請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80555完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐澔德(J Bruce H Shyu) | |
| dc.contributor.author | Ping-Kuan Hsieh | en |
| dc.contributor.author | 謝品寬 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:09:15Z | - |
| dc.date.available | 2021-11-04 | |
| dc.date.available | 2022-11-24T03:09:15Z | - |
| dc.date.copyright | 2021-11-04 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-26 | |
| dc.identifier.citation | Airbus Defence and Space. (2015). WorldDEM™ Technical Product Specification: Digital Surface Model, Digital Terrain Model. Version 2.0. Aurelio, M. A. (2000). Shear partitioning in the Philippines: Constraints from Philippine Fault and global positioning system data. Island Arc, 9(4), 584-597. https://doi.org/10.1046/j.1440-1738.2000.00304.x Aurelio, M. A., Peña, R. E., Taguibao, K. J. L. (2013). Sculpting the Philippine archipelago since the Cretaceous through rifting, oceanic spreading, subduction, obduction, collision and strike-slip faulting: Contribution to IGMA5000. Journal of Asian Earth Sciences, 72, 102-107. https://doi.org/10.1016/j.jseaes.2012.10.007 Besana-Ostman, G. M. (2011). The 1990 Bohol earthquake: tsunami observations and effects at Bohol island, Philippines. Science of Tsunami Hazards, 30(2), 78-93. Bureau of Mines and Geosciences. (1982). Geology and mineral resources of the Philippines. Geology, 1, 406. Bureau of Mines and Geosciences (1987). Geologic maps of Bohol Island. Bureau of Mines and Geosciences Philippines. Department of Environment, Energy and Natural Resources. Berdin, R. D., Siringan, F. P., Maeda, Y. (2004). Holocene sea-level highstand and its implications for the vertical stability of Panglao Island, southwest Bohol, Philippines. Quaternary International, 115-116, 27-37. https://doi.org/10.1016/s1040-6182(03)00094-6 Bloom, A. L., Broecker, W. S., Chappell, J. M. A., Matthews, R. K., Mesolella, K. J. (1974). Quaternary sea level fluctuations on a tectonic coast: New 230Th/234U dates from the Huon Peninsula, New Guinea. Quaternary research, 4(2), 185-205. https://doi.org/10.1016/0033-5894(74)90007-6 Burbank, D. W., Anderson, R. S. (2011). Tectonic geomorphology. John Wiley Sons. 460. Cabioch, G., Montaggioni, L. F., Faure, G., Ribaud-Laurenti, A. (1999). Reef coralgal assemblages as recorders of paleobathymetry and sea level changes in the Indo-Pacific province. Quaternary Science Reviews, 18(14), 1681-1695. https://doi.org/10.1016/s0277-3791(99)00014-1 Chappell, J. (1974). The Geomorphology and Evolution of Small Valleys in Dated Coral Reef Terraces, New Guinea. the journal of geology, 82(6), 795-812. https://doi.org/10.1086/628030 Chappell, J., Shackleton, N. (1986). Oxygen isotopes and sea level. Nature, 324(6093), 137-140. https://doi.org/10.1038/324137a0 Chen, J. H., Curran, H. A., White, B., Wasserburg, G. J. (1991). Precise chronology of the last interglacial period: 234U-230Th data from fossil coral reefs in the Bahamas. Geological Society of America Bulletin, 103(1), 82-97. https://doi.org/10.1130/0016-7606(1991)103<0082:PCOTLI>2.3.CO;2 Chen, W.-S., Yang, C.-Y., Chen, S.-T., Huang, Y.-C. (2020). New insights into Holocene marine terrace development caused by seismic and aseismic faulting in the Coastal Range, eastern Taiwan. Quaternary Science Reviews, 240. https://doi.org/10.1016/j.quascirev.2020.106369 Cheng, H., Adkins, J., Edwards, R. L., Boyle, E. A. (2000). U-Th dating of deep-sea corals. Geochimica et Cosmochimica Acta, 64(14), 2401-2416. https://doi.org/10.1016/S0016-7037(99)00422-6 Cheng, H., Edwards, R. L., Shen, C.-C., Polyak, V. J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., Calvin Alexander, E. (2013). Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, 371-372, 82-91. https://doi.org/10.1016/j.epsl.2013.04.006 Dimalanta, C. B., Suerte, L. O., Yumul, G. P., Tamayo, R. A., Ramos, E. G. L. (2006). A Cretaceous supra-subduction oceanic basin source for Central Philippine ophiolitic basement complexes: Geological and geophysical constraints. Geosciences Journal, 10(3), 305-320. https://doi.org/10.1007/Bf02910372 Edwards, R. L., Chen, J. H., Ku, T. L., Wasserburg, G. J. (1987). Precise timing of the last interglacial period from mass spectrometric determination of thorium-230 in corals. Science, 236(4808), 1547-1553. https://doi.org/10.1126/science.236.4808.1547 Faustino, D. V., Yumul, G. P., De Jesus, J. V., Dimalanta, C. B., Aitchison, J. C., Zhou, M. F., Tamayo, R. A., De Leon, M. M. (2003). Geology of southeast Bohol, central Philippines: accretion and sedimentation in a marginal basin. australian journal of Earth sciences, 50(4), 571-583. WOS:000185914800008 Faustino, D. V., Yumul, G. P., Dimalanta, C. B., de Jesus, J. V., Zhou, M. F., Aitchison, J. C., Tamayo, R. A. (2006). Volcanic-hypabyssal rock geochemistry of a subduction-related marginal basin ophiolite: Southeast Bohol Ophiolite-Cansiwang Melange Complex, Central Philippines. Geosciences Journal, 10(3), 291-303. https://doi.org/10.1007/Bf02910371 Gacusan, R. C. T., Lagmay, A. M. F. A. (2019). Shallow seismic reflection imaging of the Inabanga–Clarin portion of the North Bohol Fault, Central Visayas, Philippines. Geoscience Letters, 6(1). https://doi.org/10.1186/s40562-019-0139-x GEBCO Compilation Group. (2020). The GEBCO_2020 Grid - a continuous terrain model of the global oceans and land. https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9 Google. (n.d.). Bohol, Philippines. 9° 36.060'N, 124° 7.456'E. Maxar Technologies 2021. Google Earth Pro. Henderson, G. M. (2002). Seawater (234U/238U) during the last 800 thousand years. Earth and Planetary Science Letters, 199(1-2), 97-110.https://doi.org/10.1016/S0012-821X%2802%2900556-3 Hibbert, F. D., Rohling, E. J., Dutton, A., Williams, F. H., Chutcharavan, P. M., Zhao, C., Tamisiea, M. E. (2016). Coral indicators of past sea-level change: A global repository of U-series dated benchmarks. Quaternary Science Reviews, 145, 1-56. https://doi.org/10.1016/j.quascirev.2016.04.019 Hiess, J., Condon, D. J., McLean, N., Noble, S. R. (2012). 238U/235U Systematics in Terrestrial Uranium-Bearing Minerals. Science, 335(6076), 1610-1614. https://doi.org/10.1126/science.1215507 Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., Essling, A. M. (1971). Precision Measurement of Half-Lives and Specific Activities ofU235andU238. Physical Review C, 4(5), 1889-1906. https://doi.org/10.1103/PhysRevC.4.1889 Jara-Muñoz, J., Melnick, D., Strecker, M. R. (2016). TerraceM: A MATLAB® tool to analyze marine and lacustrine terraces using high-resolution topography. Geosphere, 12(1), 176-195. https://doi.org/10.1130/ges01208.1 Kobayashi, T. (2014). Remarkable ground uplift and reverse fault ruptures for the 2013 Bohol earthquake (Mw 7.1), Philippines, revealed by SAR pixel offset analysis. Geoscience Letters, 1(1). https://doi.org/10.1016/0146-6291(77)90571-910.1186/2196-4092-1-7 Ku, T.-L., Mathieu, G. G., Knauss, K. G. (1977). Uranium in open ocean: concentration and isotopic composition. Deep Sea Research, 24(11), 1005-1017. https://doi.org/10.1016/0146-6291(77)90571-9 Kukla, G. J., Bender, M. L., de Beaulieu, J.-L., Bond, G., Broecker, W. S., Cleveringa, P., Gavin, J. E., Herbert, T. D., Imbrie, J., Jouzel, J., Keigwin, L. D., Knudsen, K.-L., McManus, J. F., Merkt, J., Muhs, D. R., Müller, H., Poore, R. Z., Porter, S. C., Seret, G., Shackleton, N. J., Turner, C., Tzedakis, P. C., Winograd, I. J. (2017). Last Interglacial Climates. Quaternary Research, 58(1), 2-13. https://doi.org/10.1006/qres.2001.2316 Lagmay, A. M. F., Eco, R. (2014). Brief Communication: On the source characteristics and impacts of the magnitude 7.2 Bohol earthquake, Philippines. Natural Hazards and Earth System Sciences, 14(10), 2795-2801. doi:10.5194/nhess-14-2795-2014 Major, J., Harris, R., Chiang, H.-W., Cox, N., Shen, C.-C., Nelson, S. T., Prasetyadi, C., Rianto, A. (2013). Quaternary hinterland evolution of the active Banda Arc: Surface uplift and neotectonic deformation recorded by coral terraces at Kisar, Indonesia. Journal of Asian Earth Sciences, 73, 149-161. https://doi.org/10.1016/j.jseaes.2013.04.023 Maune, D. F., Huff, L. C., Guenther, G. C. (2001). DEM user applications. Digital elevation model technologies and applications: the DEM users manual, 391-423. McCabe, R., Almasco, J., Diegor, W. (1982). Geologic and Paleomagnetic Evidence for a Possible Miocene Collision in Western Panay, Central Philippines. geology, 10(6), 325-329. https://doi.org/10.1130/0091-7613(1982)10<325:Gapefa>2.0.Co;2 National Mapping And Resource Information Authority (n.d.). Predicted hourly height of tide. NAMRIA Homepage. https://www.namria.gov.ph/ O'Leary, M. J., Hearty, P. J., McCulloch, M. T. (2008). Geomorphic evidence of major sea-level fluctuations during marine isotope substage-5e, Cape Cuvier, Western Australia. Geomorphology, 102(3-4), 595-602. https://doi.org/10.1016/j.geomorph.2008.06.004 Omura, A., Maeda, Y., Kawana, T., Siringan, F. P., Berdin, R. D. (2004). U-series dates of Pleistocene corals and their implications to the paleo-sea levels and the vertical displacement in the Central Philippines. Quaternary International, 115-116, 3-13. https//doi.org/10.1016/s1040-6182(03)00092-2 Ota, Y., Sasaki, K., Omura, A., Nozawa, K. (2000). Recent Progress on Coral Reef Terrace Researches at Kikai Island, Southwestern Japan. Holocene Sea Level and Tectonic History Related to the Formation of Coral Terraces at Kikai Island, Northern Ryukyu Islands. The Quaternary Research (Daiyonki-Kenkyu), 39(1), 81-95. https://doi.org/10.4116/jaqua.39.81 Ozawa, A., Tagami, T., Listanco, E. L., Arpa, C. B., Sudo, M. (2004). Initiation and propagation of subduction along the Philippine Trench: evidence from the temporal and spatial distribution of volcanoes. Journal of Asian Earth Sciences, 23(1), 105-111. https://doi.org/10.1016/s1367-9120(03)00112-3 Philippine Institute of Volcanology and Seismology (PHIVOLCS). (2000) Active Faults of the Philippines, PHIVOLCS Published map. Philippine Institute of Volcanology and Seismology (PHIVOLCS). (2016). Active Faults Map of Province of Bohol. [Map] 1:180,000. Quezon City, Philippines: PHIVOLCS Philippine Institute of Volcanology and Seismology (PHIVOLCS). (2018). Active Faults Map of Province of Bohol. [Map] Version 1.1:180,000. Quezon City, Philippines: PHIVOLCS Punongbayan, B. J. T., Kumagai, H., Pulido, N., Bonita, J. D., Nakano, M., Yamashina, T., Maeda, Y., Inoue, H., Melosantos, A. A., Figueroa, M. F., Alcones, P. C. M., Soriano, K. V. C., Narag, I. C., Solidum, R. U. (2015, Feb). Development and Operation of a Regional Moment Tensor Analysis System in the Philippines: Contributions to the Understanding of Recent Damaging Earthquakes. Journal of Disaster Research, 10(1), 25-34. https://doi.org/10.20965/jdr.2015.p0025 Railsback, L. B., Gibbard, P. L., Head, M. J., Voarintsoa, N. R. G., Toucanne, S. (2015). An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews, 111, 94-106. https://doi.org/10.1016/j.quascirev.2015.01.012 Ramos, N. T., Tsutsumi, H. (2010). Evidence of large prehistoric offshore earthquakes deduced from uplifted Holocene marine terraces in Pangasinan Province, Luzon Island, Philippines. Tectonophysics, 495(3-4), 145-158. https://doi.org/10.1016/j.tecto.2010.08.007 Rimando, J. M., Aurelio, M. A., Dianala, J. D. B., Taguibao, K. J. L., Agustin, K. M. C., Berador, A. E. G., Vasquez, A. A. (2019). Coseismic ground rupture of the 15 October 2013 magnitude (MW) 7.2 Bohol earthquake, Bohol Island, central Philippines. Tectonics, 38(8), 2558-2580. https://doi.org/10.1029/2019TC005503 Ringor, C. L., Omura, A., Maeda, Y. (2004). Last Interglacial Sea Level Changes Deduced from Coral Reef Terraces in Southwest Bohol, Central Philippines. The Quaternary Research (Daiyonki-Kenkyu), 43(6), 401-416. doi:10.4116/jaqua.43.401 Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., Zemsky, R. (2009). Global Multi-Resolution Topography synthesis. Geochemistry, Geophysics, Geosystems, 10(3). https://doi.org/https://doi.org/10.1029/2008GC002332 Schlanger, S. O., Graf, D. L., Goldsmith, J. R., Macdonald , G. A., Sackett, W. M., and Potratz, H. A. (1963). Subsurface geology of Eniwetok atoll, Geological Survey Professional Paper 260-BB. US Government Printing Office. 991-1066. Scott, A. T., Pinter, N. (2003). Extraction of coastal terraces and shoreline-angle elevations from digital terrain models, Santa Cruz and Anacapa Islands, California. Physical Geography, 24(4), 271-294. https://doi.org/10.2747/0272-3646.24.4.271 Shackleton, N. J. (1987). Oxygen isotopes, ice volume and sea level. Quaternary Science Reviews, 6(3-4), 183-190. https://doi.org/10.1016/0277-3791(87)90003-5 Shen, C.-C., Lawrence Edwards, R., Cheng, H., Dorale, J. A., Thomas, R. B., Bradley Moran, S., Weinstein, S. E., Edmonds, H. N. (2002). Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chemical Geology, 185(3-4), 165-178. https://doi.org/10.1016/s0009-2541(01)00404-1 Shen, C.-C., Li, K.-S., Sieh, K., Natawidjaja, D., Cheng, H., Wang, X., Edwards, R. L., Lam, D. D., Hsieh, Y.-T., Fan, T.-Y., Meltzner, A. J., Taylor, F. W., Quinn, T. M., Chiang, H.-W., Kilbourne, K. H. (2008). Variation of initial 230Th/232Th and limits of high precision U–Th dating of shallow-water corals. Geochimica et Cosmochimica Acta, 72(17), 4201-4223. https://doi.org/10.1016/j.gca.2008.06.011 Shen, C.-C., Wu, C.-C., Cheng, H., Edwards, R. L., Hsieh, Y.-T., Gallet, S., Chang, C.-C., Li, T.-Y., Lam, D. D., Kano, A., Hori, M., Spötl, C. (2012). High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochimica et Cosmochimica Acta, 99, 71-86. https://doi.org/10.1016/j.gca.2012.09.018 Siddall, M., Chappell, J, and Potter, E. K. (2007). 7. Eustatic Sea Level During Past Interglacials. Developments in Quaternary Sciences, 7, 75-92. https://doi.org/10.1016/S1571-0866(07)80032-7 Stirling, C. H., Esat, T. M., Lambeck, K., McCulloch, M. T. (1998). Timing and duration of the Last Interglacial: evidence for a restricted interval of widespread coral reef growth. Earth and Planetary Science Letters, 160(3-4), 745-762. https://doi:10.1016/s0012-821x(98)00125-3 Stirling, C. H., Esat, T. M., Lambeck, K., McCulloch, M. T., Blake, S. G., Lee, D. C., Halliday, A. N. (2001). Orbital forcing of the marine isotope stage 9 interglacial. Science, 291(5502), 290-293. https://doi:10.1126/science.291.5502.290 Thurber, D. L. (1962). Anomalous U234U238in nature. Journal of Geophysical Research, 67(11), 4518-4520.https://doi.org/10.1029/JZ067i011p04518 Tide4fishing (n.d.). TIDES AND SOLUNAR CHARTS: Maribojoc, Philippines https://tides4fishing.com/as/philippines/maribojoc Trenhaile, A. S. (2002). Rock coasts, with particular emphasis on shore platforms. Geomorphology, 48(1-3), 7-22.https://doi.org/10.1016/S0169-555X(02)00173-3 Umbal, J.V., Masigla, L.M., Medrano, R.N.,and Diolata, G.P. (1990). Report of Investigation on the Feb. 8, 1990 earthquake in Bohol Province. PHIVOLCS Internal Report. U.S. Geological Survey. (2021). M 6.8 - 13 km E of Bacong, Philippines. Earthquake Event Page. Retrieved from https://earthquake.usgs.gov/earthquakes/eventpage/usp000456h/executive Veeh, H. H., Chappell, J. (1970). Astronomical theory of climatic change: support from New Guinea. Science, 167(3919), 862-865. https://doi.org/10.1126/science.167.3919.862 Wang, Y., Shyu, J. B. H., Sieh, K., Chiang, H.-W., Wang, C.-C., Aung, T., Lin, Y.-n. N., Shen, C.-C., Min, S., Than, O., Lin, K. K., Tun, S. T. (2013). Permanent upper plate deformation in western Myanmar during the great 1762 earthquake: Implications for neotectonic behavior of the northern Sunda megathrust. Journal of Geophysical Research: Solid Earth, 118(3), 1277-1303. https://doi.org/10.1002/jgrb.50121 Yoshida, K., Pulido, N., Fukuyama, E. (2016). Unusual stress rotations within the Philippines possibly caused by slip heterogeneity along the Philippine fault. Journal of Geophysical Research: Solid Earth, 121(3), 2020-2036. https://doi.org/10.1002/2015jb012275 Yumul, G. P. (2003). The Cretaceous Southeast Bohol Ophiolite Complex, Central Philippines: a highly disaggregated supra-subduction zone ophiolite. Journal of Asian Earth Sciences, 21(8), 957-965. https://doi.org/10.1016/S1367-9120(02)00086-X Yumul, G. P., Dimalanta, C. B., Tamayo, R. A., Barretto, J. A. L. (2000). Contrasting morphological trends of islands in Central Philippines: Speculation on their origin. Island Arc, 9(4), 627-637. https://doi.org/10.1046/j.1440-1738.2000.00307.x Yumul, G. P., Dimalanta, C. B., Maglambayan, V. B., Marquez, E. J. (2008). Tectonic setting of a composite terrane: A review of the Philippine island arc system. Geosciences Journal, 12(1). https://doi.org/10.1007/s12303-008-0002-0 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80555 | - |
| dc.description.abstract | 菲律賓位於歐亞板塊與菲律賓海板塊互相聚合形成的複雜地體構造區域,孕育了許多活動構造及地震。而薄荷島位於菲律賓中部,在西北東南向壓縮的構造環境下發育了許多褶皺與逆斷層。2013年菲律賓薄荷島發生了一場規模7.2的地震,造成了當地嚴重的生命財產損失,進一步認識該地區的活動構造特性便顯得十分重要。雖然薄荷島過去的地震紀錄顯示此區域具有構造活動,然而地質學家對本區域的活動構造仍知之甚少。在菲律賓中部的薄荷島南部海岸發育了一系列海階,這些海階是本區域受到構造抬升的地形證據。前人曾經針對本區域附近的邦勞島與帕米拉坎島上的海階進行研究,發現抬升速率具有空間分布上的差異,然而造成抬升,以及其速率差異的機制仍尚未明瞭。為增進對薄荷島構造活動的瞭解,本研究選定薄荷島南部海岸前人尚未探討過且廣泛分布的海階為研究對象。 本研究利用數值地形模型描繪階面及階崖分布,發現在薄荷島南部Loboc河東西兩側分別存在三階及五階海階;野外工作發現此區域海階主要由珊瑚礁石灰岩所構成,而由海階所採到的珊瑚樣本鈾釷定年結果可以對應到不同的海洋同位素階(MIS)。藉由建立地形剖面標定海階的海岸線角作為古海水面指標,本研究在分別討論海階形成年代後計算了本區域的長期抬升速率。 本研究所計算出的抬升速率顯示Loboc河口的東側抬升較西側快,而同一期海階階面側向高度變化亦顯示相同趨勢。由於前人所繪之East Bohol Fault並未切穿Loboc河河口,而該斷層於切穿薄荷島南部海岸處並未造成MIS 5e海階階面明顯的高低落差,本研究推測前人所繪之該斷層可能為一自13萬年以來較不活躍的分支,而該斷層西北側可能存在另一切穿Loboc河河口,且近期較活躍的分支斷層,其斷層活動造成Loboc河口東側的上盤抬升速率較Loboc河西側的下盤高。而由於抬升速率顯示薄荷島南部海岸整體而言均處在抬升狀態,本研究推測薄荷島南部外海的變形前緣可能為一呈東北東-西南西走向、向西北傾的逆斷層,此斷層的活動使薄荷島南部海岸抬升形成廣泛分布的海階。而薄荷島上一系列東北-西南走向的斷層及褶皺系統可能即是此逆斷層上盤的褶皺逆衝帶。由於此外海逆斷層仍可能為薄荷島南部帶來地震以及海嘯的威脅,本研究建議應進一步探討其活動特性及回歸週期,以作為訂定該地區防災政策的參考。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:09:15Z (GMT). No. of bitstreams: 1 U0001-2510202117481800.pdf: 19483596 bytes, checksum: bc6bc028d4810acc4f34fc71a33458ee (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書........................................................I 誌謝.................................................................II 摘要.................................................................III Abstract.............................................................V 目錄.................................................................VII 圖目錄...............................................................X 表目錄...............................................................XIII 第一章 前言.........................................................1 1.1 研究動機........................................................1 1.2 研究目的........................................................4 1.3 研究區域地理位置...............................................6 1.4 地體構造與地質概況.............................................6 第二章 前人研究.......................................................9 2.1 歷史地震......................................................9 2.1.1 1990年薄荷島地震...............................................9 2.1.2 2013年薄荷島地震...............................................10 2.2 活動構造.......................................................12 2.3 海階地形與活動構造的關聯........................................14 2.4 Panglao島的古海水面及抬升速率研究...............................16 第三章 研究方法.......................................................19 3.1 地形分析......................................................19 3.1.1 數值高程模型...................................................19 3.1.2 Google Earth衛星影像及街景服務..................................22 3.2 野外工作.......................................................22 3.3 放射性鈾釷同位素定年法..........................................24 3.3.1 鈾釷定年原理概述................................................24 3.3.2 鈾釷定年的限制..................................................27 3.3.3 珊瑚樣本前處理及鈾釷定年步驟.....................................27 3.4 海階地形剖面分析................................................28 3.4.1 海階地形剖面概述................................................28 3.4.2 利用海岸線角作為古海水面指標.....................................30 3.4.3 海階長期抬升速率計算.............................................32 第四章 研究結果........................................................34 4.1 海階地形分析結果.................................................34 4.1.1 Loboc河西側海階.................................................37 4.1.2 Loboc河東側海階.................................................40 4.2 野外工作結果....................................................42 4.2.1 Loboc河西岸.....................................................43 4.2.2 Loboc河東岸.....................................................48 4.2.3 Pamilacan島.....................................................54 4.2.4 小結............................................................56 4.3 放射性鈾釷分析結果...............................................58 4.4 海階地形剖面.....................................................63 4.4.1 A-A’剖面........................................................63 4.4.2 B-B’剖面........................................................66 4.4.3 C-C’剖面........................................................68 4.4.4 D-D’剖面........................................................70 4.4.5 E-E’剖面........................................................72 4.4.6 F-F’剖面........................................................74 4.4.7 G-G’剖面........................................................77 4.4.8 海階側向地形剖面(L-L’剖面)......................................79 第五章 討論............................................................81 5.1 海階抬升速率計算.................................................81 5.2 薄荷島海階分階及形成機制討論......................................84 5.2.1 A-A’剖面........................................................84 5.2.2 B-B’、C-C’剖面..................................................84 5.2.3 D-D’剖面........................................................86 5.2.4 E-E’剖面........................................................86 5.2.5 F-F’剖面........................................................87 5.2.6 G-G’剖面........................................................87 5.2.7 小結............................................................88 5.3 活動構造........................................................90 5.3.1 造成Loboc河東西側抬升速率差異的活動構造............................90 5.3.2 薄荷島南部外海可能存在的活動構造...................................93 第六章 結論............................................................96 參考文獻................................................................98 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鈾釷定年 | zh_TW |
| dc.subject | 海階 | zh_TW |
| dc.subject | 菲律賓薄荷島 | zh_TW |
| dc.subject | 活動構造 | zh_TW |
| dc.subject | 抬升速率 | zh_TW |
| dc.subject | marine terraces | en |
| dc.subject | uplift rate | en |
| dc.subject | Bohol | en |
| dc.subject | U-Th dating | en |
| dc.subject | active tectonics | en |
| dc.title | 菲律賓薄荷島南部之第四紀海階及其構造意義 | zh_TW |
| dc.title | "Quaternary marine terraces in southern Bohol, Philippines and their tectonic implications" | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.advisor-orcid | 徐澔德(0000-0002-2564-3702) | |
| dc.contributor.oralexamcommittee | 李建成(Hsin-Tsai Liu),宮守業(Chih-Yang Tseng),王昱,姜宏偉 | |
| dc.subject.keyword | 菲律賓薄荷島,海階,活動構造,抬升速率,鈾釷定年, | zh_TW |
| dc.subject.keyword | Bohol,marine terraces,active tectonics,uplift rate,U-Th dating, | en |
| dc.relation.page | 106 | |
| dc.identifier.doi | 10.6342/NTU202104164 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-27 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2510202117481800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 19.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
