Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8056
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor董桂書(Kuei-Shu Tung)
dc.contributor.authorChih-Ting Yehen
dc.contributor.author葉芝廷zh_TW
dc.date.accessioned2021-05-19T18:04:42Z-
dc.date.available2022-10-17
dc.date.available2021-05-19T18:04:42Z-
dc.date.copyright2012-02-21
dc.date.issued2012
dc.date.submitted2012-02-08
dc.identifier.citationAgarwal, S., and G.S. Roeder. 2000. Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell. 102:245-255.
Alani, E., R. Padmore, and N. Kleckner. 1990. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell. 61:419-436.
Allen, J.W., D.J. Dix, B.W. Collins, B.A. Merrick, C. He, J.K. Selkirk, P. Poorman-Allen, M.E. Dresser, and E.M. Eddy. 1996. HSP70-2 is part of the synaptonemal complex in mouse and hamster spermatocytes. Chromosoma. 104:414-421.
Allen, R.L., D.A. O'Brien, C.C. Jones, D.L. Rockett, and E.M. Eddy. 1988. Expression of heat shock proteins by isolated mouse spermatogenic cells. Mol. Cell Biol. 8:3260-3266.
Börner, G.V., A. Barot, and N. Kleckner. 2008. Yeast Pch2 promotes domainal axis organization, timely recombination progression, and arrest of defective recombinosomes during meiosis. Proc. Natl. Acad. Sci. U S A. 105:3327-3332.
Börner, G.V., N. Kleckner, and N. Hunter. 2004. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell. 117:29-45.
Bailis, J.M., and G.S. Roeder. 1998. Synaptonemal complex morphogenesis and sister-chromatid cohesion require Mek1-dependent phosphorylation of a meiotic chromosomal protein. Genes Dev. 12:3551-3563.
Bailis, J.M., and G.S. Roeder. 2000. Pachytene exit controlled by reversal of Mek1-dependent phosphorylation. Cell. 101:211-221.
Bailis, J.M., A.V. Smith, and G.S. Roeder. 2000. Bypass of a meiotic checkpoint by overproduction of meiotic chromosomal proteins. Mol. Cell Biol. 20:4838-4848.
Becker, J., and E.A. Craig. 1994. Heat-shock proteins as molecular chaperones. Eur. J. Biochem. 219:11-23.
Bhalla, N., and A.F. Dernburg. 2005. A conserved checkpoint monitors meiotic chromosome synapsis in Caenorhabditis elegans. Science. 310:1683-1686.
Birnboim, H.C., and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7:1513-1523.
Bishop, D.K., D. Park, L. Xu, and N. Kleckner. 1992. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell. 69:439-456.
Boeke, J.D., F. LaCroute, and G.R. Fink. 1984. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345-346.
Boorstein, W.R., T. Ziegelhoffer, and E.A. Craig. 1994. Molecular evolution of the HSP70 multigene family. J. Mol. Evol. 38:1-17.
Broach, J.R., J.R. Pringle, and E.W. Jones. 1992. The Molecular and cellular biology of the yeast Saccharomyces. Cole Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Byers, B., and L. Goetsch. 1982. Reversible pachytene arrest of Saccharomyces cerevisiae at elevated temperature. Mol. Gen. Genet. 187:47-53.
Chen, I.C. 2003. The function of yeast Ssa3 protein in meiosis. M. S. Thesis. National Taiwan University, Taipei.
Chu, S., J. DeRisi, M. Eisen, J. Mulholland, D. Botstein, P.O. Brown, and I. Herskowitz. 1998. The transcriptional program of sporulation in budding yeast. Science. 282:699-705.
Chu, S., and I. Herskowitz. 1998. Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol. Cell. 1:685-696.
Chua, P.R., and G.S. Roeder. 1998. Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell. 93:349-359.
Craig, E.A., J. Kramer, J. Shilling, M. Werner-Washburne, S. Holmes, J. Kosic-Smithers, and C.M. Nicolet. 1989. SSC1, an essential member of the yeast HSP70 multigene family, encodes a mitochondrial protein. Mol. Cell Biol. 9:3000-3008.
de los Santos, T., and N.M. Hollingsworth. 1999. Red1p, a MEK1-dependent phosphoprotein that physically interacts with Hop1p during meiosis in yeast. J. Biol. Chem. 274:1783-1790.
Dix, D.J., J.W. Allen, B.W. Collins, C. Mori, N. Nakamura, P. Poorman-Allen, E.H. Goulding, and E.M. Eddy. 1996a. Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc. Natl. Acad. Sci. U S A. 93:3264-3268.
Dix, D.J., J.W. Allen, B.W. Collins, P. Poorman-Allen, C. Mori, D.R. Blizard, P.R. Brown, E.H. Goulding, B.D. Strong, and E.M. Eddy. 1997. HSP70-2 is required for desynapsis of synaptonemal complexes during meiotic prophase in juvenile and adult mouse spermatocytes. Development. 124:4595-4603.
Dix, D.J., M. Rosario-Herrle, H. Gotoh, C. Mori, E.H. Goulding, C.V. Barrett, and E.M. Eddy. 1996b. Developmentally regulated expression of Hsp70-2 and a Hsp70-2/lacZ transgene during spermatogenesis. Dev. Biol. 174:310-321.
Eddy, E.M. 1999. Role of heat shock protein HSP70-2 in spermatogenesis. Rev. Reprod. 4:23-30.
Eichinger, C.S., and S. Jentsch. 2010. Synaptonemal complex formation and meiotic checkpoint signaling are linked to the lateral element protein Red1. Proc. Natl. Acad. Sci. U S A. 107:11370-11375.
Gavin, A.C., P. Aloy, P. Grandi, R. Krause, M. Boesche, M. Marzioch, C. Rau, L.J. Jensen, S. Bastuck, B. Dumpelfeld, A. Edelmann, M.A. Heurtier, V. Hoffman, C. Hoefert, K. Klein, M. Hudak, A.M. Michon, M. Schelder, M. Schirle, M. Remor, T. Rudi, S. Hooper, A. Bauer, T. Bouwmeester, G. Casari, G. Drewes, G. Neubauer, J.M. Rick, B. Kuster, P. Bork, R.B. Russell, and G. Superti-Furga. 2006. Proteome survey reveals modularity of the yeast cell machinery. Nature. 440:631-636.
Georgopoulos, C., and W.J. Welch. 1993. Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol. 9:601-634.
Ghabrial, A., and T. Schupbach. 1999. Activation of a meiotic checkpoint regulates translation of Gurken during Drosophila oogenesis. Nat. Cell Biol. 1:354-357.
Gilbert, C.S., M. van den Bosch, C.M. Green, J.E. Vialard, M. Grenon, H. Erdjument-Bromage, P. Tempst, and N.F. Lowndes. 2003. The budding yeast Rad9 checkpoint complex: chaperone proteins are required for its function. EMBO Rep. 4:953-958.
Hartl, F.U. 1996. Molecular chaperones in cellular protein folding. Nature. 381:571-579.
Hartwell, L.H., and T.A. Weinert. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science. 246:629-634.
Hassold, T., H. Hall, and P. Hunt. 2007. The origin of human aneuploidy: where we have been, where we are going. Hum. Mol. Genet. 16 Spec No. 2:R203-208.
Hepworth, S.R., H. Friesen, and J. Segall. 1998. NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation-specific genes in Saccharomyces cerevisiae. Mol. Cell Biol. 18:5750-5761.
Ho, T.M. 2005. The role of yeast Hsp26 in sporulation. M. S. Thesis. National Taiwan University, Taipei.
Hochwagen, A., and A. Amon. 2006. Checking your breaks: surveillance mechanisms of meiotic recombination. Curr. Biol. 16:R217-228.
Hochwagen, A., W.H. Tham, G.A. Brar, and A. Amon. 2005. The FK506 binding protein Fpr3 counteracts protein phosphatase 1 to maintain meiotic recombination checkpoint activity. Cell. 122:861-873.
Hoffman, C.S. 2001. Preparation of Yeast DNA. Current Protocols in Molecular Biology:13.11.11-13.11.14.
Hollingsworth, N.M., and L. Ponte. 1997. Genetic interactions between HOP1, RED1 and MEK1 suggest that MEK1 regulates assembly of axial element components during meiosis in the yeast Saccharomyces cerevisiae. Genetics. 147:33-42.
Hollingsworth, N.M., L. Ponte, and C. Halsey. 1995. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev. 9:1728-1739.
Hunt, C.R., D.L. Gasser, D.D. Chaplin, J.C. Pierce, and C.A. Kozak. 1993. Chromosomal localization of five murine HSP70 gene family members: Hsp70-1, Hsp70-2, Hsp70-3, Hsc70t, and Grp78. Genomics. 16:193-198.
Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163-168.
James, P., J. Halladay, and E.A. Craig. 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 144:1425-1436.
Joshi, N., A. Barot, C. Jamison, and G.V. Börner. 2009. Pch2 links chromosome axis remodeling at future crossover sites and crossover distribution during yeast meiosis. PLoS Genet. 5:e1000557.
Joyce, E.F., and K.S. McKim. 2009. Drosophila PCH2 is required for a pachytene checkpoint that monitors double-strand-break-independent events leading to meiotic crossover formation. Genetics. 181:39-51.
Joyce, E.F., and K.S. McKim. 2010. Chromosome axis defects induce a checkpoint-mediated delay and interchromosomal effect on crossing over during Drosophila meiosis. PLoS Genet. 6: e1001059.
Kandeel, F.R., and R.S. Swerdloff. 1988. Role of temperature in regulation of spermatogenesis and the use of heating as a method for contraception. Fertil Steril. 49:1-23.
Keeney, S., C.N. Giroux, and N. Kleckner. 1997. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell. 88:375-384.
Krogan, N.J., G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, J. Li, S. Pu, N. Datta, A.P. Tikuisis, T. Punna, J.M. Peregrin-Alvarez, M. Shales, X. Zhang, M. Davey, M.D. Robinson, A. Paccanaro, J.E. Bray, A. Sheung, B. Beattie, D.P. Richards, V. Canadien, A. Lalev, F. Mena, P. Wong, A. Starostine, M.M. Canete, J. Vlasblom, S. Wu, C. Orsi, S.R. Collins, S. Chandran, R. Haw, J.J. Rilstone, K. Gandi, N.J. Thompson, G. Musso, P. St Onge, S. Ghanny, M.H. Lam, G. Butland, A.M. Altaf-Ul, S. Kanaya, A. Shilatifard, E. O'Shea, J.S. Weissman, C.J. Ingles, T.R. Hughes, J. Parkinson, M. Gerstein, S.J. Wodak, A. Emili, and J.F. Greenblatt. 2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature. 440:637-643.
Kurtz, S., J. Rossi, L. Petko, and S. Lindquist. 1986. An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis. Science. 231:1154-1157.
Lamoureux, J.S., and J.N. Glover. 2006. Principles of protein-DNA recognition revealed in the structural analysis of Ndt80-MSE DNA complexes. Structure. 14:555-565.
Leu, J.Y., P.R. Chua, and G.S. Roeder. 1998. The meiosis-specific Hop2 protein of S. cerevisiae ensures synapsis between homologous chromosomes. Cell. 94:375-386.
Leu, J.Y., and G.S. Roeder. 1999. The pachytene checkpoint in S. cerevisiae depends on Swe1-mediated phosphorylation of the cyclin-dependent kinase Cdc28. Mol. Cell. 4:805-814.
Lew, D.J., and D.J. Burke. 2003. The spindle assembly and spindle position checkpoints. Annu. Rev. Genet. 37:251-282.
Li, X.C., and J.C. Schimenti. 2007. Mouse pachytene checkpoint 2 (trip13) is required for completing meiotic recombination but not synapsis. PLoS Genet. 3:e130.
Lin, F.M., Y.J. Lai, H.J. Shen, Y.H. Cheng, and T.F. Wang. 2010. Yeast axial-element protein, Red1, binds SUMO chains to promote meiotic interhomologue recombination and chromosome synapsis. EMBO J. 29:586-596.
Lindquist, S., and E.A. Craig. 1988. The heat-shock proteins. Annu. Rev. Genet. 22:631-677.
Lorincz, A. 1984. Quick preparation of plasmid DNA from yeast. Focus. 6:11.
Lydall, D., Y. Nikolsky, D.K. Bishop, and T. Weinert. 1996. A meiotic recombination checkpoint controlled by mitotic checkpoint genes. Nature. 383:840-843.
Mitchell, A.P. 1994. Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol. Rev. 58:56-70.
Mitra, N., and G.S. Roeder. 2007. A novel nonnull ZIP1 allele triggers meiotic arrest with synapsed chromosomes in Saccharomyces cerevisiae. Genetics. 176:773-787.
Montano, S.P., M. Pierce, M.L. Cote, A.K. Vershon, and M.M. Georgiadis. 2002. Crystallographic studies of a novel DNA-binding domain from the yeast transcriptional activator Ndt80. Acta. Crystallogr D. Biol. Crystallogr. 58:2127-2130.
Nakagawa, T., and H. Ogawa. 1999. The Saccharomyces cerevisiae MER3 gene, encoding a novel helicase-like protein, is required for crossover control in meiosis. EMBO J. 18:5714-5723.
Niu, H., X. Li, E. Job, C. Park, D. Moazed, S.P. Gygi, and N.M. Hollingsworth. 2007. Mek1 kinase is regulated to suppress double-strand break repair between sister chromatids during budding yeast meiosis. Mol. Cell Biol. 27:5456-5467.
Novak, J.E., P.B. Ross-Macdonald, and G.S. Roeder. 2001. The budding yeast Msh4 protein functions in chromosome synapsis and the regulation of crossover distribution. Genetics. 158:1013-1025.
Pak, J., and J. Segall. 2002a. Regulation of the premiddle and middle phases of expression of the NDT80 gene during sporulation of Saccharomyces cerevisiae. Mol. Cell Biol. 22:6417-6429.
Pak, J., and J. Segall. 2002b. Role of Ndt80, Sum1, and Swe1 as targets of the meiotic recombination checkpoint that control exit from pachytene and spore formation in Saccharomyces cerevisiae. Mol. Cell Biol. 22:6430-6440.
Pierce, M., K.R. Benjamin, S.P. Montano, M.M. Georgiadis, E. Winter, and A.K. Vershon. 2003. Sum1 and Ndt80 proteins compete for binding to middle sporulation element sequences that control meiotic gene expression. Mol. Cell Biol. 23:4814-4825.
Pittman, D.L., J. Cobb, K.J. Schimenti, L.A. Wilson, D.M. Cooper, E. Brignull, M.A. Handel, and J.C. Schimenti. 1998. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol. Cell. 1:697-705.
Rockmill, B., and G.S. Roeder. 1990. Meiosis in asynaptic yeast. Genetics. 126:563-574.
Rockmill, B., M. Sym, H. Scherthan, and G.S. Roeder. 1995. Roles for two RecA homologs in promoting meiotic chromosome synapsis. Genes Dev. 9:2684-2695.
Roeder, G.S. 1995. Sex and the single cell: meiosis in yeast. Proc. Natl. Acad. Sci. U S A. 92:10450-10456.
Roeder, G.S. 1997. Meiotic chromosomes: it takes two to tango. Genes Dev. 11:2600-2621.
Roeder, G.S., and J.M. Bailis. 2000. The pachytene checkpoint. Trends Genet. 16:395-403.
Roig, I., J.A. Dowdle, A. Toth, D.G. de Rooij, M. Jasin, and S. Keeney. 2010. Mouse TRIP13/PCH2 is required for recombination and normal higher-order chromosome structure during meiosis. PLoS Genet. 6: e1001062.
Rosario, M.O., S.L. Perkins, D.A. O'Brien, R.L. Allen, and E.M. Eddy. 1992. Identification of the gene for the developmentally expressed 70 kDa heat-shock protein (P70) of mouse spermatogenic cells. Dev. Biol. 150:1-11.
Sambrook, J., and Russell, D.W. 2001. Molecular cloning. Cold Spring Harbor Laboratory. 3.
San-Segundo, P.A., and G.S. Roeder. 1999. Pch2 links chromatin silencing to meiotic checkpoint control. Cell. 97:313-324.
San-Segundo, P.A., and G.S. Roeder. 2000. Role for the silencing protein Dot1 in meiotic checkpoint control. Mol. Biol Cell. 11:3601-3615.
Sen, S. 2000. Aneuploidy and cancer. Curr. Opin. Oncol. 12:82-88.
Shuster, E.O., and B. Byers. 1989. Pachytene arrest and other meiotic effects of the start mutations in Saccharomyces cerevisiae. Genetics. 123:29-43.
Simchen, G. 2009. Commitment to meiosis: what determines the mode of division in budding yeast? Bioessays. 31:169-177.
Smith, A.V., and G.S. Roeder. 1997. The yeast Red1 protein localizes to the cores of meiotic chromosomes. J. Cell Biol. 136:957-967.
Sopko, R., S. Raithatha, and D. Stuart. 2002. Phosphorylation and maximal activity of Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80 is dependent on Ime2. Mol. Cell Biol. 22:7024-7040.
Stone, D.E., and E.A. Craig. 1990. Self-regulation of 70-kilodalton heat shock proteins in Saccharomyces cerevisiae. Mol. Cell Biol. 10:1622-1632.
Sym, M., J.A. Engebrecht, and G.S. Roeder. 1993. ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell. 72:365-378.
Sym, M., and G.S. Roeder. 1994. Crossover interference is abolished in the absence of a synaptonemal complex protein. Cell. 79:283-292.
Takanami, T., S. Sato, T. Ishihara, I. Katsura, H. Takahashi, and A. Higashitani. 1998. Characterization of a Caenorhabditis elegans recA-like gene Ce-rdh-1 involved in meiotic recombination. DNA Res. 5:373-377.
Tsubouchi, H., and G.S. Roeder. 2002. The Mndl protein forms a complex with Hop2 to promote homologous chromosome pairing and meiotic double-strand break. Mol. Cell Biol. 22:3078-3088.
Tung, K.S., E.J. Hong, and G.S. Roeder. 2000. The pachytene checkpoint prevents accumulation and phosphorylation of the meiosis-specific transcription factor Ndt80. Proc. Natl. Acad. Sci. U S A. 97:12187-12192.
Tung, K.S., and G.S. Roeder. 1998. Meiotic chromosome morphology and behavior in zip1 mutants of Saccharomyces cerevisiae. Genetics. 149:817-832.
van den Bosch, M., and N.F. Lowndes. 2004. Remodelling the Rad9 checkpoint complex: preparing Rad53 for action. Cell Cycle. 3:119-122.
Wan, L., T. de los Santos, C. Zhang, K. Shokat, and N.M. Hollingsworth. 2004. Mek1 kinase activity functions downstream of RED1 in the regulation of meiotic double strand break repair in budding yeast. Mol. Biol. Cell. 15:11-23.
Wang, Y., C.Y. Chang, J.F. Wu, and K.S. Tung. 2011. Nuclear localization of the meiosis-specific transcription factor Ndt80 is regulated by the pachytene checkpoint. Mol. Biol. Cell. 22:1878-1886.
Weinert, T. 1998. DNA damage and checkpoint pathways: molecular anatomy and interactions with repair. Cell. 94:555-558.
Werner-Washburne, M., J. Becker, J. Kosic-Smithers, and E.A. Craig. 1989. Yeast Hsp70 RNA levels vary in response to the physiological status of the cell. J. Bacteriol. 171:2680-2688.
Werner-Washburne, M., D.E. Stone, and E.A. Craig. 1987. Complex interactions among members of an essential subfamily of hsp70 genes in Saccharomyces cerevisiae. Mol. Cell Biol. 7:2568-2577.
Wojtasz, L., K. Daniel, I. Roig, E. Bolcun-Filas, H. Xu, V. Boonsanay, C.R. Eckmann, H.J. Cooke, M. Jasin, S. Keeney, M.J. McKay, and A. Toth. 2009. Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genet. 5:e1000702.
Woltering, D., B. Baumgartner, S. Bagchi, B. Larkin, J. Loidl, T. de los Santos, and N.M. Hollingsworth. 2000. Meiotic segregation, synapsis, and recombination checkpoint functions require physical interaction between the chromosomal proteins Red1p and Hop1p. Mol. Cell Biol. 20:6646-6658.
Wu, H.Y., and S.M. Burgess. 2006. Two distinct surveillance mechanisms monitor meiotic chromosome metabolism in budding yeast. Curr. Biol. 16:2473-2479.
Wu, J.F. 2001. Relationship between Ndt80 phosphorylation and its function. M. S. Thesis. National Taiwan University, Taipei.
Xu, L., M. Ajimura, R. Padmore, C. Klein, and N. Kleckner. 1995. NDT80, a meiosis-specific gene required for exit from pachytene in Saccharomyces cerevisiae. Mol. Cell Biol. 15:6572-6581.
Xu, L., B.M. Weiner, and N. Kleckner. 1997. Meiotic cells monitor the status of the interhomolog recombination complex. Genes Dev. 11:106-118.
Zakeri, Z.F., D.J. Wolgemuth, and C.R. Hunt. 1988. Identification and sequence analysis of a new member of the mouse HSP70 gene family and characterization of its unique cellular and developmental pattern of expression in the male germ line. Mol. Cell Biol. 8:2925-2932.
Zanders, S., and E. Alani. 2009. The pch2Delta mutation in baker's yeast alters meiotic crossover levels and confers a defect in crossover interference. PLoS Genet. 5:e1000571.
Zanders, S., M. Sonntag Brown, C. Chen, and E. Alani. 2011. Pch2 Modulates Chromatid Partner Choice During Meiotic Double-Strand Break Repair in Saccharomyces cerevisiae. Genetics.3:511-521
Zhu, D., D.J. Dix, and E.M. Eddy. 1997. HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes. Development. 124:3007-3014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8056-
dc.description.abstract老鼠熱休克蛋白質 HSP70-2 (70-kDa Heat shock protein) 在減數分裂過程中扮演重要的角色,在酵母菌 (Saccharomyces cerevisiae) 中與老鼠 HSP70-2 最相似的是 Ssa3 (stress-seventy subfamily A) 蛋白質。在減數分裂前期,若染色體重組與聯會複合體 (synaptonemal complex, SC) 組成發生異常 (例如 zip1 突變株),粗絲期檢控點 (pachytene checkpoint) 會讓細胞停滯在粗絲期,阻止核分裂的進行,直到缺失修復完成。先前本實驗室發現 SSA3 基因突變能使部分的 zip1 突變株略過粗絲期檢控點而繼續進行減數分裂,且 Ssa3 蛋白分布在粗絲期染色體上。本篇論文的主要目標在於進一步確定 Ssa3 蛋白質與粗絲期檢控點之間的關係。SSA3 基因突變會使部分zip1 突變株略過粗絲期檢控點,此隱抑 zip1 缺失的現象與酵母菌 PCH2 (pachytene checkpoint) 基因突變相似,不過 pch2 會完全地使 zip1 突變株略過粗絲期檢控點。此外,pch2 亦能使半數的重組缺失細胞 (dmc1 突變株) 略過粗絲期檢控點完成核分裂,但 ssa3 則無法隱抑 dmc1 的缺失,因此我們推測 Ssa3 可能參與在粗絲期檢控點的路徑,但僅針對 zip1 缺失所引發的粗絲期檢控點。先前研究顯示 Pch2 也分布於粗絲期染色體上,並參與在粗絲期檢控點的其中一條路徑,於是我們透過免疫螢光染色同時觀察 Ssa3 與 Pch2 在染色體上的位置,結果無論在野生型或 zip1 突變株中,兩者在染色體上的位置並無明顯的重疊,顯示 Ssa3 與 Pch2 可能分屬在不同條粗絲期檢控點的路徑。野生型與 zip1 突變株中,Ssa3 蛋白會沿著粗絲期染色體分布,在核仁位置有較累積的現象,但在 zip1 突變株中有觀察到偏向點狀的 Ssa3 分布。Red1 是染色體 axial element 組成蛋白之一,由 Ssa3 與 Red1 免疫螢光結果得知 Ssa3 可能位於 axial element 與聯會複合體 lateral element 上。因此,本文推測 Ssa3 蛋白可能有助於 axial elements/lateral elements 間的結合,進而穩定染色體或聯會複合體的構造,使粗絲期檢控點能被有效地活化與作用,將 zip1 缺失的細胞留滯在粗絲期。但 zip1 ssa3 突變株因缺少 Ssa3 使得染色體結構較不穩定,粗絲期檢控點的活化與功能受到影響,部分突變株因此能略過粗絲期,完成減數分裂產生孢子。
另一方面,pch2 突變株在 30℃ 下的產孢率與野生型相同,但高溫 32.5℃ 下 卻觀察到 pch2 突變株的產孢效能會發生嚴重的延遲與降低,於是進一步探討其原因。pch2 突變株的核分裂情形與產孢率會隨著培養溫度越高,而有越嚴重的延遲與降低現象,且細胞可能停滯在粗絲期階段。NDT80-bc 片段缺失突變會使細胞完全不受粗絲期檢控點之控制,透過觀察高溫下的 pch2 NDT80-bc 突變株,顯示高溫造成 pch2 細胞停在粗絲期是粗絲期檢控點的調控所致。此外,不具有 SC 的zip1 pch2 突變株在高溫下能夠完成減數分裂並產生孢子,而具有少量 SC 的 zip3 pch2 突變株卻又受到檢控點的調控,大多數細胞會停滯在粗絲期,無法完成減數分裂。由以上結果推論,也許高溫會導致 pch2 細胞中的 SC 結構發生異常,而異常的 SC 會發出比缺乏 SC 更嚴重的訊號給檢控點,因此高溫下會觀察到 pch2 突變株而非 zip1 pch2 突變株受到粗絲期檢控點的調控,無法完成減數分裂與產生孢子。
zh_TW
dc.description.abstractMutants that confer defects in meiotic recombination and synapsis (e.g. zip1) will trigger the pachytene checkpoint to delay and arrest cells at the pachytene stage of meiotic prophase. Previous studies have found that null mutant of yeast heat-shock protein SSA3 can partially suppress the checkpoint-mediated arrest of zip1; moreover, Ssa3 protein is localized to pachytene chromosomes, suggesting Ssa3 may function in the pachytene checkpoint. Here we show that SSA3 is specifically required for the pachytene arrest of zip1, for ssa3 fails to suppress pachytene-arrest of dmc1 mutant, in which the recombination is defective. Pch2, a protein localized to pachytene chromosomes and nucleolus, has been believed that it is involved in the pachytene checkpoint pathway. Using surface-spreading analyses, Ssa3 does not colocalize with Pch2, suggesting that probably Ssa3 does not involved in the Pch2-dependent checkpoint pathway. Ssa3 localizes along the length of pachytene chromosomes, and accumulates in the nucleolus in both wild type and zip1; however, we note that Ssa3 is present in dotty form on pachytene chromosomes in some zip1 mutant. Double staining of Ssa3 and Red1, a prominent component of axial elements/lateral elements of synaptonemal complex (SC), demonstrates that Ssa3 might localize to axial elements/lateral elements of SC. We propose that Ssa3 may provide its chaperon activity for maintaining a proper chromosomal status which is necessary for efficient activation of the pachytene checkpoint in budding yeast.
On the other hand, we note that sporulation frequency of pch2 is similar to wild type at 30℃, while it is significantly delayed and reduced at high temperature, 32.5℃, thus we try to investigate the reason. Due to lots of pch2 mutants are arrested at pachytene at high temperature, we use pch2 NDT80-bc mutant to determine whether the pachytene-arrest of pch2 is mediated by the pachytene checkpoint. NDT80-bc is a deletion mutation of NDT80, which completely bypasses the checkpoint. pch2 NDT80-bc displays a wild type-like level and kinetics of sporulation and nuclear division, indicating that high temperature-modulated arrest of pch2 is pachytene checkpoint-mediated. Unlike pch2 mutant, sporulation of zip1 pch2 would not be affected at 32.5℃; as a result, we speculate may be the presence of SC is important for the activation of the pachytene checkpoint in pch2 at high temperature. The zip3 pch2 mutant, which generates partial SCs, is used to compare with zip1 pch2, which generates none of SC. Sporulation frequency and nuclear division of zip3 pch2 is decreased at 32.5℃, suggesting that SCs is required for checkpoint induction in pch2 at high temperature. For these reasons, we propose that high temperature might make SC aberrant in pch2, and the checkpoint signal from aberrant SC is much significant than from absent SC, so pch2 is arrested by the pachytene checkpoint at elevated temperature.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T18:04:42Z (GMT). No. of bitstreams: 1
ntu-101-R98B43020-1.pdf: 2491763 bytes, checksum: b79cd4d4a99a96ed0bc4f2d66a96fa61 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 -- i
ABSTRACT -- iii
CONTENTS -- vi
LIST OF TABLES -- ix
LIST OF FIGURES -- x
CHAPTER 1. INTRODUCTION -- 1
1.1 Meiosis Overview -- 1
1.2 Cell-Cycle Checkpoint -- 2
1.2.1 The Importance of Cell-Cycle Checkpoint -- 2
1.2.2 The Pachytene Checkpoint -- 3
1.2.3 Ndt80 -- 5
1.2.4 Pch2 -- 8
1.3 The Roles of Heat-Shock Proteins -- 10
1.3.1 Mouse HSP70-2 Protein -- 10
1.3.2 Yeast Ssa3 Protein -- 12
1.3.3 Yeast Ssa2 Protein -- 13
1.4 Specific Aims -- 14
CHAPTER 2 MATERIALS AND METHODS -- 16
2.1 Yeast Strains, Media and Culture conditions -- 16
2.2 DNA Preparation and Transformation -- 16
2.3 Plasmids Construction -- 18
2.4 Yeast Strains Construction -- 24
2.5 Analysis of Kinetics of Meiotic Cells -- 27
2.6 Spore Viability Analyses -- 28
2.7 Cytology Analyses -- 28
2.8 Yeast two-hybrid Screen -- 31
2.9 Yeast two-hybrid Assay -- 32
CHAPTER 3 The Function of Ssa3 in Meiosis -- 33
3.1 Ssa3 is uniquely required for checkpoint-mediated arrest of zip1 -- 33
3.2 Ssa3 and Pch2 probably do not involved in the same pachytene checkpoint pathway -- 34
3.2.1 The N-terminal 3XHA-tagged Ssa3 is functional -- 34
3.2.2 The C-terminal 3XMYC-tagged Pch2 is functional -- 35
3.2.3 Ssa3 and Pch2 do not co-localize to the pachytene chromosomes -- 36
3.3 Ssa3 localizes to axial element/lateral element of synaptonemal complex ----- 37
3.4 Analysis of SSA3 at high temperature -- 40
3.4.1 Suppression of zip1 by ssa3 is temperature dependent -- 40
3.4.2 The chromosomal localization of Ssa3 at high temperature is similar to that at low temperature -- 41
CHAPTER 4 Analysis of pch2 Mutant at High Temperature -- 42
4.1 The pch2 mutant is defective in spore formation and nuclear division at high temperature -- 42
4.2 Wild type-like patterns of asci type, spore viability and tetrad distribution in the pch2 mutants at high temperature -- 43
4.3 The high temperature-modulated pachytene arrest in pch2 mutant is stage-dependent reversible -- 44
4.4 The pachytene checkpoint is likely to be involved in the high temperature-modulated arrest in pch2 mutant -- 45
4.5 The chromosomal localization of Pch2 at high and low temperatures are alike -- 48
CHAPTER 5 The Cytoplasmic Anchor Protein of Ndt80 -- 50
5.1 Analysis of SSA2 -- 50
5.1.1 Sporulation frequency and nuclear division are mildly increased in the zip1 ssa2 double mutant -- 51
5.1.2 Overproduction of Ssa2 in the Ndt80-overexpressed cells does not decrease sporulation frequency -- 53
5.1.3 An unapparent physical interaction between Ssa2 and Ndt80 -- 54
5.2 Yeast Two-Hybrid Screen -- 56
CHAPTER 6 DISCUSSION -- 58
6.1 Ssa3 is likely part of the synaptonemal complex -- 58
6.2 The role of meiotic chromosomal proteins in the pachytene checkpoint -- 59
6.3 A model for the possible relationship between Ssa3 and the pachytene checkpoint ----- 61
6.4 Whether Ssa3 is required for checkpoint-mediated arrest of other zmm mutations? -- 62
6.5 Dependence of the pch2 phenotype on incubation temperature -- 63
6.6 pch2 undergoes SC-dependent checkpoint-induced cell cycle arrest at elevated temperature -- 65
6.7 Reversible pachytene arrest is present in yeast at high temperature -- 66
REFERENCES -- 68
dc.language.isoen
dc.title探討減數分裂時期酵母菌 Ssa3 蛋白與粗絲期檢控點之關係zh_TW
dc.titleStudies on the relationship between yeast Ssa3 protein and the pachytene checkpoint in meiosisen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王淑美(Shue-Mei Wang),陳瑞芬(Ruei-Fen Chen)
dc.subject.keyword減數分裂,粗絲期檢控點,聯會複合體,Ssa3 蛋白,pch2 突變株,溫度,zh_TW
dc.subject.keywordmeiosis,pachytene checkpoint,synaptonemal complex (SC),Ssa3,pch2 mutant,temperature,en
dc.relation.page116
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-02-09
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf2.43 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved