請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80608完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐善慧(Shan-hui Hsu) | |
| dc.contributor.author | Tzu-Hsuan Huang | en |
| dc.contributor.author | 黃子軒 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:10:37Z | - |
| dc.date.available | 2021-11-03 | |
| dc.date.available | 2022-11-24T03:10:37Z | - |
| dc.date.copyright | 2021-11-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-26 | |
| dc.identifier.citation | Siegel, R. L., et al., Cancer statistics, 2016. CA. Cancer J. Clin. 2016, 66(1): p. 7-30. Mulens V, Morales MdP, Barber DF. Development of Magnetic Nanoparticles for Cancer Gene Therapy: A Comprehensive Review. ISRN Nanomaterials. 2013, 2013: p. 1-14. Senapati, S., Mahanta, A.K., Kumar, S. et al. Controlled drug delivery vehicles for cancer treatment and their performance. Sig. Transduct. Target. Ther. 2018, 3(1): p. 7 Ratner, B. D., Hoffman, A. S. Synthetic hydrogels for biomedical applications. Hydrogels for Medical and Related Applications, ACS Symposium Series. 1976, 31: p. 1-36 Xu, J., Liu, Y., Hsu, S. H. Hydrogels Based on Schiff Base Linkages for Biomedical Applications. Molecules 2019, 24(16): p. 3005. Qiu, Y., Park, K. Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews 2001, 53(3): p. 321-339. Chen, Y., Shi, J., Zhang, Y., et al. An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction. J. Mater. Chem. B 2020, 8: p. 980-992. Tseng, T. C.; Tao, L.; Hsieh, F. Y.; Wei, Y.; Chiu, I. M.; Hsu, S. H. An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System. Adv. Mater. 2015, 27(23): p. 3518-3524. Yang, L.; Li, Y.; Gou, Y.; Wang, X.; Zhao, X.; Tao, L. Improving tumor chemotherapy effect using an injectable self-healing hydrogel as drug carrier. Polym. Chem. 2017, 8: p. 5071-5076. Riva, R.; Ragelle, H.; des Rieux, A.; Duhem, N.; Jerome, C.; Preat, V. Chitosan and Chitosan Derivatives in Drug Delivery and Tissue Engineering. Adv. Polym. Sci. 2011, 244: p. 19-44. Yang, B.; Zhang, Y.; Zhang, X.; Tao, L.; Li, S.; Wei, Y. Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier. Polym. Chem. 2012, 3: p. 3235-3238. Li, Y.; Zhang, Y.; Wei, Y.; Tao, L. Preparation of Chitosan-based Injectable Hydrogels and Its Application in 3D Cell Culture. J. Vis. Exp. 2017, 127: e56253. Nam, H.Y.; Kwon, S. M.; Chung, H.; Lee, S. Y.; Kwon, S. H.; Jeon, H.; Kim, Y.; Park, J. H.; Kim, J.; Her, S.; Oh, Y. K.; Kwon, I. C.; Kim, K.; Jeong, S. Y. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J. Control. Rel. 2009, 135(3): p. 259-267. Philippova, O. E.; Korchagina, E. V. Chitosan and its hydrophobic derivatives: Preparation and aggregation in dilute aqueous solutions. Polym. Sci. Ser. A 2012, 54: p. 552-572. Shariatinia, Z., Mazloom-Jalali, A. Chitosan nanocomposite drug delivery systems designed for the ifosfamide anticancer drug using molecular dynamics simulations. Journal of Molecular Liquids 2019, 273: p.346-367. Hamedi, H., Moradi, S., Hudson, S. M., et al. Chitosan based hydrogels and their applications for drug delivery in wound dressings_ A review. Carbohydrate Polymer 2018, 199: p. 445-460. Kim, J. H., Kim, Y. S., Park, K., et al. Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J. Control. Rel. 2008, 127(1): p. 41-49. Park, J. H.; Kwon, S.; Lee, M., et al. Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: In vivo biodistribution and anti-tumor activity. Biomaterials 2006, 27(1): p. 119-126. Kim, K., Kwon, S., Park, J.H., et al. Physicochemical Characterizations of Self-Assembled Nanoparticles of Glycol Chitosan−Deoxycholic Acid Conjugates. Biomacromolecules 2005, 6: p. 1154-1158. Trapani, A.; Sitterberg J.; Bakowsky U.; Kissel, T. The potential of glycol chitosan nanoparticles as carrier for low water soluble drugs. Int. J. Pharm. 2009, 375(1-2): p. 97-106. Li, J., Mooney, D. Designing hydrogels for controlled drug delivery. Nature Reviews Materials 2016, 1: 16071. Florence, A.T., Jani, P.U. Novel Oral Drug Formulations. Drug Safety 1994, 10: p. 233–266. Tiwari, G., Tiwari, R., Sriwastawa, B., et al. Drug delivery systems: An updated review. Int J Pharm Investig. 2012, 2: p. 2-11 Tibbitt, M. W., Dahlman, J. E., Langer, R. Emerging Frontiers in Drug Delivery. Journal of the American Chemical Society 2016, 138: p.704-717. Parsian, M., Unsoy, G., Mutlu, P., et al. Loading of Gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug. Eur. J. Pharmacol. 2016, 784: p. 121-128. Yu, H., Song, H., Xiao, J., et al. The effects of novel chitosan-targeted gemcitabine nanomedicine mediating cisplatin on epithelial mesenchymal transition, invasion and metastasis of pancreatic cancer cells. Biomedicine Pharmacotherapy 2017, 96: p. 650-658. Yadav, P., Bandyopadhyay, A., Chakraborty, A., et al. Enhancement of anticancer activity and drug delivery of chitosan-curcumin nanoparticle via molecular docking and simulation analysis. Carbohydrate Polymers. 2018, 182: p. 188-198. Ci, T., Chen, L., Yu, L., et al. Tumor regression achieved by encapsulating a moderately soluble drug into a polymeric thermogel. Sci. Rep. 2014, 4: 5473. Yu, L. C., G. T., Zhang, H., et al. Injectable block copolymer hydrogels for sustained release of a PEGylated drug. Int. J. Pharm. 2007, 348(1-2): p. 95-106. Ashley, G. W., Henise, J., Reid, R., et al. Hydrogel drug delivery system with predictable and tunable drug release and degradation rates. Proc. Natl Acad. Sci. USA 2013, 110: p. 2318-2323. Xie, W., Gao, Q., Guo, Z., et al. Injectable and Self-Healing Thermosensitive Magnetic Hydrogel for Asynchronous Control Release of Doxorubicin and Docetaxel to Treat Triple-Negative Breast Cancer. ACS Appl. Mater. Interfaces 2017, 9: p. 33660-33673. Wang, J., Wang, D., Yan, H., et al. An injectable ionic hydrogel inducing high temperature hyperthermia for microwave tumor ablation. J. Mater. Chem. B 2017, 5: p. 4110-4120. Alder, B.J. and T.E. Wainwright, Studies in Molecular Dynamics. I. General Method. The Journal of Chemical Physics 1959, 31: p. 459-466. Irving, J.H. and J.G. Kirkwood, The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics. The Journal of Chemical Physics 1950, 18: p. 817. Mark, J.E., Physical Properties of Polymers Handbook. Springer Science Business Media 2007 Subashini, M., Devarajan, P. V., Sonavane, G. S., et al. Molecular dynamics simulation of drug uptake by polymer. J. Mol. Model. 2011, 17: p. 1141-1147. Hsu, S. C.; Hsu, S. H.; Chang S. W. Effect of pH on Molecular Structures and Network of Glycol Chitosan. ACS Biomater. Sci. Eng. 2020, 6: p. 298-307. Pereira, J.C.G., et al., Atomistic modeling of silica based sol gel processes. Journal of Sol Gel Science and Technology 1997, 8: p. 5558. Netz, P.A. and T. Dorfmüller, Computer Simulation Studies on the Polymer Induced Modification of Water Properties in Polyacrylamide Hydrogels. The Journal of Physical Chemistry B 1998, 102: p. 4875-4886. Wen, C.H., et al., Molecular Structures and Mechanisms of Waterborne Biodegradable Polyurethane Nanoparticles. Comput. Struct. Biotechnol. J. 2019, 17: p. 110-117. Esalmi, M., Nikkhah, S. J., Hashemianzadeh, S. M., et al. The compatibility of Tacrine molecule with poly(n-butylcyanoacrylate) and Chitosan as efficient carriers for drug delivery A molecular dynamics study. Eur. J. Pharm. Sci. 2016, 82: p. 79-85. Aztatzi Pluma, D., et al., Study of the Molecular Interactions between Functionalized Carbon Nanotubes and Chitosan. The Journal of Physical Chemistry C 2016, 120: p. 2371-2378. Rungnim, C., Rungrotmongkol, T., Hannongbua, S., et al. Replica exchange molecular dynamics simulation of chitosan for drug delivery system based on carbon nanotube. J. Mol. Graphics Modell. 2013, 39: p. 183-192. Hossain, D., et al., Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer 2010, 51: p. 6071-6083. Hobza, P., et al., Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), semiempirical quantum chemical methods (AM1, MNDO/M, PM3), and ab initio Hartree Fock method for interaction of DNA bases: Comparison with nonempirical beyond Hartree Fock results. Journal of Computational Chemistry 1997, 18: p. 1136-1150. Schwalfenberg, G. K. The alkaline diet: is there evidence that an alkaline pH diet benefits health? J. Environ. Public Health 2012, 2012: 727630. Mahdavi, M., Rahmani, F., Nouranian, S. Molecular simulation of pH-dependent diffusion, loading, and release of doxorubicin in graphene and graphene oxide drug delivery systems. J. Mater. Chem. B 2016, 4: p. 7441-7451. Li, J., Ying, S., Ren, H., et al. Molecular dynamics study on the encapsulation and release of anti-cancer drug doxorubicin by chitosan. Int. J. Pharm. 2020, 580: 119241. Razmimanesh, F.; Amjad-Iranagh, S.; Modarress, H. Molecular dynamics simulation study of chitosan and gemcitabine as a drug delivery system. J. Mol. Model. 2015, 21: 165. McGaughey, G. B., Gagné, M., Rappé, A. K. Pi-stacking interactions: alive and well in proteins. J. Biol. Chem. 1998, 273: p. 15458-15463. Yuki, H., Tanaka., Y., Hata, M., et al. Implementation of π-π Interactions in Molecular Dynamics Simulation. J. Comput. Chem. 2007, 28: p. 1091-1099. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80608 | - |
| dc.description.abstract | 幾丁聚醣是自然界含量非常豐富的物質,為天然的陽離子線性多醣,乙二醇幾丁聚醣是幾丁聚醣的衍生物,具有優良的生物相容性、無生物毒性及生物降解性等性能。由於其獨特的生物學特性,它已廣泛被應用於商業、水凝膠及生物醫學中的生醫材料等領域。在這之中,水凝膠的諸多優點使其被視為在組織修復、再生,以及藥物輸送方面為有潛力的生物材料。然而,雖然在對疾病治療的藥物輸送方面已經被廣泛的研究,但乙二醇幾丁聚醣自癒合水膠和藥物的分子作用機制尚未被探索清楚。 因此,本研究利用乙二醇幾丁聚醣自癒合水膠作為藥物載體,選擇了吉西他濱和阿黴素兩種抗癌藥物作為藥物模型,建立不同藥物濃度下乙二醇幾丁聚醣自癒合水膠分別與吉西他濱和阿黴素所組成的輸送系統模型,透過分子動力模擬探討乙二醇幾丁聚醣自癒合水膠攜帶藥物的效率,以及其與藥物之間的分子作用機制,了解藥物的性質差異和藥物濃度如何影響乙二醇幾丁聚醣自癒合水膠的結構性質、作為載體的效率以及分子間作用力的變化。 本研究的結果量化了乙二醇幾丁聚醣自癒合水膠作為載體的效率表現,並解釋了藥物濃度對其分子結構的及分子間作用機制的影響,為藥物輸送應用上的混合新型治療提供乙二醇幾丁聚醣自癒合水膠的設計參考基礎。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:10:37Z (GMT). No. of bitstreams: 1 U0001-2210202115592800.pdf: 6747234 bytes, checksum: 814d935f42e9cfb608948ed7c47b2d86 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 xi 第1章、 緒論 1 1.1 背景介紹 1 1.2 文獻回顧 2 1.2.1 可注射的乙二醇幾丁聚醣自癒合水膠[8] 2 1.2.2 藥物輸送系統 6 1.2.3 分子動力模擬 7 1.3 研究目的 10 1.4 論文架構 10 第2章、 理論與方法 11 2.1 分子動力模擬 11 2.1.1 條件設計 12 2.1.2 週期性邊界條件 13 2.1.3 CVFF力場 14 2.2 模型設計 14 2.3 模擬流程 17 2.4 分析方法 19 2.4.1 負載效率(Loading efficiency,簡稱LE) 19 2.4.2 頭尾端距(End-to-end distance) 19 2.4.3 徑向分布函數(Radial distribution function,RDF) 19 2.4.4 均方位移(Mean-square displacement,簡稱MSD) 20 2.4.5 擴散係數(Diffusion coefficient) 21 2.4.6 氫鍵 21 2.4.7 π-stacking作用 21 第3章、 不同藥物濃度和結構對GC-DP自癒合水膠性質之影響 23 3.1 不同系統下GC-DP自癒合水膠之負載效率性質 23 3.2 不同系統下GC-DP自癒合水膠之分子結構特性 27 3.3 比較與討論 32 第4章、 GC-DP自癒合水膠與藥物之分子作用及藥物擴散性 33 4.1 GC-DP自癒合水膠與GEM之分子作用機制 33 4.2 GC-DP自癒合水膠與DOX之分子作用機制 44 4.3 藥物濃度對GEM及DOX的擴散影響 55 4.4 比較與討論 57 第5章、 結論與未來展望 60 5.1 結論 60 5.2 未來展望 62 參考文獻 64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 藥物輸送系統 | zh_TW |
| dc.subject | 分子動力模擬 | zh_TW |
| dc.subject | 水膠 | zh_TW |
| dc.subject | 乙二醇幾丁聚醣 | zh_TW |
| dc.subject | 吉西他濱 | zh_TW |
| dc.subject | 阿黴素 | zh_TW |
| dc.subject | gemcitabine | en |
| dc.subject | doxorubicin | en |
| dc.subject | hydrogel | en |
| dc.subject | drug delivery system | en |
| dc.subject | Molecular dynamics | en |
| dc.subject | glycol chitosan | en |
| dc.title | 以分子動力模擬探討乙二醇幾丁聚醣水膠作為藥物輸送系統之分子作用機制 | zh_TW |
| dc.title | Molecular interaction mechanisms of glycol chitosan hydrogel as a drug delivery system for gemcitabine and doxorubicin: a molecular dynamics study | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張書瑋(Shu-Wei Chang) | |
| dc.contributor.oralexamcommittee | 周佳靚(Hsin-Tsai Liu),林立強(Chih-Yang Tseng) | |
| dc.subject.keyword | 分子動力模擬,水膠,乙二醇幾丁聚醣,吉西他濱,阿黴素,藥物輸送系統, | zh_TW |
| dc.subject.keyword | Molecular dynamics,hydrogel,glycol chitosan,gemcitabine,doxorubicin,drug delivery system, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU202104035 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2210202115592800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
