請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8054
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇南維 | |
dc.contributor.author | Hsiao-Wen Ho | en |
dc.contributor.author | 何曉雯 | zh_TW |
dc.date.accessioned | 2021-05-19T18:04:37Z | - |
dc.date.available | 2022-12-27 | |
dc.date.available | 2021-05-19T18:04:37Z | - |
dc.date.copyright | 2012-03-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-02-09 | |
dc.identifier.citation | Adlercreutz, H., Fotsis, T., Lampe, J., Wahala, K., Makela, T., Brunow, G., & Hase,
T. (1993). Quantitative determination of lignans and isoflavonoids in plasma of omnivorous and vegetarian women by isotope dilution gas chromatography-mass spectrometry. Scand J Clin Lab Invest Suppl, 215, 5-18. Adlercreutz, H., & Mazur, W. (1997). Phyto-oestrogens and Western diseases. Ann Med, 29, 95-120. Anthony, M. S., Clarkson, T. B., Bullock, B. C. & Wagner, J. D. (1997). Soy protein versus soy phytoestrogens in the prevention of diet-induced coronary artery atherosclerosis of male cynomolgus monkeys. Arterioscler Thromb Vasc Biol.,17, 2524-2531. Arjmandi, B. H., Alekel, L., Hollis, B. W., Amin, D., Stacewicz-Sapuntzakis, M., Guo, P., & Kukreja, S. C. (1996). Dietary soybean protein prevents bone loss in an ovariectomized rat model of osteoporosis. J Nutrition., 126, 161-167. Axelson, M., Sjovall, J., Gustafsson, B. E., & Setchell, K. D. (1984). Soya--a dietary source of the non-steroidal oestrogen equol in man and animals. J Endocrinol, 102, 49-56. Baumann, U. (1992). Changes of amino acid content during tempe fermentation and possibilities of optimization. Bio. Conferences, 533-536. Chien, H. L., Huang, H. Y., & Chou, C. C. (2006). Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food Microbil., 23, 772-778. Chiou, T. Y., Lin, Y. H., Su, N. W., & Lee, M. H. (2010). Beta-glucosidase isolated from soybean okara shows specificity toward glucosyl isoflavones. J Agric Food Chem, 58, 8872-8878. 84 Clarkson, T. B., Anthony, M. S., & Hughes, C. L., Jr. (1995). Estrogenic soybean isoflavones and chronic disease Risks and benefits. Trends Endocrinol Metab, 6, 11-16. Cotterchio, M., Boucher, B.A., Manno, M., Gallinger, S., Okey, A., Harper, P. (2006). Dietary phytoestrogen intake is associated with reduced colorectal cancer risk. J Nutrition, 136, 3046-3053. Doerge, D. R., Chang, H. C., Churchwell, M. I., & Holder, C. L. (2000). Analysis of soy isoflavone conjugation in vitro and in human blood using liquid chromatography-mass spectrometry. Drug Metab Dispos, 28, 298-307. Ebata J, F. Y., Hirai K, Murata K. (1972). ß-Glucosidase involved in the antioxidant formation in tempe, fermented soybeans. J Agric Chem Society of Japan, 323-329. Farmakalidis, E., Hathcock, J. N., & Murphy, P. A. (1985). Oestrogenic potency of genistin and daidzin in mice. Food Chem Toxicol, 23, 741-745. Genant, H. K., Baylink, D. J., & Gallagher, J. C. (1989). Estrogens in the prevention of osteoporosis in postmenopausal women. Am J Obstet Gynecol, 161, 1842-1846. Gruber HE, I. J., Baylink DJ, Matthews M, Nelp WB, Sisom K, Chesnut CH (1984). Long-term calcitonin therapy in postmenopausal osteoporosis. Metabolism., 33, 295-303. György, P., Murata, K., Ikehata H. (1964). Antioxidants isolated from Fermented Soybeans (Tempeh). Nature(203), 870 - 872 H. Esaki, H. Onozaki, and , Toshihiko Osawa (1994). Antioxidative Activity of Fermented Soybean Products. Food Phytochemicals for Cancer Prevention I, 546, 353-360. Hays, W. S., Jenison, S. A., Yamada, T., Pastuszyn, A., & Glew, R. H. (1996). Primary structure of the cytosolic beta-glucosidase of guinea pig liver. J Biochem, 85 319, 829-837. Hideo Esaki, H. O., Yasujiro Morimitsu, Shunro Kawakishi, Toshihiko Osawa (1997). Potent Antioxidative isoflavones isolated from soybeans fermented with Aspergillus saitoi. Biosci Biotechnol Biochem, 62, 740-746. Hsieh, M. C., & Graham, T. L. (2001). Partial purification and characterization of a soybean beta-glucosidase with high specific activity towards isoflavone conjugates. Phytochemistry, 58, 995-1005. Hur, H. G., Lay, J. O., Jr., Beger, R. D., Freeman, J. P., & Rafii, F. (2000). Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Arch Microbiol, 174, 422-428. Ioku, K., Pongpiriyadacha, Y., Konishi, Y., Takei, Y., Nakatani, N., & Terao, J. (1998). beta-Glucosidase activity in the rat small intestine toward quercetin monoglucosides. Biosci Biotechnol Biochem, 62, 1428-1431. Ishida, H., Uesugi, T., Hirai, K., Toda, T., Nukaya, H., Yokotsuka, K., & Tsuji, K. (1998). Preventive effects of the plant isoflavones, daidzin and genistin, on bone loss in ovariectomized rats fed a calcium-deficient diet. Biol Pharm Bull, 21, 62-66. Joannou, G. E., Kelly, G. E., Reeder, A. Y., Waring, M., & Nelson, C. (1995). A urinary profile study of dietary phytoestrogens. The identification and mode of metabolism of new isoflavonoids. J Steroid Biochem Mol Biol, 54, 167-184. Jou, H. J., Ling, P. Y., & Wu, S. C. (2005). Comparison of 70 mg and 35 mg isoflavone soya supplement for menopause symptoms. Int J Gynaecol Obstet, 90, 159-160. Kannel, W. B. (1987). Metabolic risk factors for coronary heart disease in women: perspective from The Framingham Study. J Am Heart, 114, 413-419. King, R. A., Broadbent, J. L., & Head, R. J. (1996). Absorption and excretion of the 86 soy isoflavone genistein in rats. J Nutr, 126, 176-182. Klaus Klusa, G. B.P. a. W. B. (1993). Formation of 6,7,4'-trihydroxyisoflavone (factor 2) from soybean seed isoflavones by bacteria isolated from tempe. Phytochemistry, 34, 979-981. Kuo, L. C., Cheng, W. Y., Wu, R. Y., Huang, C. J., & Lee, K. T. (2006). Hydrolysis of black soybean isoflavone glycosides by Bacillus subtilis natto. Appl Microbiol Biotechnol, 73, 314-320. Lin, C. H., Wei, Y. T., & Chou, C. C. (2006). Enhanced antioxidative activity of soybean koji prepared with various filamentous fungi. Food Microbiol, 23, 628-633. Malathi, P., & Crane, R. K. (1969). Phlorizin hydrolase: a beta-glucosidase of hamster intestinal brush border membrane. Biochim Biophys Acta, 173, 245-256. Marie Lof, E. W. (2006). Epidemiologic evidence suggests that dietary phytoestrogen intake is associated with reduced risk of breast, endometrial, and prostate cancers. Nutrition Research, 26, 609-619. Masaru Matsuura, A. O. (1993). β-Glucosidases from soybeans hydrolyze daidzin and genistin. Food Science, 58, 144-147. Matsuura M., O. A. & Fukushima D. (1989). Objectionable flavor of soy milk Developed during the soaking of soybeans and its control. Food Science, 54, 602-605. Miksicek, R. J. (1995). Estrogenic flavonoids: structural requirements for biological activity. Proc Soc Exp Biol Med, 208, 44-50. Murphy, H. j. W. a. P. A. (1994). Isoflavone content in commercial soybean foods. J Agric. Food Chem., 42, 1666-1673. Mykkanen, H., Tikka, J., Pitkanen, T., & Hanninen, O. (1997). Fecal bacterial enzyme activities in infants increase with age and adoption of adult-type diet. J 87 Pediatr Gastroenterol Nutr, 25, 312-316. Omi, N., Aoi, S., Murata, K., & Ezawa, I. (1994). Evaluation of the effect of soybean milk and soybean milk peptide on bone metabolism in the rat model with ovariectomized osteoporosis. J Nutr Sci Vitaminol (Tokyo), 40, 201-211. Park, C. U., Jeong, M. K., Park, M. H., Yeu, J., Park, M. S., Kim, M. J., Ahn, S. M., Chang, P. S., & Lee, J. (2010). Formation of succinyl genistin and succinyl daidzin by Bacillus species. J Food Sci, 75, C128-133. Piskula, M. K., Yamakoshi, J., & Iwai, Y. (1999). Daidzein and genistein but not their glucosides are absorbed from the rat stomach. FEBS Lett, 447(2-3), 287-291. Ravnikar, V. A. (1987). Compliance with hormone therapy. Am J Obstet Gynecol, 156, 1332-1334. Record, I. R., Jannes, M., Dreosti, I. E., & King, R. A. (1995). Induction of micronucleus formation in mouse splenocytes by the soy isoflavone genistein in vitro but not in vivo. Food Chem Toxicol, 33, 919-922. Roberfroid, M. B., & Buc Calderon, P. (1995). Free radicals and oxidation phenomena in biological systems. Marcel Dekker, New York. Rosenberg L, H. C., Rosner, B., Belanger, C., Rothman, K.J., Speizer, F.E. (1981). Early menopause and the risk of myocardial infarction. Am J Obstet Gynecol, 139, 47-51. Russo, A., Cardile, V., Lombardo, L., Vanella, L., & Acquaviva, R. (2006). Genistin inhibits UV light-induced plasmid DNA damage and cell growth in human melanoma cells. J Nutr Biochem, 17, 103-108. Setchell, K. D., Borriello, S. P., Hulme, P., Kirk, D. N., & Axelson, M. (1984). Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. Am J Clin Nutr, 40, 569-578. 88 Setchell, K. D., Brown, N. M., Zimmer-Nechemias, L., Brashear, W. T., Wolfe, B. E., Kirschner, A. S., & Heubi, J. E. (2002). Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr, 76, 447-453. Setchell, K. D., & Cassidy, A. (1999). Dietary isoflavones: biological effects and relevance to human health. J Nutr, 129, 758-767. Setchell, K. D., Lawson, A. M., Borriello, S. P., Harkness, R., Gordon, H., Morgan, D. M., Kirk, D. N., Adlercreatz, H., Anderson, L. C., & Axelson, M. (1981). Lignan formation in man--microbial involvement and possible roles in relation to cancer. Lancet, 2, 4-7. Setlow, B., Cabrera-Hernandez, A., Cabrera-Martinez, R. M., & Setlow, P. (2004). Identification of aryl-phospho-beta-D-glucosidases in Bacillus subtilis. Arch Microbiol, 181, 60-67. Sfakianos, J., Coward, L., Kirk, M., & Barnes, S. (1997). Intestinal uptake and biliary excretion of the isoflavone genistein in rats. J Nutr, 127, 1260-1268. Shelnutt, S. R., Cimino, C. O., Wiggins, P. A., & Badger, T. M. (2000). Urinary pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein. Cancer Epidemiol Biomarkers Prev, 9, 413-419. Kudou Shigemitsu, Y. F., Welti Dieter, Magnolato Daniele, Uchida Teiji, Kitamura Keisuke and Okubo Kazuyoshi (1991). Malonyl isoflavone glycosides in soybean seeds (Glycine max MERILL). Agricl and Biol Chemi, 55, 2227-2233. Song, T., Barua, K., Buseman, G., & Murphy, P. A. (1998). Soy isoflavone analysis: quality control and a new internal standard. Am J Clin Nutr, 68, 1474-1479. Potter, J Susan M. A. B., Teng Hongyu, Stillman Rachel J, Shay Neil F, Erdman Jr John W (1998). Soy protein and isoflavones: their effects on blood lipids and bone 89 density in postmenopausal women. Amer J Clin Nutr, 68, 1375-1379. Tepavcevic, V., Atanackovic, M., Miladinovic, J., Malencic, D., Popovic, J., & Cvejic, J. (2010). Isoflavone composition, total polyphenolic content, and antioxidant activity in soybeans of different origin. J Med Food, 13, 657-664. Toda, T., Uesugi, T., Hirai, K., Nukaya, H., Tsuji, K., & Ishida, H. (1999). New 6-O-acyl isoflavone glycosides from soybeans fermented with Bacillus subtilis (natto). I. 6-O-succinylated isoflavone glycosides and their preventive effects on bone loss in ovariectomized rats fed a calcium-deficient diet. Biol Pharm Bull, 22, 1193-1201. Wang, X. L., Hur, H. G., Lee, J. H., Kim, K. T., & Kim, S. I. (2005). Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl Environ Microbiol, 71, 214-219. Zhuo, X. G., Melby, M. K., & Watanabe, S. (2004). Soy isoflavone intake lowers serum LDL cholesterol: a meta-analysis of 8 randomized controlled trials in humans. J Nutr, 134, 2395-2400. 林宜璇 (2008). 大豆之isoflavone conjugates 及其相關水解酵素之研究. 國立台 灣大學碩士論文. 常致綱 (2006). 大豆異黃酮定量方法之改良及加工方式對大豆異黃酮種類轉換 之研究. 國立台灣大學碩士論文. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8054 | - |
dc.description.abstract | 近來大豆異黃酮對人體的保健功效獲得全世界的關注。大豆中的異黃酮可分為四大類:glucosides、malonylglucosides、acetylglucosides 及aglycones。在這些異黃酮中,僅有aglycones 具有生物活性,而glucosides 須經由腸道微生物
轉化成aglycones 之型式才可被腸道吸收。因此大多數研究著力於以酵素水解或藉由微生物將glucoside conjugates 轉化成isoflavone aglycones,但本研究發現isoflavone aglycones 可進一步被微生物轉化。 本研究從市售納豆篩選出24 株納豆菌株Bacillus subtilis strains,以生物轉化方式轉化glucosides,發現glucosides 會被轉化為aglycones,有23 株菌株可進一步的轉化aglycones 產生新的成分。將發酵液以HPLC 分析,發現aglycones轉化之物質可能為新的異黃酮衍生物(derivatives),暫且命名為NDA1、NDA2。 以液相層析質譜質譜儀(LC-MS/MS)分析,並與aglycones 的質譜結果比較,結果顯示這兩種未知成分NDA1、NDA2 確實為aglycones 的衍生物,NDA1之m/z: 335 (M+H+),NDA2 之m/z: 351 (M+H+)。以NMR 鑑定NDA1 為Daidzein-7-O-phosphate;NDA2 為Genistein-7-O-phosphate。Daidzein-7-O-phosphate 與Genistein-7-O-phosphate 的水溶性比aglycones 佳,有利於後續之開發利用。 | zh_TW |
dc.description.abstract | Isoflavones in soybean gained worldwide attention because of their benefits for human health. There are four chemical forms of natural isoflavones existing in soybean namely glucosides, malonylglucosides, acetylglucosides, and aglycones.
Among these isoflavones, only aglycones rather than predominant glucosidic conjugates show their bioactivities to human. Glucosidic conjugates have to be transformed into their corresponding aglycone prior adsorption and utilization by intestinal microflora in human. Hence, most of the relevant studies were devoted on the conversion of glucosidic conjugates of isoflavone into their corresponding aglycones, no matter by hydrolysis using glucosidic enzymes or directly fermented/conversed through microorganisms. In this study, 24 strains of Bacillus subtilis natto selected from commercial products of natto were employed to conduct the conversion of soy isoflavones. According to the HPLC chromatograms of isoflavone analysis, several new components were observed and considered to be possible novel derivatives of isoflavones based on the growth of peaks representing novel derivatives along with the decline of peaks representing isoflavone aglycones. Almost all of the strains used in this study were able to converse soy isoflavone aglycones to the corresponding novel derivatives. Two predominant novel derivatives namely NDA1 and NDA2 were considered with a relationship to daidzein and genistein, respectively. The identification of NDA1 and NDA2 was conducted by LC-MS/MS and NMR spectra. The results indicated that NDA1 was possible a daidzein conjugate with an italic 335 (M+H+), and NDA2 was a genistein conjugate with an italic 351 (M+H+). The possible chemical formula of NDA1 and NDA2 were characterized respectively as daidzein-7-O-phosphate and genistein-7-O-phosphate by NMR. The two novel isoflavone conjugates with better solubility than their original forms aglycone would be advantageous to further application. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T18:04:37Z (GMT). No. of bitstreams: 1 ntu-101-R97623027-1.pdf: 7398422 bytes, checksum: 58accb05a1cb75556b90c060a5c777e5 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄..........................................................................................................................I
圖目錄................................................................................................................... IV 表目錄..................................................................................................................VII 摘要.................................................................................................................... VIII Abstract ................................................................................................................. IX 第一章 前言........................................................................................................... 1 第二章 文獻回顧................................................................................................... 2 第一節、大豆異黃酮...................................................................................... 2 1. 大豆異黃酮之介紹............................................................................. 2 2. 異黃酮之生理功效............................................................................. 5 2.1 抗氧化能力............................................................................... 5 2.2 避免心血管疾病....................................................................... 5 2.3 預防骨質疏鬆症....................................................................... 6 2.4 減緩女性更年期不適症狀........................................................ 6 2.5 抗癌能力................................................................................... 6 第二節、異黃酮之生理代謝.......................................................................... 8 第三節、異黃酮之生物轉化........................................................................ 12 1. 大豆中的酵素................................................................................... 12 2. 異黃酮之微生物轉化....................................................................... 14 3. 異黃酮經生物轉化後之衍生物........................................................ 16 第三章 材料與方法............................................................................................. 20 第一節、實驗架構........................................................................................ 20 第二節、實驗材料........................................................................................ 20 1. 材料................................................................................................. 20 II 2. 試藥.................................................................................................. 20 3. 菌株.................................................................................................. 21 4. 培養基.............................................................................................. 21 第三節、儀器設備........................................................................................ 21 第四節、實驗方法........................................................................................ 22 1. 大豆異黃酮之萃取與純化............................................................... 22 1.1 大豆之前處理......................................................................... 22 1.2 大豆異黃酮之萃取................................................................. 22 1.3 Diaion HP-20 疏水性管柱之層析分離................................... 23 1.4 大豆異黃酮之分離.................................................................. 23 2. 大豆異黃酮之含量分析................................................................... 23 3. 大豆異黃酮含量之計算................................................................... 24 4. 微生物之生物轉化異黃酮............................................................... 26 4.1 菌株篩選................................................................................. 26 4.2 異黃酮之預處理..................................................................... 26 4.3 大豆異黃酮之生物轉化.......................................................... 26 5. 製備NDA1、NDA2 ......................................................................... 26 6. 分離與純化NDA1、NDA2 ............................................................. 27 6.1 半製備型HPLC ...................................................................... 27 6.2 LH-20 管柱之層析分離........................................................... 28 7. 以LC-MS 分析Daidzein、Genistein、NDA1、NDA2 ................... 28 8. 以NMR 分析NDA1、NDA2........................................................... 28 第四章 結果與討論............................................................................................. 30 第一節、大豆異黃酮之含量分析................................................................. 30 第二節、微生物之生物轉化異黃酮............................................................. 38 III 1. 最適菌株篩選.................................................................................. 38 2. 大豆異黃酮之生物轉化................................................................... 41 2.1 B. subtilis FC-10 對aglycone isoflavones 之生物轉化........... 41 2.2 B. subtilis FC-10 對glucosidic isoflavones 之生物轉化......... 45 2.3 B. subtilis FC-10 對isoflavone malonylglucosides 之生物轉化 ....................................................................................................... 49 3. NDA1 與NDA2 之分離與純化......................................................... 55 4. NDA1 與NDA2 之結構鑑定............................................................ 60 4.1 UV 吸收光譜........................................................................... 60 4.2 LC-MS/MS 分析...................................................................... 65 4.3 NMR 光譜鑑定........................................................................ 72 第五章 結論......................................................................................................... 81 第五章 結論......................................................................................................... 82 第六章 參考文獻................................................................................................. 83 附錄一................................................................................................................. 90 附錄二................................................................................................................. 91 | |
dc.language.iso | zh-TW | |
dc.title | 納豆菌對大豆異黃酮轉化之研究 | zh_TW |
dc.title | Studies on the bioconversion of soy isoflavones by Bacillus subtilis natto | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李敏雄,陳錦樹,古國隆,鍾玉明 | |
dc.subject.keyword | 大豆異黃酮,異黃酮衍生物,生物轉化,Bacillus subtilis,aglycones, | zh_TW |
dc.subject.keyword | Isoflavone,Isoflavone derivative,bioconversion,Bacillus subtilis, | en |
dc.relation.page | 91 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2012-02-10 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf | 7.23 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。