請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80571完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周逸儒(Yi-Ju Chou) | |
| dc.contributor.author | Hung-Yi Chang | en |
| dc.contributor.author | 張鴻譯 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:09:38Z | - |
| dc.date.available | 2021-11-03 | |
| dc.date.available | 2022-11-24T03:09:38Z | - |
| dc.date.copyright | 2021-11-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-27 | |
| dc.identifier.citation | [1] A. Leonard.(1974), Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. 18A, 237-248 [2] Chang, C. C. Chern, R. L. (1991), A numerical study of flow around animpul-sively started circular cylinder by a deterministic vortex method. J. Fluid Mech. 233, 243-263. [3] Chang, C. C. (1992), Potential flow and forces for incompressible viscous flow. Proceedings of the Royal Society of London. Series A:Mathematical and Physical Sciences. 437(1901),517-525. [4] Chang, C. C., Liou, B. H. Chern, R. L. (1992), An analytical and numerical study of axisymmetric flow around steroids. J. Fluid Mech. 234, 219-246. [5] Chang, C. C. Lei, S. Y. (1996), An analysis of aerodynamic forces on a delta wing. J. Fluid Mech. 316,173-196 [6] Chang, C. C.,Yang, S. H., Chu, C. C.(2008), A many-body force decomposition with applications to flow about bluff bodies. J. Fluid Mech. 600, 95-104 [7] Chu, C. C., Chang, C. C.,Liu, C. C., Chang, R, L,(1996), Suction effect on an impulsively started circular cylinder: vortex structure and drag reduction. Physics of Fluids. 11, 2995-3007 [8] Howarth, L. (1935), The theoretical determination of the lift coefficient for a thin elliptic cylinder. Proc. R. Soc. Lord. Ser. A 149, 558-586 [9] Hua Shan, Li Jiang, Chaoqun Liu (2005), Direct numerical simulation of flow separation around a NACA0012 airfoil. J. compfluid. 34, 1096-1114 [10] I. Rodriguez, O. Lehmkuhl, R. Borrell, A. Oliva (2013), Direct numerical simulation of a NACA0012 in full stall. International Journal of Heat and Fluid Flow. 43, 194-203 [11] Jaber H. Almutairi, Lloyd E. Jones, Neil D. Sandham (2010), Intermittent bursting of a laminar separation bubble on an airfoil. J. AIAA. 48, 414-426 [12] J. Smagorinsky (1963), General Circulation Experiments with the Primitive Equations. Monthly Weather Review. 91(3), 99-164 [13] J. Winslow, H. Otsuka, B. Govindarajan, I. Chopra (2017) ,Basic Understanding of Airfoil Characteristics at Low Reynolds Numbers(104-105). Journal of Aircraft. 55(2), 1-12 [14] Lee, J. J.,Hsieh, C. T.,Chang, C. C., Chu, C. C.(2012), Vorticity forces on an impulsively started finite plate. J. Fluid Mech. 694, 464-492 [15] Leonard, B.P.(1995), Order of accuracy of QUICK and related convection-diffusion schemes .Applied Mathematical Modelling. 19, 640-653 [16] Leonard, B.P. (1979), A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering. 19 , 59–98 [17] L. E. Jones, R. D. Sandber, N. D. Sandham.(2008), Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J. Fluid Mech. 602, 175-207 [18] Lilly, D. K. (1992), A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids. 4 (3), 633-6368 [19] Li Feng, Bai Peng, Liu Qiang (2017) ,Discussion about the Laminar Separation Theory at Low Reynolds Numbers. Physics of Gases. 2(5), 1-10 [20] M. Breuer (2018), Effect of Inflow Turbulence on an Airfoil Flow with Laminar Separation Bubble: An LES Study. Flow, Turbulence and Combustion. 101, 433-456 [21] M. Germano (1986), A proposal for a redefinition of the turbulent stresses in the filtered Navier-Stokes equations. Phys. Fluids. 29(7), 2323-2324 [22] M. M. O’Meara, T. J. Mueller (2012), Laminar separation bubble characteristics on an airfoil at low Reynolds numbers. J. AIAA. 25, 1033-1041 [23] Massimo Germano, Ugo Piomelli, Parviz Moin, William H. Cabot (1991), A dynamic subgrid-scale eddy viscosity model. Phys. Fluids. 3(7), 1760-1765 [24] O. Lehmkuhl, A. Baez, I. Rodr´iguez , C.D. P´erez-Segarra (2011), Direct numerical simulation and Large-Eddy simulations of the turbulent flow around a NACA-0012 airfoil. International Conference on Computational Heat and Mass Transfer, 7, 1-8 [25] P. B. S. Lissaman (1983), Low-Reynolds-number airfoils. Ann. Rev. Fluid Mech. 15,223-239 [26] Parviz Moin, John Kim (1982), Numerical investigation of turbulent channel flow. J. Fluid Mech. 118, 341-377 [27] Rong F. Huang and Chih L. Lin (1995), Vortex shedding and shear-layer instability of wing at low-Reynolds numbers. J. AIAA. 33, 1398-1403 [28] Ryoji Kojima (2013), Large-eddy simulation of low-Reynolds-number flow over thick and thin NACA airfoils. J. Aircraft. 50, 187-196 [29] S. Martinez-Aranda, A. L. García-González, L. Parras, J. F. Velázquez-Navarro, C. del Pino (2016), Comparison of the Aerodynamic Characteristics of the NACA0012 Airfoil at Low-to-Moderate Reynolds Numbers for any Aspect Ratio. 4(1), 1-8 [30] S. Moreau, J. Christopher, M. Roger (2008), LES of the trailing-edge flow and noise of a NACA0012 airfoil near stall. Proceedings of the Summer Program. 317-329 [31] S. Yarusevych, PE. Sullivan, J. G. Kawall (2009), On vortex shedding from an airfoil in low-Reynolds-number flows. Journal of Fluid Mechanics. 632, 245-271 [32] Tangjun Shen, Xiaojun Li*, Linmin Li, Zhengdong Wang, Yaoyao Liu (2020), Evaluation of vorticity forces in thermo-sensitive cavitating flow considering the local compressibility. International Communications in Heat and Mass Transfer.120(1), 105008 [33] Y. Hoarau, M. Braza, Y. Ventikos, D. Faghani, G. Tzabiras (2003), Organized modes and the three-dimensional transition to turbulence in the incompressible flow around a NACA0012 wing. J. Fluid Mech. 496, 63-72 [34] ANSYS, Inc (2009), ANSYS FLUENT 12.0 Theory Guide [35] 謝政達 (2009) “以力元理論之觀點剖析昆蟲飛行的氣動力機制” ,國立台灣大學應用力學研究所博士論文 [36] 李健誌 (2012) “以力元理論分析在低雷諾數下有限翼之非定常氣動力特性”,國立台灣大學應用力學研究所博士論文 [37] 陳泰元 (2013) “力元理論應用於紊流模式” ,國立台灣大學應用力學研究所碩士論文 [38] 劉工瑋 (2015) “力元理論的紊流效應:大尺度渦漩模擬” ,國立台灣大學應用力學研究所碩士論文 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80571 | - |
| dc.description.abstract | 本論文為一NACA0012機翼置於一入流為均勻流之流場,使用ANSYS FLUENT作為流場的求解器,在低雷諾數流場的範疇下,即Re = 50000,以力元理論分別對三個不同攻角5度、10度、15度的情況下分析其總升阻力之效應,並且以紊流模式下之力元分析式去探討紊流效應對物體受力造成的影響。研究的結果為力元貢獻主要由流域內環境的靠近機翼附近的渦漩結構所主導,且在紊流流場中,紊流效應對機翼受力的影響占了不少的比例,攻角越高的情況下紊流效應會更加地明顯。接著我們將流場中Q值的三維等值面當作表達流場中的渦漩結構,並以力元結果的分布呈現於上,我們可以透過這樣的分析很直觀地看出流場中局部的渦漩結構對物體的受力造成了甚麼樣的貢獻。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:09:38Z (GMT). No. of bitstreams: 1 U0001-2510202110321700.pdf: 5485879 bytes, checksum: 840b0977ad032ac90da01a1751e6e336 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 ii 英文摘要 iii 目錄 iv 圖目錄 vi 表目錄 ix Chapter 1 導論 1 1.1 前言與動機 1 1.2 全文概述 4 Chapter 2 力元理論 5 2.1 輔助勢流 5 2.2 力元理論推導 6 Chapter 3 模型設置 11 3.1 參數設置 11 3.1.1 PISO法 11 3.1.2 QUICK法 12 3.1.3動態計算渦黏滯係數模型(DSM) 13 3.2 計算域與網格設置 14 3.3 輔助勢流結果 17 Chapter 4 低雷諾數下機翼紊流流場力元分析 19 4.1 流場結果及驗證 19 4.2 力元結果 23 4.2.1 力元對阻力、升力之效應 23 4.2.2 力元中的紊流效應 25 4.3 力元於機翼附近之渦漩結構之升阻力貢獻 27 4.3.1 力元貢獻之局部分析 30 4.3.2不同時間步下之總受力與力元之關係 45 Chapter 5 結論 51 5.1 結論 51 5.1 未來展望 52 REFERENCES 53 | |
| dc.language.iso | zh-TW | |
| dc.subject | 紊流 | zh_TW |
| dc.subject | NACA0012 | zh_TW |
| dc.subject | 力元理論 | zh_TW |
| dc.subject | 低雷諾數流場 | zh_TW |
| dc.subject | forece element theory | en |
| dc.subject | turbulence | en |
| dc.subject | low-Reynolds-number | en |
| dc.subject | NACA0012 | en |
| dc.title | 低雷諾數NACA0012機翼紊流流場力元分析 | zh_TW |
| dc.title | Force Element Analysis on the NACA 0012 airfoil in Turbulence flow at low Reynolds number | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張建成(Hsin-Tsai Liu),牛仰堯(Chih-Yang Tseng),郭志禹 | |
| dc.subject.keyword | NACA0012,力元理論,低雷諾數流場,紊流, | zh_TW |
| dc.subject.keyword | NACA0012,forece element theory,low-Reynolds-number,turbulence, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU202104115 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2510202110321700.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
