Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8060
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐善慧(Shan-hui Hsu)
dc.contributor.authorShun-Chieh Hsuen
dc.contributor.author許舜傑zh_TW
dc.date.accessioned2021-05-19T18:04:53Z-
dc.date.available2022-08-28
dc.date.available2021-05-19T18:04:53Z-
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-08-16
dc.identifier.citation1. Augst, A.D., H.J. Kong, and D.J. Mooney, Alginate hydrogels as biomaterials. Macromol Biosci, 2006. 6(8): p. 623-33.
2. Caló, E. and V.V. Khutoryanskiy, Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 2015. 65: p. 252-267.
3. Ullah, F., et al., Classification, processing and application of hydrogels: A review. Mater Sci Eng C Mater Biol Appl, 2015. 57: p. 414-33.
4. Ahmed, E.M., Hydrogel: Preparation, characterization, and applications: A review. J Adv Res, 2015. 6(2): p. 105-21.
5. Wichterle, O. and D. LÍM, Hydrophilic Gels for Biological Use. Nature, 1960. 185: p. 117.
6. Ottenbrite, R.M., K. Park, and T. Okano, Biomedical Applications of Hydrogels Handbook. Springer Science & Business Media, 2010.
7. Drury, J.L. and D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003. 24(24): p. 4337-4351.
8. Hoare, T.R. and D.S. Kohane, Hydrogels in drug delivery: Progress and challenges. Polymer, 2008. 49(8): p. 1993-2007.
9. Kulkarni, R.V. and S. Biswanath, Electrically Responsive Smart Hydrogels in Drug Delivery: A Review. Journal of Applied Biomaterials and Biomechanics, 2007. 5(3): p. 125-139.
10. Qiu, Y. and K. Park, Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 2012. 64: p. 49-60.
11. Kopecek, J., Hydrogel biomaterials: a smart future? Biomaterials, 2007. 28(34): p. 5185-92.
12. Ruel-Gariepy, E. and J.C. Leroux, In situ-forming hydrogels--review of temperature-sensitive systems. Eur J Pharm Biopharm, 2004. 58(2): p. 409-26.
13. Yu, L. and J. Ding, Injectable hydrogels as unique biomedical materials. Chem Soc Rev, 2008. 37(8): p. 1473-81.
14. Hamedi, H., et al., Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr Polym, 2018. 199: p. 445-460.
15. Qian, C., et al., Injectable and self-healing polysaccharide-based hydrogel for pH-responsive drug release. International Journal of Biological Macromolecules, 2019. 123: p. 140-148.
16. Tseng, T.C., et al., An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System. Adv Mater, 2015. 27(23): p. 3518-24.
17. Tu, Y., et al., Advances in injectable self-healing biomedical hydrogels. Acta Biomaterialia, 2019. 90: p. 1-20.
18. Rinaudo, M., Chitin and chitosan: Properties and applications. Progress in Polymer Science, 2006. 31(7): p. 603-632.
19. Sashiwa, H. and S.-i. Aiba, Chemically modified chitin and chitosan as biomaterials. Progress in Polymer Science, 2004. 29(9): p. 887-908.
20. Hu, Z., et al., Chitosan-Based Composite Materials for Prospective Hemostatic Applications. Mar Drugs, 2018. 16(8).
21. Bellich, B., et al., 'The Good, the Bad and the Ugly' of Chitosans. Mar Drugs, 2016. 14(5).
22. Qu, X., A. Wirsén, and A.C. Albertsson, Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer, 2000. 41(12): p. 4589-4598.
23. Mohammed, M.A., et al., An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics, 2017. 9(4).
24. Vepari, C. and D.L. Kaplan, Silk as a Biomaterial. Prog Polym Sci, 2007. 32(8-9): p. 991-1007.
25. Berger, J., et al., Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 2004. 57(1): p. 19-34.
26. Kwon, S., et al., Physicochemical Characteristics of Self-Assembled Nanoparticles Based on Glycol Chitosan Bearing 5β-Cholanic Acid. Langmuir, 2003. 19(24): p. 10188-10193.
27. Qin, C., et al., Water-solubility of chitosan and its antimicrobial activity. Carbohydrate Polymers, 2006. 63(3): p. 367-374.
28. Park, H. and D. Kim, Swelling and mechanical properties of glycol chitosan/poly(vinyl alcohol) IPN‐type superporous hydrogels. Journal of Biomedical Materials Research Part A, 2006. 78A(4): p. 662-667.
29. Ilnicka, A. and J.P. Lukaszewicz, Discussion Remarks on the Role of Wood and Chitin Constituents during Carbonization. Frontiers in Materials, 2015. 2(20).
30. Gatto, M., et al., Study of chitosan with different degrees of acetylation as cardboard paper coating. Carbohydrate Polymers, 2019. 210: p. 56-63.
31. Kapadnis, G., et al., Effect of degree of deacetylation on solubility of low-molecular-weight chitosan produced via enzymatic breakdown of chitosan. Polymer International, 2019. 68(6): p. 1054-1063.
32. Alder, B.J. and T.E. Wainwright, Studies in Molecular Dynamics. I. General Method. The Journal of Chemical Physics, 1959. 31(2): p. 459-466.
33. Rahman, A., Correlations in the Motion of Atoms in Liquid Argon. Physical Review, 1964. 136(2A): p. A405-A411.
34. Irving, J.H. and J.G. Kirkwood, The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics. The Journal of Chemical Physics, 1950. 18(6): p. 817-829.
35. Mark, J.E., Physical Properties of Polymers Handbook. Springer Science & Business Media 2007..
36. Pereira, J.C.G., et al., Atomistic modeling of silica based sol-gel processes. Journal of Sol-Gel Science and Technology, 1997. 8(1): p. 55-58.
37. Netz, P.A. and T. Dorfmüller, Computer Simulation Studies on the Polymer-Induced Modification of Water Properties in Polyacrylamide Hydrogels. The Journal of Physical Chemistry B, 1998. 102(25): p. 4875-4886.
38. Ou, X., et al., Molecular dynamic simulations of the water absorbency of hydrogels. J Mol Model, 2015. 21(9): p. 231.
39. Lee, S.G., et al., Molecular dynamics simulation study of P (VP-co-HEMA) hydrogels: effect of water content on equilibrium structures and mechanical properties. Biomaterials, 2009. 30(30): p. 6130-41.
40. Tamai, Y., H. Tanaka, and K. Nakanishi, Molecular Dynamics Study of Polymer−Water Interaction in Hydrogels. 1. Hydrogen-Bond Structure. Macromolecules, 1996. 29(21): p. 6750-6760.
41. Tamai, Y., H. Tanaka, and K. Nakanishi, Molecular Dynamics Study of Polymer−Water Interaction in Hydrogels. 2. Hydrogen-Bond Dynamics. Macromolecules, 1996. 29(21): p. 6761-6769.
42. Wen, C.H., et al., Molecular Structures and Mechanisms of Waterborne Biodegradable Polyurethane Nanoparticles. Comput Struct Biotechnol J, 2019. 17: p. 110-117.
43. Franca, E.F., et al., Characterization of Chitin and Chitosan Molecular Structure in Aqueous Solution. Journal of Chemical Theory and Computation, 2008. 4(12): p. 2141-2149.
44. Franca, E.F., L.C. Freitas, and R.D. Lins, Chitosan molecular structure as a function of N-acetylation. Biopolymers, 2011. 95(7): p. 448-60.
45. Xu, H. and S. Matysiak, Effect of pH on chitosan hydrogel polymer network structure. Chem Commun (Camb), 2017. 53(53): p. 7373-7376.
46. Borca, C.H. and C.A. Arango, Molecular Dynamics of a Water-Absorbent Nanoscale Material Based on Chitosan. J Phys Chem B, 2016. 120(15): p. 3754-64.
47. Razmimanesh, F., S. Amjad-Iranagh, and H. Modarress, Molecular dynamics simulation study of chitosan and gemcitabine as a drug delivery system. J Mol Model, 2015. 21(7): p. 165.
48. Aztatzi-Pluma, D., et al., Study of the Molecular Interactions between Functionalized Carbon Nanotubes and Chitosan. The Journal of Physical Chemistry C, 2016. 120(4): p. 2371-2378.
49. Hossain, D., et al., Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer, 2010. 51(25): p. 6071-6083.
50. Hobza, P., et al., Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), semiempirical quantum chemical methods (AM1, MNDO/M, PM3), and ab initio Hartree–Fock method for interaction of DNA bases: Comparison with nonempirical beyond Hartree–Fock results. Journal of Computational Chemistry, 1997. 18(9): p. 1136-1150.
51. Dauber-Osguthorpe, P., et al., Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins: Structure, Function, and Bioinformatics, 1988. 4(1): p. 31-47.
52. Rapaport, D.C., The Art of Molecular Dynamics Simulation. 1995: Cambridge University Press.
53. Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 1989: Clarendon Press. 385.
54. Dassault Systèmes BIOVIA, BIOVIA Material Studio, release 2017, San Diego: Dassault Systèmes, 2000.
55. Humphrey, W., A. Dalke, and K. Schulten, VMD: Visual molecular dynamics. Journal of Molecular Graphics, 1996. 14(1): p. 33-38.
56. Levine, B.G., J.E. Stone, and A. Kohlmeyer, Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units-Radial Distribution Function Histogramming. J Comput Phys, 2011. 230(9): p. 3556-3569.
57. Zhang, Y., A. Otani, and E.J. Maginn, Reliable Viscosity Calculation from Equilibrium Molecular Dynamics Simulations: A Time Decomposition Method. J Chem Theory Comput, 2015. 11(8): p. 3537-46.
58. Cranford, S.W. and M.J. Buehler, Variation of Weak Polyelectrolyte Persistence Length through an Electrostatic Contour Length. Macromolecules, 2012. 45(19): p. 8067-8082.
59. Islam, A. and T. Yasin, Controlled delivery of drug from pH sensitive chitosan/poly (vinyl alcohol) blend. Carbohydrate Polymers, 2012. 88(3): p. 1055-1060.
60. Wang, Q., J. Zhang, and A. Wang, Preparation and characterization of a novel pH-sensitive chitosan-g-poly (acrylic acid)/attapulgite/sodium alginate composite hydrogel bead for controlled release of diclofenac sodium. Carbohydrate Polymers, 2009. 78(4): p. 731-737.
61. Vaghani, S.S., M.M. Patel, and C.S. Satish, Synthesis and characterization of pH-sensitive hydrogel composed of carboxymethyl chitosan for colon targeted delivery of ornidazole. Carbohydr Res, 2012. 347(1): p. 76-82.
62. Pillai, C.K.S., W. Paul, and C.P. Sharma, Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 2009. 34(7): p. 641-678.
63. Blackwell, J., Structure of β-chitin or parallel chain systems of poly-β-(1→4)-N-acetyl-D-glucosamine. Biopolymers, 1969. 7(3): p. 281-298.
64. Yui, T., et al., Exhaustive crystal structure search and crystal modeling of β-chitin. International Journal of Biological Macromolecules, 2007. 40(4): p. 336-344.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8060-
dc.description.abstract幾丁聚醣為幾丁質去乙醯後的一種天然陽離子線性多醣高分子。而乙二醇幾丁聚醣作為幾丁聚醣的衍生物,由於其優良的生物相容性以及獨特的生物特性,其已經被廣泛的應用在生物工程中有關於生醫材料以及水膠方面的應用,其中智能水膠被認為在傷口癒合以及組織再生方面是有前景的生醫材料。但是,儘管已經有諸多方面的應用,乙二醇幾丁聚醣水膠中的網絡結構特性及作用依然不清楚。
因此本研究建立了不同pH條件下的乙二醇幾丁聚醣水膠的模型,透過分子動力模擬,探討了不同質子化程度下的乙二醇幾丁聚醣網絡的分子鏈彈性、型態以及分布排列等性質,了解乙二醇幾丁聚醣的結構性質隨著pH變化,如何影響水膠的膨潤行為。研究中也建立了不同去乙醯度以及不同pH條件下的乙二醇幾丁聚醣水膠的模型,了解乙二醇幾丁聚醣網絡的結構特性在不同的乙醯度及不同pH條件下的表現差異。
另外,在研究中還在不同pH條件下的乙二醇幾丁聚醣水膠的模型加入交聯劑雙官能基聚乙二醇,了解交聯劑如何影響乙二醇幾丁聚醣在水膠中的結構特性。並透過模擬,初步了解乙二醇幾丁聚醣與雙官能基聚乙二醇之間作用力如何影響自癒合機制的運行。研究結果解釋了pH對乙二醇幾丁聚醣分子結構的影響,並提供了乙二醇幾丁聚醣及其衍生物在生物醫學方面應用上的材料設計基礎知識。
zh_TW
dc.description.abstractChitosan is a natural polycationic linear polysaccharide deacetylated from chitin. Glycol chitosan is a derivative of chitosan and has been extensively investigated in the biocompatibility and hydrogel field for many bioengineering applications because of their unique material and biological properties. Smart hydrogels are a promising biomaterial for wound healing and tissue regeneration among them. However, the molecular structure and network of glycol chitosan hydrogels remain unclear.
Here, glycol chitosan hydrogel models at different protonation percentages are constructed to understand the interactions between the water molecules and glycol chitosan chains. This study explored the molecular structures and network of glycol chitosan with different pH levels by a molecular dynamics approach. This study investigates the flexibility, conformation, and arrangement of glycol chitosan polymer chains in water solutions at different protonation percentages to understand how the protonation percentages affect the structure property and swelling behavior. Glycol chitosan hydrogel models at different degrees of deacetylation and different protonation percentages are also constructed to understand the effects of degree of deacetylation on the molecular structures of glycol chitosan at different at pH levels.
Moreover, we add crosslinkers, telechelic difunctional poly(ethylene glycol), into glycol chitosan hydrogel models at different protonation percentages to understand the effects of crosslinkers on the molecular structures of glycol chitosan in the hydrogel. Through the simulation, we can preliminarily understand how the interactions between glycol chitosan and telechelic difunctional poly(ethylene glycol) affect the self-healing mechanism. The results of this study explain the effects of pH on the molecular structures of glycol chitosan and provide useful information regarding design strategies and facilitate the development of novel smart hydrogels.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T18:04:53Z (GMT). No. of bitstreams: 1
ntu-108-R06549018-1.pdf: 5674715 bytes, checksum: c31c1bf868b791914feba988cf152d9f (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vii
表目錄 xi
第1章、 緒論 1
1.1 背景介紹 1
1.2 文獻回顧 3
1.2.1 幾丁聚醣 3
1.2.2 可注射的自癒合乙二醇幾丁聚醣水膠 5
1.2.3 分子動力模擬 11
1.3 研究目的 12
1.4 論文方向 12
第2章、 理論與方法 13
2.1 分子動力模擬 13
2.1.1 條件設計 14
2.1.2 CVFF力場 15
2.1.3 週期性邊界條件 16
2.2 模型設計 17
2.3 模擬流程 19
2.3.1 不同質子化程度下的多條乙二醇幾丁聚醣分子鏈在水溶液中 20
2.3.2 不同質子化程度下的單條乙二醇幾丁聚醣分子鏈在真空環境中 20
2.3.3 不同去乙醯度下的乙二醇幾丁聚醣水膠在不同質子化程度下 20
2.3.4 不同質子化程度下的乙二醇幾丁聚醣水膠加入交聯劑遙爪雙官能基聚乙二醇 21
2.4 分析方法 22
2.4.1 迴轉半徑(radius of gyration,簡稱RG) 22
2.4.2 頭尾端距(end to end distance) 22
2.4.3 徑向分布函數(radial distribution function,簡稱RDF) 23
2.4.4 氫鍵 23
2.4.5 黏度 24
2.4.6 周圍原子個數 25
第3章、 pH對乙二醇幾丁聚醣水膠之影響 26
3.1 乙二醇幾丁聚醣水膠在pH=7之分子結構特性 26
3.2 pH對乙二醇幾丁聚醣在水膠中的分子結構特性與分布情況之影響 29
3.3 pH對乙二醇幾丁聚醣在水膠中的氫鍵形成的影響 35
3.4 討論 45
第4章、 去乙醯度以及交聯劑對己二醇幾丁聚醣水膠之影響 47
4.1 pH對不同去乙醯度之乙二醇幾丁聚醣水膠中的分子結構特性與分布情況之影響 47
4.2 pH對不同去乙醯度的乙二醇幾丁聚醣在水膠中的氫鍵形成的影響 56
4.3 不同pH下,加入交聯劑遙爪雙官能基聚乙二醇的幾丁聚醣自癒合水膠模型之影響 68
4.4 討論 77
第5章、 結論與未來展望 80
5.1 結論 80
5.2 未來展望 82
參考文獻 83
dc.language.isozh-TW
dc.title以分子動力模擬探討去乙醯度與pH對乙二醇幾丁聚醣水膠的結構特性之影響zh_TW
dc.titleEffect of pH and degree of deacetylation on molecular structures and properties of glycol chitosan hydrogel: a molecular dynamics studyen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor張書瑋(Shu-Wei Chang)
dc.contributor.oralexamcommittee賴育英(Yu-Ying Lai)
dc.subject.keyword分子動力模擬,水膠,pH,質子化,乙二醇幾丁聚醣,zh_TW
dc.subject.keywordMolecular dynamics,hydrogel,pH,protonation,glycol chitosan,en
dc.relation.page89
dc.identifier.doi10.6342/NTU201902780
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf5.54 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved