請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80593完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李雅珍(Ya-Jane Lee) | |
| dc.contributor.author | Syu-Yin Lin | en |
| dc.contributor.author | 林煦茵 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:10:13Z | - |
| dc.date.available | 2022-04-28 | |
| dc.date.available | 2022-11-24T03:10:13Z | - |
| dc.date.copyright | 2021-11-19 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-25 | |
| dc.identifier.citation | 1. Thomas R, Kanso A, Sedor JR. Chronic kidney disease and its complications. Prim Care 35:329-44, 2008. 2. Hamza E, Metzinger L, Metzinger-Le Meuth V. Uremic Toxins Affect Erythropoiesis during the Course of Chronic Kidney Disease: A Review. Cells 9:2039, 2020. 3. Asai H, Hirata J, Hirano A, Hirai K, Seki S, Watanabe-Akanuma M. Activation of aryl hydrocarbon receptor mediates suppression of hypoxia-inducible factor-dependent erythropoietin expression by indoxyl sulfate. Am J Physiol Cell Physiol 310:C142-50, 2016. 4. Coe LM, Madathil SV, Casu C, Lanske B, Rivella S, Sitara D. FGF-23 is a negative regulator of prenatal and postnatal erythropoiesis. J Biol Chem 289:9795-810, 2014. 5. Wu CJ, Chen CY, Lai TS, Wu PC, Chuang CK, Sun FJ, Liu HL, Chen HH, Yeh HI, Lin CS, Lin CJ. The role of indoxyl sulfate in renal anemia in patients with chronic kidney disease. Oncotarget 8:83030-83037, 2017. 6. Toro L, Barrientos V, León P, Rojas M, Gonzalez M, González-Ibáñez A, Illanes S, Sugikawa K, Abarzúa N, Bascuñán C, Arcos K, Fuentealba C, Tong AM, Elorza AA, Pinto ME, Alzamora R, Romero C, Michea L. Erythropoietin induces bone marrow and plasma fibroblast growth factor 23 during acute kidney injury. Kidney Int 93:1131-1141, 2018. 7. Wu IW, Hsu KH, Lee CC, Sun CY, Hsu HJ, Tsai CJ, Tzen CY, Wang YC, Lin CY, Wu MS. p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol Dial Transplant 26:938-47, 2011. 8. Barreto FC, Barreto DV, Liabeuf S, Meert N, Glorieux G, Temmar M, Choukroun G, Vanholder R, Massy ZA; European Uremic Toxin Work Group (EUTox). Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol 4:1551-8, 2009. 9. Ahmed MS, Abed M, Voelkl J, Lang F. Triggering of suicidal erythrocyte death by uremic toxin indoxyl sulfate. BMC Nephrol 14:244, 2013. 10. Adelibieke Y, Shimizu H, Saito S, Mironova R, Niwa T. Indoxyl sulfate counteracts endothelial effects of erythropoietin through suppression of Akt phosphorylation. Circ J 77:1326-36, 2013. 11. van Vuren AJ, Gaillard CAJM, Eisenga MF, van Wijk R, van Beers EJ. The EPO-FGF23 Signaling Pathway in Erythroid Progenitor Cells: Opening a New Area of Research. Front Physiol 10:304, 2019. 12. Bammens B, Evenepoel P, Keuleers H, Verbeke K, Vanrenterghem Y. Free serum concentrations of the protein-bound retention solute p-cresol predict mortality in hemodialysis patients. Kidney Int. 69:1081-7, 2006. 13. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 15:2208-18, 2004. 14. Neirynck N, Vanholder R, Schepers E, Eloot S, Pletinck A, Glorieux G. An update on uremic toxins. Int Urol Nephrol 45:139-50, 2013. 15. Vanholder R, De Smet R. Pathophysiologic effects of uremic retention solutes. J Am Soc Nephrol 10:1815-23, 1999. 16. Ellis RJ, Small DM, Vesey DA, Johnson DW, Francis R, Vitetta L, Gobe GC, Morais C. Indoxyl sulphate and kidney disease: Causes, consequences and interventions. Nephrology (Carlton) 21:170-7, 2016. 17. Deguchi T, Ohtsuki S, Otagiri M, Takanaga H, Asaba H, Mori S, Terasaki T. Major role of organic anion transporter 3 in the transport of indoxyl sulfate in the kidney. Kidney Int 61:1760-8, 2002. 18. Lin CJ, Chen HH, Pan CF, Chuang CK, Wang TJ, Sun FJ, Wu CJ. p-Cresylsulfate and indoxyl sulfate level at different stages of chronic kidney disease. J Clin Lab Anal 25:191-7, 2011. 19. Itoh Y, Ezawa A, Kikuchi K, Tsuruta Y, Niwa T. Protein-bound uremic toxins in hemodialysis patients measured by liquid chromatography/tandem mass spectrometry and their effects on endothelial ROS production. Anal Bioanal Chem 403:1841-50, 2012. 20. Niwa T, Ise M. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J Lab Clin Med 124:96-104, 1994. 21. Sun CY, Hsu HH, Wu MS. p-Cresol sulfate and indoxyl sulfate induce similar cellular inflammatory gene expressions in cultured proximal renal tubular cells. Nephrol Dial Transplant 28:70-8, 2013. 22. Miyazaki T, Ise M, Hirata M, Endo K, Ito Y, Seo H, Niwa T. Indoxyl sulfate stimulates renal synthesis of transforming growth factor-beta 1 and progression of renal failure. Kidney Int Suppl 63:S211-4, 1997. 23. Lee SB, Kalluri R. Mechanistic connection between inflammation and fibrosis. Kidney Int Suppl 119:S22-6, 2010. 24. Miyazaki T, Ise M, Seo H, Niwa T. Indoxyl sulfate increases the gene expressions of TGF-beta 1, TIMP-1 and pro-alpha 1(I) collagen in uremic rat kidneys. Kidney Int Suppl 62:S15-22, 1997. 25. Sun CY, Chang SC, Wu MS. Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition. PLoS One 7:e34026, 2012. 26. Shimizu H, Bolati D, Adijiang A, Enomoto A, Nishijima F, Dateki M, Niwa T. Senescence and dysfunction of proximal tubular cells are associated with activated p53 expression by indoxyl sulfate. Am J Physiol Cell Physiol 299:C1110-7, 2010. 27. Motojima M, Hosokawa A, Yamato H, Muraki T, Yoshioka T. Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-kappaB and free radical in proximal tubular cells. Kidney Int 63:1671-80, 2003. 28. Ellis RJ, Small DM, Ng KL, Vesey DA, Vitetta L, Francis RS, Gobe GC, Morais C. Indoxyl Sulfate Induces Apoptosis and Hypertrophy in Human Kidney Proximal Tubular Cells. Toxicol Pathol 46:449-459, 2018. 29. Sato E, Mori T, Mishima E, Suzuki A, Sugawara S, Kurasawa N, Saigusa D, Miura D, Morikawa-Ichinose T, Saito R, Oba-Yabana I, Oe Y, Kisu K, Naganuma E, Koizumi K, Mokudai T, Niwano Y, Kudo T, Suzuki C, Takahashi N, Sato H, Abe T, Niwa T, Ito S. Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease. Sci Rep 6:36618, 2016. 30. Lano G, Burtey S, Sallée M. Indoxyl Sulfate, a Uremic Endotheliotoxin. Toxins (Basel) 12:229, 2020. 31. Hsia CC. Respiratory function of hemoglobin. N Engl J Med 338:239-47, 1998. 32. Wu H, Liu X, Jaenisch R, Lodish HF. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83:59-67, 1995. 33. Lacombe C, Da Silva JL, Bruneval P, Fournier JG, Wendling F, Casadevall N, Camilleri JP, Bariety J, Varet B, Tambourin P. Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney. J Clin Invest 81:620-3, 1988. 34. Pan X, Suzuki N, Hirano I, Yamazaki S, Minegishi N, Yamamoto M. Isolation and characterization of renal erythropoietin-producing cells from genetically produced anemia mice. PLoS One 6:e25839, 2011. 35. Maiese K, Chong ZZ, Shang YC. Raves and risks for erythropoietin. Cytokine Growth Factor Rev 19:145-55, 2008. 36. Shih HM, Wu CJ, Lin SL. Physiology and pathophysiology of renal erythropoietin-producing cells. J Formos Med Assoc 117:955-963, 2018. 37. Cernaro V, Coppolino G, Visconti L, Rivoli L, Lacquaniti A, Santoro D, Buemi A, Loddo S, Buemi M. Erythropoiesis and chronic kidney disease-related anemia: From physiology to new therapeutic advancements. Med Res Rev 39:427-460, 2019. 38. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92:5510-4, 1995. 39. Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337-40, 2001. 40. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468-72, 2001. 41. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271-5, 1999. 42. Takeda K, Aguila HL, Parikh NS, Li X, Lamothe K, Duan LJ, Takeda H, Lee FS, Fong GH. Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins. Blood 111:3229-35, 2008. 43. Fisher JW. Erythropoietin: physiology and pharmacology update. Exp Biol Med (Maywood) 228:1-14, 2003. 44. Watts D, Gaete D, Rodriguez D, Hoogewijs D, Rauner M, Sormendi S, Wielockx B. Hypoxia Pathway Proteins are Master Regulators of Erythropoiesis. Int J Mol Sci. 21(21):8131, 2020. 45. Ettinger SJ, Feldman EC, Cote E. Textbook of Veterinary Internal Medicine - Expert Consult. 8th ed. Saunders, Philadelphia, p740, 2017. 46. McClellan W, Aronoff SL, Bolton WK, Hood S, Lorber DL, Tang KL, Tse TF, Wasserman B, Leiserowitz M. The prevalence of anemia in patients with chronic kidney disease. Curr Med Res Opin 20:1501-10, 2004. 47. Wen CP, Cheng TY, Tsai MK, Chang YC, Chan HT, Tsai SP, Chiang PH, Hsu CC, Sung PK, Hsu YH, Wen SF. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet 371:2173-82, 2008. 48. Chalhoub S, Langston C, Eatroff A. Anemia of renal disease: what it is, what to do and what's new. J Feline Med Surg 13:629-40, 2011. 49. Stenvinkel P. The role of inflammation in the anaemia of end-stage renal disease. Nephrol Dial Transplant 16 Suppl 7:36-40, 2001. 50. Panwar B, Gutiérrez OM. Disorders of Iron Metabolism and Anemia in Chronic Kidney Disease. Semin Nephrol 36:252-61, 2016 Jul. 51. Wu SG, Jeng FR, Wei SY, Su CZ, Chung TC, Chang WJ, Chang HW. Red blood cell osmotic fragility in chronically hemodialyzed patients. Nephron 78:28-32, 1998. 52. Bonomini M, Sirolli V, Settefrati N, Dottori S, Di Liberato L, Arduini A. Increased erythrocyte phosphatidylserine exposure in chronic renal failure. J Am Soc Nephrol 10:1982-90, 1999. 53. Kuo CC, Kuo HW, Lee IM, Lee CT, Yang CY. The risk of upper gastrointestinal bleeding in patients treated with hemodialysis: a population-based cohort study. BMC Nephrol 14:15, 2013. 54. Goldstein RE, Marks SL, Kass PH, Cowgill LD. Gastrin concentrations in plasma of cats with chronic renal failure. J Am Vet Med Assoc 213:826-8, 1998. 55. Locatelli F, Pisoni RL, Combe C, Bommer J, Andreucci VE, Piera L, Greenwood R, Feldman HI, Port FK, Held PJ. Anaemia in haemodialysis patients of five European countries: association with morbidity and mortality in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrol Dial Transplant 19:121-32, 2004. 56. Mehdi U, Toto RD. Anemia, diabetes, and chronic kidney disease. Diabetes Care 32:1320-6, 2009. 57. Macdougall IC. Darbepoetin alfa: a new therapeutic agent for renal anemia. Kidney Int Suppl 80:55-61, 2002. 58. Zhang Y, Wang L, Dey S, Alnaeeli M, Suresh S, Rogers H, Teng R, Noguchi CT. Erythropoietin action in stress response, tissue maintenance and metabolism. Int J Mol Sci 15:10296-333, 2014. 59. Zhang Y, Thamer M, Stefanik K, Kaufman J, Cotter DJ. Epoetin requirements predict mortality in hemodialysis patients. Am J Kidney Dis 44:866-76, 2004. 60. Elliott J, Mishler D, Agarwal R. Hyporesponsiveness to erythropoietin: causes and management. Adv Chronic Kidney Dis 16:94-100, 2009. 61. Molnar MZ, Tabak AG, Alam A, Czira ME, Rudas A, Ujszaszi A, Beko G, Novak M, Kalantar-Zadeh K, Kovesdy CP, Mucsi I. Serum erythropoietin level and mortality in kidney transplant recipients. Clin J Am Soc Nephrol 6:2879-86, 2011. 62. Usui T, Zhao J, Fuller DS, Hanafusa N, Hasegawa T, Fujino H, Nomura T, Zee J, Young E, Robinson BM, Nangaku M. Association of erythropoietin resistance and fibroblast growth factor 23 in dialysis patients: Results from the Japanese Dialysis Outcomes and Practice Patterns Study. Nephrology (Carlton) 26:46-53, 2021. 63. Kim IY, Kim JH, Kim MJ, Lee DW, Hwang CG, Han M, Rhee H, Song SH, Seong EY, Lee SB. Low 1,25-dihydroxyvitamin D level is associated with erythropoietin deficiency and endogenous erythropoietin resistance in patients with chronic kidney disease. Int Urol Nephrol 50:2255-2260, 2018. 64. Schroeder JC, Dinatale BC, Murray IA, Flaveny CA, Liu Q, Laurenzana EM, Lin JM, Strom SC, Omiecinski CJ, Amin S, Perdew GH. The uremic toxin 3-indoxyl sulfate is a potent endogenous agonist for the human aryl hydrocarbon receptor. Biochemistry 49:393-400, 2010. 65. Tanaka T, Yamaguchi J, Higashijima Y, Nangaku M. Indoxyl sulfate signals for rapid mRNA stabilization of Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) and suppresses the expression of hypoxia-inducible genes in experimental CKD and uremia. FASEB J 27:4059-75, 2013. 66. Kuro-O M, Moe OW. FGF23-αKlotho as a paradigm for a kidney-bone network. Bone 100:4-18, 2017. 67. Yamashita T, Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun 277:494-8, 2000. 68. White KE, Jonsson KB, Carn G, Hampson G, Spector TD, Mannstadt M, Lorenz-Depiereux B, Miyauchi A, Yang IM, Ljunggren O, Meitinger T, Strom TM, Jüppner H, Econs MJ. The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab 86:497-500, 2001. 69. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16:139-49, 2005. 70. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770-4, 2006. 71. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120-3, 2006. 72. Liu S, Tang W, Zhou J, Stubbs JR, Luo Q, Pi M, Quarles LD. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol 17:1305-15, 2006. 73. Perwad F, Azam N, Zhang MY, Yamashita T, Tenenhouse HS, Portale AA. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 146:5358-64, 2005. 74. Barthel TK, Mathern DR, Whitfield GK, Haussler CA, Hopper HA 4th, Hsieh JC, Slater SA, Hsieh G, Kaczmarska M, Jurutka PW, Kolek OI, Ghishan FK, Haussler MR. 1,25-Dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J Steroid Biochem Mol Biol 103:381-8, 2007. 75. Takashi Y, Kosako H, Sawatsubashi S, Kinoshita Y, Ito N, Tsoumpra MK, Nangaku M, Abe M, Matsuhisa M, Kato S, Matsumoto T, Fukumoto S. Activation of unliganded FGF receptor by extracellular phosphate potentiates proteolytic protection of FGF23 by its O-glycosylation. Proc Natl Acad Sci U S A 116:11418-11427, 2019. 76. Meir T, Durlacher K, Pan Z, Amir G, Richards WG, Silver J, Naveh-Many T. Parathyroid hormone activates the orphan nuclear receptor Nurr1 to induce FGF23 transcription. Kidney Int 86:1106-15, 2014. 77. Andrukhova O, Zeitz U, Goetz R, Mohammadi M, Lanske B, Erben RG. FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone 51:621-8, 2012. 78. Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U, Goetz R, Shalhoub V, Mohammadi M, Pohl EE, Lanske B, Erben RG. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J 33:229-46, 2014. 79. Andrukhova O, Slavic S, Smorodchenko A, Zeitz U, Shalhoub V, Lanske B, Pohl EE, Erben RG. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med 6:744-59, 2014. 80. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113:561-8, 2004. 81. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, Silver J. The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117:4003-8, 2007. 82. Canalejo R, Canalejo A, Martinez-Moreno JM, Rodriguez-Ortiz ME, Estepa JC, Mendoza FJ, Munoz-Castaneda JR, Shalhoub V, Almaden Y, Rodriguez M. FGF23 fails to inhibit uremic parathyroid glands. J Am Soc Nephrol 21:1125-35, 2010. 83. Edmonston D, Wolf M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat Rev Nephrol. 16(1):7-19, 2020. 84. Erben RG. Physiological Actions of Fibroblast Growth Factor-23. Front Endocrinol (Lausanne) 9:267, 2018. 85. Moe S, Drüeke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G; Kidney Disease: Improving Global Outcomes (KDIGO). Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 69:1945-53, 2006. 86. Foster JD. Update on Mineral and Bone Disorders in Chronic Kidney Disease. Vet Clin North Am Small Anim Pract 46:1131-49, 2016. 87. Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, Jüppner H, Wolf M. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol 16:2205-15, 2005. 88. Slatopolsky E, Delmez JA. Pathogenesis of secondary hyperparathyroidism. Nephrol Dial Transplant 11 Suppl 3:130-5, 1996. 89. Sakan H, Nakatani K, Asai O, Imura A, Tanaka T, Yoshimoto S, Iwamoto N, Kurumatani N, Iwano M, Nabeshima Y, Konishi N, Saito Y. Reduced renal α-Klotho expression in CKD patients and its effect on renal phosphate handling and vitamin D metabolism. PLoS One 9:e86301, 2014. 90. Braun J, Oldendorf M, Moshage W, Heidler R, Zeitler E, Luft FC. Electron beam computed tomography in the evaluation of cardiac calcification in chronic dialysis patients. Am J Kidney Dis 27:394-401, 1996. 91. Goodman WG, London G, Amann K, Block GA, Giachelli C, Hruska KA, Ketteler M, Levin A, Massy Z, McCarron DA, Raggi P, Shanahan CM, Yorioka N; Vascular Calcification Work Group. Vascular calcification in chronic kidney disease. Am J Kidney Dis 43:572-9, 2004. 92. Lippi I, Guidi G, Marchetti V, Tognetti R, Meucci V. Prognostic role of the product of serum calcium and phosphorus concentrations in dogs with chronic kidney disease: 31 cases (2008-2010). J Am Vet Med Assoc 245:1135-40, 2014. 93. Flamme I, Ellinghaus P, Urrego D, Krüger T. FGF23 expression in rodents is directly induced via erythropoietin after inhibition of hypoxia inducible factor proline hydroxylase. PLoS One 12:e0186979, 2017. 94. Hanudel MR, Eisenga MF, Rappaport M, Chua K, Qiao B, Jung G, Gabayan V, Gales B, Ramos G, de Jong MA, van Zanden JJ, de Borst MH, Bakker SJL, Nemeth E, Salusky IB, Gaillard CAJM, Ganz T. Effects of erythropoietin on fibroblast growth factor 23 in mice and humans. Nephrol Dial Transplant 34:2057-2065, 2019. 95. Nam KH, Kim H, An SY, Lee M, Cha MU, Park JT, Yoo TH, Lee KB, Kim YH, Sung SA, Lee J, Kang SW, Choi KH, Ahn C, Han SH. Circulating Fibroblast Growth Factor-23 Levels are Associated with an Increased Risk of Anemia Development in Patients with Nondialysis Chronic Kidney Disease. Sci Rep 8:7294, 2018. 96. Agoro R, Montagna A, Goetz R, Aligbe O, Singh G, Coe LM, Mohammadi M, Rivella S, Sitara D. Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia. FASEB J 32:3752-3764, 2018. 97. Vadakke Madathil S, Coe LM, Casu C, Sitara D. Klotho deficiency disrupts hematopoietic stem cell development and erythropoiesis. Am J Pathol 184:827-41, 2014. 98. Cheng FP, Hsieh MJ, Chou CC, Hsu WL, Lee YJ. Detection of indoxyl sulfate levels in dogs and cats suffering from naturally occurring kidney diseases. Vet J 205:399-403, 2015. 99. Al Za'abi M, Ali B, Al Toubi M. HPLC-fluorescence method for measurement of the uremic sulfate in plasma. J Chromatogr Sci 51:40-3, 2013. 100. Hamano H, Ikeda Y, Watanabe H, Horinouchi Y, Izawa-Ishizawa Y, Imanishi M, Zamami Y, Takechi K, Miyamoto L, Ishizawa K, Tsuchiya K, Tamaki T. The uremic toxin indoxyl sulfate interferes with iron metabolism by regulating hepcidin in chronic kidney disease. Nephrol Dial Transplant 33:586-597, 2018. 101. Javard R, Grimes C, Bau-Gaudreault L, Dunn M. Acute-Phase Proteins and Iron Status in Cats with Chronic Kidney Disease. J Vet Intern Med 31:457-464, 2017. 102. de Seigneux S, Lundby AK, Berchtold L, Berg AH, Saudan P, Lundby C. Increased Synthesis of Liver Erythropoietin with CKD. J Am Soc Nephrol 27:2265-9, 2016. 103. Kumar V, Gill KD. To Estimate the Amount of Total Protein and Albumin in Serum and to Find A/G Ratio. In: Kumar V, Gill KD, (eds). Basic Concepts in Clinical Biochemistry: A Practical Guide. Springer, Singapore, 2018. 104. Jin K. Effects of amino acids and albumin on erythropoietin carbamoylation. Clin Exp Nephrol 17:575-81, 2013. 105. Iorember FM. Malnutrition in Chronic Kidney Disease. Front Pediatr. 6:161, 2018. 106. Gafter-Gvili A, Schechter A, Rozen-Zvi B. Iron Deficiency Anemia in Chronic Kidney Disease. Acta Haematol 142:44-50, 2019. 107. Liao YL, Chou CC, Lee YJ. The association of indoxyl sulfate with fibroblast growth factor-23 in cats with chronic kidney disease. J Vet Intern Med 33:686-693, 2019. 108. Bielesz B, Reiter T, Hammerle FP, Winnicki W, Bojic M, Gleiss A, Kieweg H, Ratzinger F, Sunder-Plassmann G, Marculescu R. The Role of Iron and Erythropoietin in the Association of Fibroblast Growth Factor 23 with Anemia in Chronic Kidney Disease in Humans. J Clin Med 9:2640, 2020. 109. Daryadel A, Natale L, Seebeck P, Bettoni C, Schnitzbauer U, Gassmann M, Wagner CA. Elevated FGF23 and disordered renal mineral handling with reduced bone mineralization in chronically erythropoietin over-expressing transgenic mice. Sci Rep 9:14989, 2019. 110. Chakrabarti S, Syme HM, Elliott J. Clinicopathological variables predicting progression of azotemia in cats with chronic kidney disease. J Vet Intern Med 26:275-81, 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80593 | - |
| dc.description.abstract | "研究背景 隨著慢性腎臟病的病程進展,腎臟功能逐漸惡化會導致相關併發症如貧血、礦物質代謝與骨質異常,以及心血管疾病等。目前關於尿毒毒素、紅血球生成作用以及對於鈣磷平衡的重要因子(纖維母細胞生長因子-23)三者間的交互關係,已於細胞培養實驗、實驗鼠模型以及人類醫學中被闡述。 研究目的 由於在獸醫學領域仍缺乏相關實驗,故本實驗希望能對慢性腎病貓的血漿尿毒毒素(硫酸吲哚)、紅血球生成素以及纖維母細胞生長因子-23之交互關係進行探討,以及了解這些因子是否為貓腎臟疾病預後的指標。 研究對象 由於單次血漿檢體難以取得足量可同時檢測三者,故本實驗主要分成兩大組,分別進行硫酸吲哚-紅血球生成素(IS-EPO)組與紅血球生成素-纖維母細胞生長因子-23(EPO-FGF-23)組的檢測以了解二者的個別關連性。IS-EPO組中包含8隻健康貓與26隻慢性腎病貓,而慢性腎病貓中有3隻貧血,20隻為非貧血;另外亦區分出腎病惡化組(8隻)與非腎病惡化組(7隻)。EPO-FGF-23組中則包含7隻健康貓與15隻慢性腎病貓,而慢性腎病貓中有2隻貧血,9隻為非貧血;另外亦區分出低磷組(7隻)與高磷組(6隻);腎病惡化組(3隻)與非腎病惡化組(6隻)。 實驗方法 以高效能液相層析儀(High Performance Liquid Chromatography)之螢光檢測法檢測貓血漿中硫酸吲哚之濃度,並以貓之商業化免疫分析套組分別檢測血漿中紅血球生成素與纖維母細胞生長因子-23之濃度。 實驗結果 與控制組相比,晚期慢性腎病貓有顯著較高的血漿硫酸吲哚的濃度(p=0.026),在腎病惡化組別也有較高濃度的趨勢(p=0.054),在經接收者操作特徵曲線(ROC)分析後顯示其具有預測腎病惡化之能力(AUC 0.804, p=0.049)。貓紅血球生成素的濃度在貓腎臟疾病組相對於控制組有上升的趨勢,但整體而言於控制組、早期腎病組與晚期腎病組間與高、低磷組間均無顯著差異,且在腎病惡化組與非腎病惡化組別間亦無達到顯著差異。而關於貓血漿中纖維母細胞生長因子-23的濃度,早期腎病組相較控制組有上升的趨勢,但整體而言於控制組、早期腎病組與晚期腎病組間與高、低磷組間均無顯著差異,且在腎病惡化組與非腎病惡化組別間亦無達到顯著差異,而以回歸分析血漿紅血球生成素與纖維母細胞生長因子-23後,於本實驗並未達到具有預測腎病惡化指標的能力。 另一方面,關於這三者與貓慢性腎病貧血的交互關係,血漿硫酸吲哚濃度於貧血與非貧血組別間並無顯著差異,然其與紅血球數之間呈現顯著負相關(p=0.040),亦與血紅素濃度(p=0.056)與血容比(p=0.083)之間具有負相關之趨勢。而在貓血漿紅血球生成素濃度的比較,雖然貧血組相較於非貧血組低,然未達顯著差異,其與紅血球相關參數之間的關係中,僅發現與平均紅血球容積具有顯著負相關(p=0.017)。最後,貓血漿纖維母細胞生長因子-23之濃度於貧血與非貧血組間未具有顯著差異,其與紅血球數成顯著正相關(Spearman: p=0.016, Linear: p=0.022),與平均紅血球容積具有顯著負相關(Spearman: p=0.011, Linear: p=0.004)。至於以這三者分別進行回歸分析預測貧血的發生之後,三者均未達到具有預測貓慢性腎病貧血的能力。 最後,關於慢性腎病貓此三者之間的相關性,本實驗結果顯示貓血漿硫酸吲哚與紅血球生成素濃度間並沒有顯著關聯性,然而在血漿紅血球生成素濃度與纖維母細胞生長因子-23之間則互相具有顯著正相關性(p=0.014)。 實驗結果與主要發現 本實驗為第一個使用專門偵測貓血漿紅血球生成素的免疫分析套組進行濃度檢測之研究。整體而言,於慢性腎病貓中,雖然未見血漿硫酸吲哚與紅血球生成素濃度的直接相關性,但顯示其與紅血球數及其他貧血相關指標(血紅素濃度、血容比)具有負相關性。此外,本實驗發現慢性腎病貓其血漿紅血球生成素與纖維母細胞生長因子-23間具有顯著正相關性。 關鍵字: 貓, 慢性腎病, 硫酸吲哚, 紅血球生成素, 纖維母細胞生長因子-23 " | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:10:13Z (GMT). No. of bitstreams: 1 U0001-2310202112170100.pdf: 3104195 bytes, checksum: 34e1271e00beb607f219553fa381ece8 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員審定 I 致謝 II 中文摘要 IV ABSTRACT VIII CHAPTER 1. INTRODUCTION 1 CHAPTER 2. LITERATURE REVIEW 3 2.1 Indoxyl sulfate and chronic kidney disease 3 2.1.1. Background of uremic toxins 3 2.1.2. Introduction of indoxyl sulfate 3 2.1.3. Pathophysiological roles of indoxyl sulfate in chronic kidney disease 3 2.2 Anemia of renal disease 5 2.2.1 Physiology of erythropoiesis 5 2.2.2 Pathophysiology of anemia in chronic kidney disease 7 2.2.3 Current management of renal anemia 8 2.2.4 Erythropoietin resistance (hyporesponsiveness) in CKD patients 9 2.2.5 Role of indoxyl sulfate in the regulation of erythropoiesis 10 2.3 Mineral homeostasis in chronic kidney disease 10 2.3.1 Normal physiology of mineral homeostasis 10 2.3.2 Introduction of fibroblast growth factor 23 (FGF23) and its cofactor 11 2.3.3 Regulation of fibroblast growth factor 23 in normal physiology 11 2.3.4 Pathophysiology of mineral homeostasis disorders and the role of FGF23 in chronic kidney disease 13 2.4 Association of erythropoietin and fibroblast growth factor 23 15 2.4.1. Regulation of erythropoietin to fibroblast growth factor 23 15 2.4.2. Regulation of fibroblast growth factor 23 to erythropoietin 16 CHAPTER 3. MATERIALS AND METHODS 17 3.1 Patients and Sample Collection 17 3.1.1. Samples and medical information collection 17 3.1.2 The enrollment and exclusion criteria of cases 17 3.2 Measurement of IS by HPLC-FLD method 22 3.2.1 Chemicals and reagents 22 3.2.2 Stock solutions and calibration standards 22 3.2.3 Sample preparation 22 3.2.4 Chromatographic system 23 3.2.5 Calibration curves and analytical method validation 23 3.3 Measurement of erythropoietin by commercial feline erythropoietin ELISA kit 24 3.4 Measurement of FGF23 by commercial feline FGF23 ELISA kit 25 3.5 Statistical analysis 26 CHAPTER 4. RESULTS 27 4.1 Validation of plasma IS, FGF23, and EPO measurement method 27 4.1.1 Validation of plasma IS measurement method by HPLC-FLD 27 4.1.2 Validation of plasma EPO and FGF23 measurement by commercial ELISA kits 31 4.2 Patients and samples collection 32 4.2.1 The IS-EPO group 32 4.2.2 The EPO-FGF23 group 33 4.3 Comparison of IS, EPO, and other clinical parameters among the control group and IRIS CKD stage 1~4 34 4.4 Comparison of IS, EPO, and other clinical parameters between anemia and non-anemia group in cats with CKD 39 4.5 Receiver operating curve (ROC) analysis between anemia and non-anemia in cats with CKD 41 4.6 Logistic regression analysis for different parameters associated with anemia in cats with CKD 41 4.7 Correlations between IS, EPO and other clinical parameters in cats with CKD 42 4.8 Comparison of IS, EPO and other clinical parameters between progression and non-progression group in cats with CKD 48 4.9 Receiver operating curve (ROC) analysis between progression and non-progression in cats with CKD 51 4.10 Logistic regression analysis for different parameters associated with progression in cats with CKD 52 4.11 Kaplan-Meier curve analysis for factors associate with 90-day progression in cats with CKD 53 4.12 Comparison of EPO, FGF23, and other clinical parameters among the control group and IRIS CKD stage 1~4 54 4.13 Comparison of plasma EPO, FGF23 and other clinical parameters between anemia and non-anemia group in cats with CKD 59 4.14 Receiver operating curve (ROC) analysis between anemia and non-anemia in cats with CKD 61 4.15 Comparison of plasma EPO, FGF23 and other clinical parameters between higher and lower phosphate group in cats with CKD 61 4.16 Correlations between EPO, FGF23 and other clinical parameters in cats with CKD 63 4.17 Comparison of EPO, FGF23 and other clinical parameters between progression and non-progression group in cats with CKD 68 4.18 Receiver operating curve (ROC) analysis between progression and non-progression in cats with CKD 70 4.19 Logistic regression analysis for different parameters associated with progression in cats with CKD 71 4.20 Kaplan-Meier curve analysis for factors associate with 90-day progression in cats with CKD 72 4.21.1 Comparison of plasma EPO other clinical parameters between anemia and non-anemia group in cats 73 4.21.2 Correlations between EPO and other clinical parameters in cats with CKD 74 4.21.3 Logistic regression analysis of plasma EPO for the progression in cats with CKD 77 CHAPTER 5. DISCUSSION 78 5.1 Plasma IS concentration in cats with CKD 78 5.1.1 Associations between plasma IS concentration and renal function 78 5.1.2 Associations between plasma IS concentration and anemia in cats with CKD 79 5.2 Plasma EPO concentration in cats with CKD 80 5.2.1 Comparison of plasma EPO concentration between healthy cats and cats with CKD 80 5.2.2 Comparison of plasma EPO concentration between anemic and non-anemic cats with CKD 81 5.2.3 The effects of ESAs on the plasma EPO concentration in cats with CKD 82 5.2.4 Associations between plasma EPO concentration and other clinical parameters in cats with CKD 83 5.3 Plasma FGF23 concentration in cats with CKD 84 5.3.1 Associations between plasma FGF23 concentration and anemia in cats with CKD 84 5.3.2 Associations between plasma FGF23 concentration and other clinical parameters in cats with CKD 85 5.4 Association between IS and EPO in cats with CKD 86 5.5 Association between EPO and FGF23 in cats with CKD 86 5.6 The capability of IS, EPO, or FGF23 to predict the development of anemia in cats with CKD 87 5.7 The association of between plasma IS, EPO, or FGF23 and the progression in cats with CKD 87 5.7.1 The association of between plasma IS and the progression in cats with CKD 87 5.7.2 The association of between plasma EPO and the progression in cats with CKD 88 5.7.3 The association of between FGF23 and the progression in cats with CKD 88 5.8 The limitations in this study 88 CHAPTER 6. CONCLUSIONS 90 REFERENCES 91" | |
| dc.language.iso | en | |
| dc.subject | 慢性腎病 | zh_TW |
| dc.subject | 硫酸吲哚 | zh_TW |
| dc.subject | 紅血球生成素 | zh_TW |
| dc.subject | 纖維母細胞生長因子-23 | zh_TW |
| dc.subject | 貓 | zh_TW |
| dc.subject | erythropoietin | en |
| dc.subject | indoxyl sulfate | en |
| dc.subject | chronic kidney disease | en |
| dc.subject | Cat | en |
| dc.subject | fibroblast growth factor 23 | en |
| dc.title | 紅血球生成素與硫酸吲哚及纖維母細胞生長因子-23在貓慢性腎病與病程進展之相關性 | zh_TW |
| dc.title | "The associations of plasma erythropoietin with indoxyl sulfate, fibroblast growth factor 23, and the progression in cats with chronic kidney disease" | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周濟眾(Hsin-Tsai Liu),蔡沛學(Chih-Yang Tseng),吳允升 | |
| dc.subject.keyword | 貓,慢性腎病,硫酸吲哚,紅血球生成素,纖維母細胞生長因子-23, | zh_TW |
| dc.subject.keyword | Cat,chronic kidney disease,indoxyl sulfate,erythropoietin,fibroblast growth factor 23, | en |
| dc.relation.page | 98 | |
| dc.identifier.doi | 10.6342/NTU202104061 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-26 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床動物醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床動物醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2310202112170100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
