ziefle, “You spin my head right round: Threshold of limited immersion for rotation gains in redirected walking,” IEEE transactions on visualization and computer graphics, vol. 24, no. 4, pp. 1623–1632, 2018. J. Yang, C. Holz, E. Ofek, and A. D. Wilson, “Dreamwalker: Substituting real-world walking experiences with a virtual reality,” in Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, 2019, pp. 1093–1107. T. Nescher, Y.-Y. Huang, and A. Kunz, “Planning redirection techniques for optimal free walking experience using model predictive control,” in 2014 IEEE Symposium on 3D User Interfaces (3DUI). IEEE, 2014, pp. 111–118. L.-P. Cheng, E. Ofek, C. Holz, and A. D. Wilson, “Vroamer: generating on-the-fly vr experiences while walking inside large, unknown real-world building environments,” in 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 2019, pp. 359–366. Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: In-telligent reflecting surface aided wireless network,” IEEE Communications Magazine, vol. 58, no. 1, pp. 106–112, 2019. H. Alwazani, A. Kammoun, A. Chaaban, M. Debbah, M.-S. Alouini et al., “In-telligent reflecting surface-assisted multi-user miso communication: Channel estimation and beamforming design,” IEEE Open Journal of the Communica-tions Society, vol. 1, pp. 661–680, 2020. X. Ma, Z. Chen, W. Chen, Y. Chi, Z. Li, C. Han, and Q. Wen, “Intelligent reflecting surface enhanced indoor terahertz communication systems,” Nano Communication Networks, vol. 24, p. 100284, 2020. D. Zhang, J. Zhao, A. Li, J. Li, B. Vucetic, and Y. Li, “Mobile user trajectory tracking for irs enabled wireless networks,” IEEE Transactions on Vehicular Technology, 2021. S. Abeywickrama, R. Zhang, Q. Wu, and C. Yuen, “Intelligent reflecting surface: Practical phase shift model and beamforming optimization,” IEEE Transactions on Communications, vol. 68, no. 9, pp. 5849–5863, 2020. Q. Wu and R. Zhang, “Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts,” IEEE Transactions on Communications, vol. 68, no. 3, pp. 1838–1851, 2019. C. You, B. Zheng, and R. Zhang, “Intelligent reflecting surface with discrete phase shifts: Channel estimation and passive beamforming,” in ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE, 2020, pp. 1–6. X. Mu, Y. Liu, L. Guo, J. Lin, and R. Schober, “Intelligent reflecting surface enhanced indoor robot path planning: A radio map based approach,” IEEE Transactions on Wireless Communications, 2021. N. Du˙zma´nska, P. Strojny, and A. Strojny, “Can simulator sickness be avoided? a review on temporal aspects of simulator sickness,” Frontiers in psychology, vol. 9, p. 2132, 2018. Y.-X. Lin, R. Venkatakrishnan, R. Venkatakrishnan, E. Ebrahimi, W.-C. Lin, and S. V. Babu, “How the presence and size of static peripheral blur affects cybersickness in virtual reality,” ACM Transactions on Applied Perception (TAP), vol. 17, no. 4, pp. 1–18, 2020. A. S. Fernandes and S. K. Feiner, “Combating vr sickness through subtle dynamic field-of-view modification,” in 2016 IEEE symposium on 3D user interfaces (3DUI). IEEE, 2016, pp. 201–210. S. Kim, S. Lee, N. Kala, J. Lee, and W. Choe, “An effective FoV restriction approach to mitigate VR sickness on mobile devices: An effective approach to mitigate VR sickness,” Journal of the Society for Information Display, vol. 26, 2018. K. Carnegie and T. Rhee, “Reducing visual discomfort with hmds using dynamic depth of field,” IEEE computer graphics and applications, vol. 35, no. 5, pp. 34–41, 2015. M. Weier, T. Roth, A. Hinkenjann, and P. Slusallek, “Foveated depth-of-field filtering in head-mounted displays,” ACM Transactions on Applied Perception (TAP), vol. 15, no. 4, pp. 1–14, 2018. N. Du˙zma´nska, P. Strojny, and A. Strojny, “Can simulator sickness be avoided? a review on temporal aspects of simulator sickness,” Frontiers in psychology, vol. 9, p. 2132, 2018. X. Mu, Y. Liu, L. Guo, J. Lin, and R. Schober, “Intelligent reflecting surface enhanced indoor robot path planning: A radio map based approach,” IEEE Transactions on Wireless Communications, 2021. E. Masehian and M. Amin-Naseri, “A voronoi diagram-visibility graph-potential field compound algorithm for robot path planning,” Journal of Robotic Systems, vol. 21, no. 6, pp. 275–300, 2004. H.-P. Huang and S.-Y. Chung, “Dynamic visibility graph for path planning,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3. IEEE, 2004, pp. 2813–2818. C. Wormser, “Generalized voronoi diagrams and applications,” Ph.D. disser-tation, Universit´e Nice Sophia Antipolis, 2008. M. Rietzler, J. Gugenheimer, T. Hirzle, M. Deubzer, E. Langbehn, and E.Rukzio, “Rethinking redirected walking: On the use of curvature gains beyond perceptual limitations and revisiting bending gains,” in 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2018, pp. 115–122. Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless net-work via joint active and passive beamforming,” IEEE Transactions on Wire-less Communications, vol. 18, no. 11, pp. 5394–5409, 2019. C. You, B. Zheng, and R. Zhang, “Fast beam training for irs-assisted multiuser communications,” IEEE Wireless Communications Letters, vol. 9, no. 11, pp. 1845–1849, 2020. J.-W. Lin, H. B.-L. Duh, D. E. Parker, H. Abi-Rached, and T. A. Furness, “Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment,” in Proceedings ieee virtual reality 2002. IEEE, 2002, pp. 164–171. R. Shi, H.-N. Liang, Y. Wu, D. Yu, and W. Xu, “Virtual reality sickness mitigation methods: A comparative study in a racing game,” Proceedings of the ACM on Computer Graphics and Interactive Techniques, vol. 4, no. 1, pp. 1–16, 2021. D. Risi and S. Palmisano, “Effects of postural stability, active control, ex-posure duration and repeated exposures on hmd induced cybersickness,” Displays, vol. 60, pp. 9–17, 2019. W. Lo and R. H. So, “Cybersickness in the presence of scene rotational movements along different axes,” Applied ergonomics, vol. 32, no. 1, pp. 1–14, 2001. H. Kim, D. J. Kim, W. H. Chung, K.-A. Park, J. D. Kim, D. Kim, K. Kim, and H. J. Jeon, “Clinical predictors of cybersickness in virtual reality (vr) among highly stressed people,” Scientific reports, vol. 11, no. 1, pp. 1–11, 2021. E. H. Sinitski, A. Thompson, P. Godsell, J. Honey, and M. Besemann, “Postu-ral stability and simulator sickness after walking on a treadmill in a virtual environment with a curved display,” Displays, vol. 52, pp. 1–7, 2018. D. Saredakis, A. Szpak, B. Birckhead, H. A. Keage, A. Rizzo, and T.Loetscher, “Factors associated with virtual reality sickness in head-mounted displays: a systematic review and meta-analysis,” Frontiers in human neuro-science, vol. 14, p. 96, 2020. J. Kim and T. Park, “The onset threshold of cybersickness in constant and accelerating optical flow,” Applied Sciences, vol. 10, no. 21, p. 7808, 2020. N. L. Williams, A. Bera, and D. Manocha, “Redirected walking in static and dynamic scenes using visibility polygons,” arXiv preprint arXiv:2106.06807, 2021. ——, “Redirected walking in static and dynamic scenes using visibility polygons,” arXiv preprint arXiv:2106.06807, 2021. ——, “Arc: Alignment-based redirection controller for redirected walking in complex environments,” IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 5, pp. 2535–2544, 2021. B. Zheng, C. You, and R. Zhang, “Double-irs assisted multi-user mimo: Cooperative passive beamforming design,” IEEE Transactions on Wireless Communications, 2021. M. Missura, D. D. Lee, and M. Bennewitz, “Minimal construct: Efficient shortest path finding for mobile robots in polygonal maps,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 7918–7923. O. Abari, D. Bharadia, A. Duffield, and D. Katabi, “Enabling high-quality untethered virtual reality,” in 14th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 17), 2017, pp. 531–544. ——, “Cutting the cord in virtual reality,” in Proceedings of the 15th ACM Workshop on Hot Topics in Networks, 2016, pp. 162–168. D. Zhang, J. Zhao, A. Li, J. Li, B. Vucetic, and Y. Li, “Mobile user trajectory tracking for irs enabled wireless networks,” IEEE Transactions on Vehicular Technology, 2021. M. A. Zmuda, J. L. Wonser, E. R. Bachmann, and E. Hodgson, “Optimizing constrained-environment redirected walking instructions using search tech-niques,” IEEE transactions on visualization and computer graphics, vol. 19, no. 11, pp. 1872–1884, 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80629-
dc.description.abstract現在的虛擬現實(VR)不僅僅是以靜態的姿勢體驗虛擬環境(VE)。用戶可以在虛擬環境中自由行走,而不需要承擔現實生活中的任何不利因素。與傳統的靜態VR體驗相比,VR運動實現了各種技術,讓用戶在虛擬世界中行走,而現實世界的環境卻很有限。重定向行走算法的目的是提供無障礙和無束縛的VR體驗。然而,以前的算法忽略了用戶的 '暈眩'和接收信號的強度,這將導致體驗的質量大大降低。在這篇論文中,我們研究了一個新的優化問題,即在室內VR重定向行走系統中的路徑規劃,該問題被稱為 '帶暈眩和IRS控制的路徑規劃',該系統具有緩解暈眩和IRS輔助的波束成形功能。 我們的目標是通過為用戶選擇最佳路徑組合和IRS相移陣列配置來實現成本函數的最小化。然後,我們提出了一種名為IRS輔助RW與暈眩減輕的算法。 此外,模擬結果表明,IRS輔助的RW與暈眩減輕算法在成本、暈眩和接收信號強度方面都能有效地超過其他比較標準。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:11:12Z (GMT). No. of bitstreams: 1
U0001-2110202115163500.pdf: 2017486 bytes, checksum: 154787e7aef8d7b22d11af4afddaa491 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsAbstract i List of Figures iv List of Tables v 1 Introduction1 1.1 Background 1 1.2 Related Works 2 1.3 Motivation and Challenges 5 1.4 Thesis Organization 6 2 System model and Problem formulation7 2.1 System model 7 2.2 Problem formulation 10 3 Algorithm13 3.1 Algorithm PIPCA 13 3.1.1 Redirected Walking Graph Construction (RWGC) 14 3.1.2 Cybersickness Alleviation and Path Selection (CAPS) 14 3.1.3 IRS Phase-Shift Array Control (IPAC) 15 3.2 Time complexity 19 3.3 Optimality 20 4 Performance Evaluation22 4.1 Simulation Setup 22 4.2 Simulation results 23 4.2.1 Number of obstacles 23 4.2.2 MRC upper bound 23 4.2.3 User adaptation to VR 24 4.2.4 SINR requirement 24 5 Conclusion 30 Reference 31
dc.language.isoen
dc.subject重定向行走zh_TW
dc.subject虛擬實境zh_TW
dc.subject智慧反射表面zh_TW
dc.subjectbeamformingen
dc.subjectIRSen
dc.subjectcybersicknessen
dc.subjectredirected walkingen
dc.subjectvirtual realityen
dc.title使用智慧反射表面辅助波束成形之重定向行走zh_TW
dc.titleRedirected Walking with IRS-assisted Beamformingen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高榮鴻(Hsin-Tsai Liu),蘇炫榮(Chih-Yang Tseng),周承復,楊得年
dc.subject.keyword虛擬實境,智慧反射表面,重定向行走,zh_TW
dc.subject.keywordvirtual reality,redirected walking,cybersickness,IRS,beamforming,en
dc.relation.page37
dc.identifier.doi10.6342/NTU202103978
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2110202115163500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved