Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8054
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇南維
dc.contributor.authorHsiao-Wen Hoen
dc.contributor.author何曉雯zh_TW
dc.date.accessioned2021-05-19T18:04:37Z-
dc.date.available2022-12-27
dc.date.available2021-05-19T18:04:37Z-
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-09
dc.identifier.citationAdlercreutz, H., Fotsis, T., Lampe, J., Wahala, K., Makela, T., Brunow, G., & Hase,
T. (1993). Quantitative determination of lignans and isoflavonoids in plasma of
omnivorous and vegetarian women by isotope dilution gas chromatography-mass
spectrometry. Scand J Clin Lab Invest Suppl, 215, 5-18.
Adlercreutz, H., & Mazur, W. (1997). Phyto-oestrogens and Western diseases. Ann
Med, 29, 95-120.
Anthony, M. S., Clarkson, T. B., Bullock, B. C. & Wagner, J. D. (1997). Soy protein
versus soy phytoestrogens in the prevention of diet-induced coronary
artery atherosclerosis of male cynomolgus monkeys. Arterioscler Thromb Vasc
Biol.,17, 2524-2531.
Arjmandi, B. H., Alekel, L., Hollis, B. W., Amin, D., Stacewicz-Sapuntzakis, M.,
Guo, P., & Kukreja, S. C. (1996). Dietary soybean protein prevents bone loss in an
ovariectomized rat model of osteoporosis. J Nutrition., 126, 161-167.
Axelson, M., Sjovall, J., Gustafsson, B. E., & Setchell, K. D. (1984). Soya--a
dietary source of the non-steroidal oestrogen equol in man and animals. J
Endocrinol, 102, 49-56.
Baumann, U. (1992). Changes of amino acid content during tempe fermentation and
possibilities of optimization. Bio. Conferences, 533-536.
Chien, H. L., Huang, H. Y., & Chou, C. C. (2006). Transformation of isoflavone
phytoestrogens during the fermentation of soymilk with lactic acid bacteria and
bifidobacteria. Food Microbil., 23, 772-778.
Chiou, T. Y., Lin, Y. H., Su, N. W., & Lee, M. H. (2010). Beta-glucosidase isolated
from soybean okara shows specificity toward glucosyl isoflavones. J Agric Food
Chem, 58, 8872-8878.
84
Clarkson, T. B., Anthony, M. S., & Hughes, C. L., Jr. (1995). Estrogenic soybean
isoflavones and chronic disease Risks and benefits. Trends Endocrinol Metab, 6,
11-16.
Cotterchio, M., Boucher, B.A., Manno, M., Gallinger, S., Okey, A., Harper, P.
(2006). Dietary phytoestrogen intake is associated with reduced colorectal cancer
risk. J Nutrition, 136, 3046-3053.
Doerge, D. R., Chang, H. C., Churchwell, M. I., & Holder, C. L. (2000). Analysis of
soy isoflavone conjugation in vitro and in human blood using liquid
chromatography-mass spectrometry. Drug Metab Dispos, 28, 298-307.
Ebata J, F. Y., Hirai K, Murata K. (1972). ß-Glucosidase involved in the antioxidant
formation in tempe, fermented soybeans. J Agric Chem Society of Japan, 323-329.
Farmakalidis, E., Hathcock, J. N., & Murphy, P. A. (1985). Oestrogenic potency of
genistin and daidzin in mice. Food Chem Toxicol, 23, 741-745.
Genant, H. K., Baylink, D. J., & Gallagher, J. C. (1989). Estrogens in the prevention
of osteoporosis in postmenopausal women. Am J Obstet Gynecol, 161, 1842-1846.
Gruber HE, I. J., Baylink DJ, Matthews M, Nelp WB, Sisom K, Chesnut CH (1984).
Long-term calcitonin therapy in postmenopausal osteoporosis. Metabolism., 33,
295-303.
György, P., Murata, K., Ikehata H. (1964). Antioxidants isolated from Fermented
Soybeans (Tempeh). Nature(203), 870 - 872
H. Esaki, H. Onozaki, and , Toshihiko Osawa (1994). Antioxidative Activity of
Fermented Soybean Products. Food Phytochemicals for Cancer Prevention I, 546,
353-360.
Hays, W. S., Jenison, S. A., Yamada, T., Pastuszyn, A., & Glew, R. H. (1996).
Primary structure of the cytosolic beta-glucosidase of guinea pig liver. J Biochem,
85
319, 829-837.
Hideo Esaki, H. O., Yasujiro Morimitsu, Shunro Kawakishi, Toshihiko Osawa
(1997). Potent Antioxidative isoflavones isolated from soybeans fermented with
Aspergillus saitoi. Biosci Biotechnol Biochem, 62, 740-746.
Hsieh, M. C., & Graham, T. L. (2001). Partial purification and characterization of a
soybean beta-glucosidase with high specific activity towards isoflavone conjugates.
Phytochemistry, 58, 995-1005.
Hur, H. G., Lay, J. O., Jr., Beger, R. D., Freeman, J. P., & Rafii, F. (2000). Isolation
of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin
and genistin. Arch Microbiol, 174, 422-428.
Ioku, K., Pongpiriyadacha, Y., Konishi, Y., Takei, Y., Nakatani, N., & Terao, J.
(1998). beta-Glucosidase activity in the rat small intestine toward quercetin
monoglucosides. Biosci Biotechnol Biochem, 62, 1428-1431.
Ishida, H., Uesugi, T., Hirai, K., Toda, T., Nukaya, H., Yokotsuka, K., & Tsuji, K.
(1998). Preventive effects of the plant isoflavones, daidzin and genistin, on bone
loss in ovariectomized rats fed a calcium-deficient diet. Biol Pharm Bull, 21, 62-66.
Joannou, G. E., Kelly, G. E., Reeder, A. Y., Waring, M., & Nelson, C. (1995). A
urinary profile study of dietary phytoestrogens. The identification and mode of
metabolism of new isoflavonoids. J Steroid Biochem Mol Biol, 54, 167-184.
Jou, H. J., Ling, P. Y., & Wu, S. C. (2005). Comparison of 70 mg and 35 mg
isoflavone soya supplement for menopause symptoms. Int J Gynaecol Obstet, 90,
159-160.
Kannel, W. B. (1987). Metabolic risk factors for coronary heart disease in women:
perspective from The Framingham Study. J Am Heart, 114, 413-419.
King, R. A., Broadbent, J. L., & Head, R. J. (1996). Absorption and excretion of the
86
soy isoflavone genistein in rats. J Nutr, 126, 176-182.
Klaus Klusa, G. B.P. a. W. B. (1993). Formation of 6,7,4'-trihydroxyisoflavone
(factor 2) from soybean seed isoflavones by bacteria isolated from tempe.
Phytochemistry, 34, 979-981.
Kuo, L. C., Cheng, W. Y., Wu, R. Y., Huang, C. J., & Lee, K. T. (2006). Hydrolysis
of black soybean isoflavone glycosides by Bacillus subtilis natto. Appl Microbiol
Biotechnol, 73, 314-320.
Lin, C. H., Wei, Y. T., & Chou, C. C. (2006). Enhanced antioxidative activity of
soybean koji prepared with various filamentous fungi. Food Microbiol, 23, 628-633.
Malathi, P., & Crane, R. K. (1969). Phlorizin hydrolase: a beta-glucosidase of
hamster intestinal brush border membrane. Biochim Biophys Acta, 173, 245-256.
Marie Lof, E. W. (2006). Epidemiologic evidence suggests that dietary
phytoestrogen intake is associated with reduced risk of breast, endometrial, and
prostate cancers. Nutrition Research, 26, 609-619.
Masaru Matsuura, A. O. (1993). β-Glucosidases from soybeans hydrolyze daidzin
and genistin. Food Science, 58, 144-147.
Matsuura M., O. A. & Fukushima D. (1989). Objectionable flavor of soy milk
Developed during the soaking of soybeans and its control. Food Science, 54,
602-605.
Miksicek, R. J. (1995). Estrogenic flavonoids: structural requirements for biological
activity. Proc Soc Exp Biol Med, 208, 44-50.
Murphy, H. j. W. a. P. A. (1994). Isoflavone content in commercial soybean foods. J
Agric. Food Chem., 42, 1666-1673.
Mykkanen, H., Tikka, J., Pitkanen, T., & Hanninen, O. (1997). Fecal bacterial
enzyme activities in infants increase with age and adoption of adult-type diet. J
87
Pediatr Gastroenterol Nutr, 25, 312-316.
Omi, N., Aoi, S., Murata, K., & Ezawa, I. (1994). Evaluation of the effect of
soybean milk and soybean milk peptide on bone metabolism in the rat model with
ovariectomized osteoporosis. J Nutr Sci Vitaminol (Tokyo), 40, 201-211.
Park, C. U., Jeong, M. K., Park, M. H., Yeu, J., Park, M. S., Kim, M. J., Ahn, S. M.,
Chang, P. S., & Lee, J. (2010). Formation of succinyl genistin and succinyl daidzin
by Bacillus species. J Food Sci, 75, C128-133.
Piskula, M. K., Yamakoshi, J., & Iwai, Y. (1999). Daidzein and genistein but not
their glucosides are absorbed from the rat stomach. FEBS Lett, 447(2-3), 287-291.
Ravnikar, V. A. (1987). Compliance with hormone therapy. Am J Obstet Gynecol,
156, 1332-1334.
Record, I. R., Jannes, M., Dreosti, I. E., & King, R. A. (1995). Induction of
micronucleus formation in mouse splenocytes by the soy isoflavone genistein in
vitro but not in vivo. Food Chem Toxicol, 33, 919-922.
Roberfroid, M. B., & Buc Calderon, P. (1995). Free radicals and oxidation
phenomena in biological systems. Marcel Dekker, New York.
Rosenberg L, H. C., Rosner, B., Belanger, C., Rothman, K.J., Speizer, F.E. (1981).
Early menopause and the risk of myocardial infarction. Am J Obstet Gynecol, 139,
47-51.
Russo, A., Cardile, V., Lombardo, L., Vanella, L., & Acquaviva, R. (2006). Genistin
inhibits UV light-induced plasmid DNA damage and cell growth in human
melanoma cells. J Nutr Biochem, 17, 103-108.
Setchell, K. D., Borriello, S. P., Hulme, P., Kirk, D. N., & Axelson, M. (1984).
Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent
disease. Am J Clin Nutr, 40, 569-578.
88
Setchell, K. D., Brown, N. M., Zimmer-Nechemias, L., Brashear, W. T., Wolfe, B.
E., Kirschner, A. S., & Heubi, J. E. (2002). Evidence for lack of absorption of soy
isoflavone glycosides in humans, supporting the crucial role of intestinal
metabolism for bioavailability. Am J Clin Nutr, 76, 447-453.
Setchell, K. D., & Cassidy, A. (1999). Dietary isoflavones: biological effects and
relevance to human health. J Nutr, 129, 758-767.
Setchell, K. D., Lawson, A. M., Borriello, S. P., Harkness, R., Gordon, H., Morgan,
D. M., Kirk, D. N., Adlercreatz, H., Anderson, L. C., & Axelson, M. (1981). Lignan
formation in man--microbial involvement and possible roles in relation to cancer.
Lancet, 2, 4-7.
Setlow, B., Cabrera-Hernandez, A., Cabrera-Martinez, R. M., & Setlow, P. (2004).
Identification of aryl-phospho-beta-D-glucosidases in Bacillus subtilis. Arch
Microbiol, 181, 60-67.
Sfakianos, J., Coward, L., Kirk, M., & Barnes, S. (1997). Intestinal uptake and
biliary excretion of the isoflavone genistein in rats. J Nutr, 127, 1260-1268.
Shelnutt, S. R., Cimino, C. O., Wiggins, P. A., & Badger, T. M. (2000). Urinary
pharmacokinetics of the glucuronide and sulfate conjugates of genistein and
daidzein. Cancer Epidemiol Biomarkers Prev, 9, 413-419.
Kudou Shigemitsu, Y. F., Welti Dieter, Magnolato Daniele, Uchida Teiji, Kitamura
Keisuke and Okubo Kazuyoshi (1991). Malonyl isoflavone glycosides in soybean
seeds (Glycine max MERILL). Agricl and Biol Chemi, 55, 2227-2233.
Song, T., Barua, K., Buseman, G., & Murphy, P. A. (1998). Soy isoflavone analysis:
quality control and a new internal standard. Am J Clin Nutr, 68, 1474-1479.
Potter, J Susan M. A. B., Teng Hongyu, Stillman Rachel J, Shay Neil F, Erdman Jr
John W (1998). Soy protein and isoflavones: their effects on blood lipids and bone
89
density in postmenopausal women. Amer J Clin Nutr, 68, 1375-1379.
Tepavcevic, V., Atanackovic, M., Miladinovic, J., Malencic, D., Popovic, J., &
Cvejic, J. (2010). Isoflavone composition, total polyphenolic content, and
antioxidant activity in soybeans of different origin. J Med Food, 13, 657-664.
Toda, T., Uesugi, T., Hirai, K., Nukaya, H., Tsuji, K., & Ishida, H. (1999). New
6-O-acyl isoflavone glycosides from soybeans fermented with Bacillus subtilis
(natto). I. 6-O-succinylated isoflavone glycosides and their preventive effects on
bone loss in ovariectomized rats fed a calcium-deficient diet. Biol Pharm Bull, 22,
1193-1201.
Wang, X. L., Hur, H. G., Lee, J. H., Kim, K. T., & Kim, S. I. (2005).
Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated
anaerobic human intestinal bacterium. Appl Environ Microbiol, 71, 214-219.
Zhuo, X. G., Melby, M. K., & Watanabe, S. (2004). Soy isoflavone intake lowers
serum LDL cholesterol: a meta-analysis of 8 randomized controlled trials in humans.
J Nutr, 134, 2395-2400.
林宜璇 (2008). 大豆之isoflavone conjugates 及其相關水解酵素之研究. 國立台
灣大學碩士論文.
常致綱 (2006). 大豆異黃酮定量方法之改良及加工方式對大豆異黃酮種類轉換
之研究. 國立台灣大學碩士論文.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8054-
dc.description.abstract近來大豆異黃酮對人體的保健功效獲得全世界的關注。大豆中的異黃酮可分為四大類:glucosides、malonylglucosides、acetylglucosides 及aglycones。在這些異黃酮中,僅有aglycones 具有生物活性,而glucosides 須經由腸道微生物
轉化成aglycones 之型式才可被腸道吸收。因此大多數研究著力於以酵素水解或藉由微生物將glucoside conjugates 轉化成isoflavone aglycones,但本研究發現isoflavone aglycones 可進一步被微生物轉化。
本研究從市售納豆篩選出24 株納豆菌株Bacillus subtilis strains,以生物轉化方式轉化glucosides,發現glucosides 會被轉化為aglycones,有23 株菌株可進一步的轉化aglycones 產生新的成分。將發酵液以HPLC 分析,發現aglycones轉化之物質可能為新的異黃酮衍生物(derivatives),暫且命名為NDA1、NDA2。
以液相層析質譜質譜儀(LC-MS/MS)分析,並與aglycones 的質譜結果比較,結果顯示這兩種未知成分NDA1、NDA2 確實為aglycones 的衍生物,NDA1之m/z: 335 (M+H+),NDA2 之m/z: 351 (M+H+)。以NMR 鑑定NDA1 為Daidzein-7-O-phosphate;NDA2 為Genistein-7-O-phosphate。Daidzein-7-O-phosphate 與Genistein-7-O-phosphate 的水溶性比aglycones 佳,有利於後續之開發利用。
zh_TW
dc.description.abstractIsoflavones in soybean gained worldwide attention because of their benefits for human health. There are four chemical forms of natural isoflavones existing in soybean namely glucosides, malonylglucosides, acetylglucosides, and aglycones.
Among these isoflavones, only aglycones rather than predominant glucosidic conjugates show their bioactivities to human. Glucosidic conjugates have to be transformed into their corresponding aglycone prior adsorption and utilization by intestinal microflora in human. Hence, most of the relevant studies were devoted on the conversion of glucosidic conjugates of isoflavone into their corresponding
aglycones, no matter by hydrolysis using glucosidic enzymes or directly fermented/conversed through microorganisms.
In this study, 24 strains of Bacillus subtilis natto selected from commercial products of natto were employed to conduct the conversion of soy isoflavones.
According to the HPLC chromatograms of isoflavone analysis, several new components were observed and considered to be possible novel derivatives of isoflavones based on the growth of peaks representing novel derivatives along with
the decline of peaks representing isoflavone aglycones. Almost all of the strains used in this study were able to converse soy isoflavone aglycones to the corresponding novel derivatives. Two predominant novel derivatives namely NDA1 and NDA2 were considered with a relationship to daidzein and genistein, respectively.
The identification of NDA1 and NDA2 was conducted by LC-MS/MS and NMR spectra. The results indicated that NDA1 was possible a daidzein conjugate with an italic 335 (M+H+), and NDA2 was a genistein conjugate with an italic 351
(M+H+). The possible chemical formula of NDA1 and NDA2 were characterized respectively as daidzein-7-O-phosphate and genistein-7-O-phosphate by NMR. The two novel isoflavone conjugates with better solubility than their original forms
aglycone would be advantageous to further application.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T18:04:37Z (GMT). No. of bitstreams: 1
ntu-101-R97623027-1.pdf: 7398422 bytes, checksum: 58accb05a1cb75556b90c060a5c777e5 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄..........................................................................................................................I
圖目錄................................................................................................................... IV
表目錄..................................................................................................................VII
摘要.................................................................................................................... VIII
Abstract ................................................................................................................. IX
第一章 前言........................................................................................................... 1
第二章 文獻回顧................................................................................................... 2
第一節、大豆異黃酮...................................................................................... 2
1. 大豆異黃酮之介紹............................................................................. 2
2. 異黃酮之生理功效............................................................................. 5
2.1 抗氧化能力............................................................................... 5
2.2 避免心血管疾病....................................................................... 5
2.3 預防骨質疏鬆症....................................................................... 6
2.4 減緩女性更年期不適症狀........................................................ 6
2.5 抗癌能力................................................................................... 6
第二節、異黃酮之生理代謝.......................................................................... 8
第三節、異黃酮之生物轉化........................................................................ 12
1. 大豆中的酵素................................................................................... 12
2. 異黃酮之微生物轉化....................................................................... 14
3. 異黃酮經生物轉化後之衍生物........................................................ 16
第三章 材料與方法............................................................................................. 20
第一節、實驗架構........................................................................................ 20
第二節、實驗材料........................................................................................ 20
1. 材料................................................................................................. 20
II
2. 試藥.................................................................................................. 20
3. 菌株.................................................................................................. 21
4. 培養基.............................................................................................. 21
第三節、儀器設備........................................................................................ 21
第四節、實驗方法........................................................................................ 22
1. 大豆異黃酮之萃取與純化............................................................... 22
1.1 大豆之前處理......................................................................... 22
1.2 大豆異黃酮之萃取................................................................. 22
1.3 Diaion HP-20 疏水性管柱之層析分離................................... 23
1.4 大豆異黃酮之分離.................................................................. 23
2. 大豆異黃酮之含量分析................................................................... 23
3. 大豆異黃酮含量之計算................................................................... 24
4. 微生物之生物轉化異黃酮............................................................... 26
4.1 菌株篩選................................................................................. 26
4.2 異黃酮之預處理..................................................................... 26
4.3 大豆異黃酮之生物轉化.......................................................... 26
5. 製備NDA1、NDA2 ......................................................................... 26
6. 分離與純化NDA1、NDA2 ............................................................. 27
6.1 半製備型HPLC ...................................................................... 27
6.2 LH-20 管柱之層析分離........................................................... 28
7. 以LC-MS 分析Daidzein、Genistein、NDA1、NDA2 ................... 28
8. 以NMR 分析NDA1、NDA2........................................................... 28
第四章 結果與討論............................................................................................. 30
第一節、大豆異黃酮之含量分析................................................................. 30
第二節、微生物之生物轉化異黃酮............................................................. 38
III
1. 最適菌株篩選.................................................................................. 38
2. 大豆異黃酮之生物轉化................................................................... 41
2.1 B. subtilis FC-10 對aglycone isoflavones 之生物轉化........... 41
2.2 B. subtilis FC-10 對glucosidic isoflavones 之生物轉化......... 45
2.3 B. subtilis FC-10 對isoflavone malonylglucosides 之生物轉化
....................................................................................................... 49
3. NDA1 與NDA2 之分離與純化......................................................... 55
4. NDA1 與NDA2 之結構鑑定............................................................ 60
4.1 UV 吸收光譜........................................................................... 60
4.2 LC-MS/MS 分析...................................................................... 65
4.3 NMR 光譜鑑定........................................................................ 72
第五章 結論......................................................................................................... 81
第五章 結論......................................................................................................... 82
第六章 參考文獻................................................................................................. 83
附錄一................................................................................................................. 90
附錄二................................................................................................................. 91
dc.language.isozh-TW
dc.title納豆菌對大豆異黃酮轉化之研究zh_TW
dc.titleStudies on the bioconversion of soy isoflavones by Bacillus subtilis nattoen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李敏雄,陳錦樹,古國隆,鍾玉明
dc.subject.keyword大豆異黃酮,異黃酮衍生物,生物轉化,Bacillus subtilis,aglycones,zh_TW
dc.subject.keywordIsoflavone,Isoflavone derivative,bioconversion,Bacillus subtilis,en
dc.relation.page91
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-02-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf7.23 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved