Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8055
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor董桂書
dc.contributor.authorYuliana Huangen
dc.contributor.author黃月蓮zh_TW
dc.date.accessioned2021-05-19T18:04:39Z-
dc.date.available2022-12-31
dc.date.available2021-05-19T18:04:39Z-
dc.date.copyright2012-02-21
dc.date.issued2012
dc.date.submitted2012-02-08
dc.identifier.citationArrigo, A.P. and Landry, J. (1994). Expression and function of the low molecular weight heat shock proteins. In Morimoto, R.I. (ed.), The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 335-373.
Boeke, J.D., Trueheart, J., Natsoulis, G. and Fink, G.R. (1987). 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154: 164-175.
Caydasi, A.K., Ibrahim, B. and Pereira, G. (2010). Monitoring spindle orientation: Spindle position in charge. Cell Division 5: 28.
Chen, C.Y. (2007). The interaction of Ady3 and Tem1 with Hsp26 in yeast sporulation. M.S. thesis. National Taiwan University. Taipei.
de Jong, W.W., Leunissen, J.A. and Voorter, C.E. (1993). Evolution of the α-crystallin/small heat-shock protein family. Mol. Biol. Evol. 10: 103-126.
Gupta, M.L., Jr., Bode, C.J., Dougherty, C.A., Marquez, R.T., and Himes, R.H. (2001). Mutagenesis of beta-tubulin cysteine residues in Saccharomyces cerevisiae: mutation of cysteine 354 results in cold-stable microtubules. Cell Motility and the Cytoskeleton 49: 67-77.

Hartwell, L.H. and Weinert, T. A. (1989). Checkpoints: controls that ensure the order of cell cycle events. Science 246: 629-634.
Haslbeck, M., Walke, S., Stromer, T., Ehrnsperger, M., White, H.E. Chen, S., Saibil, H.R. and Buchner, J. (1999). Hsp26: a temperature-regulated chaperone. The EMBO Journal 18: 6744-6751.
Ho, T.M. (2005). The role of yeast Hsp26 in sporulation. M.S. thesis. National Taiwan University. Taipei.
Huh, W.K., Falvo,J.V., Gerke, L.C., Caroll, A.S., Howson, R.W., Weissman, J.S., and O’Shea, E.K. (2003). Global analysis of protein localization in budding yeast. Nature 425: 686-691.
Ito, H., Fukada, Y., Murata, K. and Kimura, A. (1983). Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163-168.
Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2002). A comprehensive two-hybrid analysis to explore the yeast prtein interactome. Proc. Natl. Acad. Sci. U.S.A 98(8): 4569-4574.
Jakob, U., Gaestel, M., Engel, K. and Buchner, J. (1993). Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268: 1517-1520.
Knop, M. and Strasser, K. (2000). Role of the spindle pole body of yeast in mediating assembly of the prospore membrane during meiosis. The EMBO Journal 19: 3657-3667.
Kurtz, S., Rossi, J., Petko, L. and Lindquist, S. (1986). An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis. Science 231: 1154-1156.
Lacefield, S. and Murray, AW. (2007). The spindle checkpoint rescues the meiotic segregation of chromosomes whose crossovers are far from the centromere. Nature Genetics 39(10): 1273-1277.
Landry, J., Chretien, P., Lambert, H., Hickey, E. and Weber L.A. (1989). Heat shock resistance conferred by expression of the human hsp27 gene in rodent cells. J. Cell. Biol. 109: 7-15.
Lindquist, S. and Craig, E. A. (1988). The heat-shock proteins. Annu. Rev. Genet. 22: 631-677.
Lew, D.J. and Burke, D.J. (2003). The spindle assembly and spindle position checkpoints. Annu. Rev. Genet. 37: 251-282.
Lynn, R.R. and Magee, P.T. (1970). Development of the spore wall during ascospore formation in Saccharomyces cerevisiae. J. Cell. Biol. 44: 688-692.

Maier, P., Rathfelder, N., Finkbeiner, M.G., Taxis, C., Mazza, M., Le Panse., S, Haguenauer-Tsapis, R., and Knop, M. (2007). Cytokinesis in yeast meiosis depends on the regulated removal of Ssp1p from the prospore membrane. The EMBO Journal 26: 1843-1852.
Moens, P.B. and Rapport, E. (1971). Spindles, spindle plaques and meiosis in the yeast Saccharomyces cerevisiae. J. Cell Biol. 50: 344-361.
Moreno-Borchart, A.C., FInkbeiner, M.G., Shevchenko,A., Shevchenko, A., and Strasser, K. (2001). Prospore membrane formation linked to the leading edge protein (LEP) coat assembly, The EMBO Journal 26: 6946-6957.
Nag, D.K., Koonce, M.P., and Axelrod, J. (1997). SSP1, a gene necessary for proper completion of meiotic divisions and spore formation in Saccharomyces cerevisiae. Mol. Cell. Biol. 17(12): 7029-7039.
Neiman, A.M. (1998). Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast. J. Cell Biol. 140(1): 29-37.
Neiman, A.M. (2005). Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 69(4): 565-584.
Neiman, A.M. (2011). Sporulation in the budding yeast Saccharomyces cerevisiae. Genetics 189: 737-765
Nickas, M.E. and Neiman, A.M. (2002). Ady3p links spindle pole body function to spore wall synthesis in Saccharomyces cerevisiae. Genetics 160: 1439-1450.
Peterson, J.B., Gray, R.H. and Ris, H. (1972). Meiotic spindle plaques in Saccharomyces cerevisiae. J. Cell Biol. 53: 837-841.
Petko, L. and Lindquist, S. (1986). Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination. Cell 45(6): 885-894.
Rabitsch, K.P., T oacute;th, A., G aacute;lov aacute;, M., Schleiffer, A., Schaffner, G., Aigner, E., Rupp, C., Penkner, A.M., Moreno-Borchart, A.C., Primig, A., Esposito, R.E., Klein, F., Knop, M. and Nasmyth, K. (2001). A screen for genes required for meiosis and spore formation based on whole-genome expression. Curr. Biol. 11(13): 1001-1009.
Rahman, D.R., Bentley, N.J. and Tuite, M.F. (1995). The Saccharomyces cerevisiae small heat shock protein Hsp26 inhibits actin polymerization. Biochem. Soc. Trans. 23: 77S.
Howson, R., Huh, W.K., Ghaemmaghami, S., Falvo, J.V., Bower, K., Belle, A., Dephoure, N., Wykoff, D.D., Weissman, J.S. and O’Shea, E.K. (2005). Construction, verification and experimental use of two epitope-tagged collections of budding yeast strains. Comp. Funct. Genom. 6: 2-16.
Sambrook, J. and Russell, D.W. (2001). Molecular Cloning: A Laboratory Manual. (Third edition) Cold Spring Harbor Laboratory Press.
Sherman, F., Fink, G.R., and Hicks, J.B. (1986). Methods in Yeast Genetics: A Laboratory Manual. Cold Spring Harbor Laboratory Press.
Shonn, M.A., McCarroll, R. and Murray, A.W. (2000). Requirement of the spindle checkpoint for proper chromosome segregation in budding yeast meiosis. Science 289: 300-303.
Stromer, T., Fischer, E., Richter, K., Haslbeck, M. and Buchner, J. (2004). Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation: the N-terminal domail is important for oligomer assembly and the binding of unfolding proteins. J. Biol. Chem. 279: 11222-11228.
Wach, A., Brachat, A., Alberti-Segui, C., Rebischung, C., and Philippsen, P. (1997). Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13: 1065-1075.
Wassmann, K., Niault, T., and Maro, B. (2003). Metaphase I arrest upon activation of the Mad2-dependent spindle checkpoint in mouse oocytes. Curr. Biol. 13(18): 1596-1608.
Zickler, D. and Olson, L.W. (1975). The synaptonemal complex and the spindle plaque during meiosis in yeast. Chromosoma 50: 1-23.
Zimmerman, J.L., Petri, W., and Meselson, M. (1983). Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock. Cell 32: 1161-1170.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8055-
dc.description.abstract減數分裂在有性生殖中扮演重要的角色。在營養缺乏的環境中,二倍體的酵母菌 (Saccharomyces cerevisiae) 細胞會經由減數分裂產生四個單倍體的孢子。整個減數分裂和孢子形成 (spore formation) 的過程稱為孢子生殖 (sporulation)。在孢子生殖過程中熱休克蛋白 Hsp26 會大量的表現,過去研究發現 hsp26 突變株的產孢率比野生型高,由於減數分裂沒有明顯的差異,表示缺少 Hsp26 是影響孢子形成時期。此外 hsp26 突變株中不正常排列的孢子比例較多,孢子的排列受到紡錘體 (spindle) 的控制,因此使用 benomyl 擾亂野生型與 hsp26 突變株的紡錘體,發現 hsp26 突變株的產孢率沒有受到影響,而野生型則有明顯的降低。根據此結果,之前推測 Hsp26 可能參與在紡錘體相關的檢控點。本論文的主要目的在於更深入探討 Hsp26 調控孢子形成的機制。首先,我們研究可能和 Hsp26 交互作用而且參與在孢子形成時期的蛋白質:Ady3。Ady3 位在原生孢子膜 (prospore membrane; PSM) 的前緣蛋白鞘 (leading edge protein coat; LEP coat) 上,與原生孢子膜的形成及孢子壁合成有關。根據之前的研究發現在 hsp26 突變株中偵測到較多 Ady3 位在前緣蛋白鞘上,因此推測 Hsp26 可能藉由調控Ady3結合到前緣蛋白鞘上,進而控制了產孢過程。此外,過去的研究顯示 Ady3 靠著 Ssp1 結合到前緣蛋白鞘上,故推測出第二種假設,Hsp26 可能經由調控 Ssp1而影響到 Ady3與前緣蛋白鞘的結合。以 benomyl 或低溫擾亂紡錘體後,經由免疫螢光觀察,發現野生型中 Ssp1 結合到前緣蛋白鞘上的比例均會降低,但是在 hsp26 突變株中則未降低,結果與第二種假設相符。我們推測在酵母菌的產孢過程中,當紡錘體異常時 Hsp26 可能會受到紡錘體相關檢控點的訊號,進而參與在調控 Ssp1 結合到前緣蛋白鞘上的過程。zh_TW
dc.description.abstractMeiosis plays an important role in gametogenesis. A diploid budding yeast cell enters meiosis under nutrient starvation which finally produces four haploid spores. The overall process of meiosis and spore formation is called sporulation. During this process, heat shock protein Hsp26 was strongly induced. Previous studies found that the sporulation efficiency of hsp26 mutant is higher than that of the wild type, and this increase occurs at the step of spore formation. Also, there is an increase in the percentages of abnormal asci in hsp26 mutant cells; asci alignment depends on the meiotic spindle functions. In order to specificially disrupt meiotic spindles, low level of benomyl was used. It caused a reduction of spore formation in the wild type, but not in the hsp26 mutant cells. Thus it was proposed that Hsp26 might be involved in the spindle checkpoint controlling the transition from meiosis II to spore formation. To understand the molecular mechanism of how Hsp26 might be involved in the spindle checkpoint during spore formation, we studied a potential Hsp26-interacting protein, Ady3. Ady3 is a component of the leading edge protein (LEP) coat of the prospore membrane (PSM) and is important for PSM formation and spore wall synthesis. Previous studies found that more Ady3 signals were detected on the LEP coat in the hsp26 mutant. Taken together, we hypothesized that Hsp26 might be involved in the spindle checkpoint by regulating Ady3 localization onto the leading edge coat, thus preventing the formation of abnormal asci. In addition, localization dependence study showed that Ady3 binding to the leading edge depends on Ssp1. Therefore, we also hypothesized the other possibilty that Ssp1 might act as the regulation target of Hsp26 in controlling spore formation. Upon microtubule-perturbation treatments, we found that the localization of Ssp1 to the LEP coat is affected in wild type cells, but not in hsp26 mutant cells. Based on these results, we proposed that in response to the spindle checkpoint signaling, Hsp26 might be involved in the regulation of Ssp1 for controlling spore formation.en
dc.description.provenanceMade available in DSpace on 2021-05-19T18:04:39Z (GMT). No. of bitstreams: 1
ntu-101-R98b43033-1.pdf: 1267294 bytes, checksum: 978a30d9df184f876594a030d0f65488 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsABSTRACT -----i
中文摘要 -----iii
TABLE OF CONTENTS -----iv
LIST OF TABLES -----vii
LIST OF FIGURES -----viii
CHAPTER 1. INTRODUCTION -----1
The Importance of Meiosis -----1
The Roles of Heat-Shock Proteins in Meiosis -----2
Yeast Hsp26 Protein -----3
Spore Formation in Saccharomyces cerevisiae -----4
The Leading-Edge Complex -----6
Spindle Checkpoint -----8
Specific Aim -----10
CHAPTER 2. MATERIALS AND METHODS -----12
Strains, Media, and Growth Conditions -----12
DNA Preparation, Transformation, and Plasmid Constructions -----13
Plasmid Constructions -----13
Yeast Constructions -----15
Constructions of yeast null mutants -----15
Epitope tagging of Ssp1 -----15
Epitope tagging of Ady3 -----16
3XHA-SSP1 and 3Xmyc-ADY3 but hsp26::URA3 mutant -----17
Time Course Analyses -----18
Meiotic time course analyses -----18
Nuclear division analyses -----18
Cytology Analyses -----19
Whole cell staining and immunofluorescence -----19
Image analysis -----21
Microtubule Perturbation Treatments -----21
Benomyl treatment -----21
Cold-shock treatment -----22
Quantification of Ady3 subcellular localization -----22
Quantification of Ssp1 subcellular localization -----22
Yeast Two-Hybrid Assay -----23
CHAPTER 3. RESULTS -----24
Subcellular Localization of Ssp1 and Ady3 -----24
Epitope tagging of Ssp1 and Ady3 -----24
Ssp1 and Ady3 colocalize in the LEP coat in both wild type and hsp26 mutant cells -----24
Analysis of hsp26 mutant during Prospore Membranes (PSMs) Formation -----25
Colocalization of Ady3 is not affected by Hsp26 -----25
Localization of Ssp1 to the leading edge of PSM is not affected by Hsp26 -----26
Benomyl, a microtubule inhibitor, does not affect the localization of Ady3 to the LEP coat in both wild type and hsp26 mutant cells -----27
The localization of Ssp1 to the LEP coat is affected under benomyl treatment in wild type cells, but not in hsp26 mutant cells -----28
Cold-Shock Treatment -----29
Cold-shock treatment conditions for perturbing meiotic spindles -----29
Colocalization of Ady3 to Ssp1 is not affected by Hsp26 in cold-shock treated cells -----31
Cold-shock treatment cause effects similar to those of benomyl -----32
Analysis of Hsp26 and Ssp1 interaction -----33
CHAPTER 4. DISCUSSION -----34
Hsp26 Functions in the LEP Coat Formation during PSMs Formation -----34
The hsp26 mutation suppresses the effects caused by microtubule perturbation treatments -----34
The localization of Ssp1 but not Ady3 is affected under microtubule perturbation treatments -----35
The Spindle Checkpoint in Meiosis -----36
Hsp26 might be involved in the regulation of Ssp1 localization for controlling spore formation -----36
The regulation pathway of Hsp26 in controlling Ssp1 localization -----37
The Relationship between Hsp26 and Ssp1 -----38
REFERENCES -----39
dc.language.isoen
dc.title酵母菌Hsp26蛋白在原生孢子膜形成時的作用zh_TW
dc.titleThe role of Hsp26 during prospore membrane formationen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王淑美,陳瑞芬
dc.subject.keywordHsp26 蛋白,原生孢子膜,前緣蛋白鞘,紡垂體檢控點,減數分裂,zh_TW
dc.subject.keywordHsp26,prospore membrane,leading-edge complex,spindle checkpoint,meiosis,en
dc.relation.page65
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-02-09
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf1.24 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved