Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 公共衛生碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80530
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳秀熙(Hsiu-Hsi Chen)
dc.contributor.authorShan-Min Chenen
dc.contributor.author陳珊民zh_TW
dc.date.accessioned2022-11-24T03:08:40Z-
dc.date.available2021-11-05
dc.date.available2022-11-24T03:08:40Z-
dc.date.copyright2021-11-05
dc.date.issued2021
dc.date.submitted2021-10-27
dc.identifier.citation1.Zhu H, Zhang H, Xu Y, Lassakova S, Korabecna M, Neuzil P. PCR past, present and future. Biotechniques. 2020;69(4):317-25. 2.Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, et al. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano. 2020;14(4):3822-35. 3.Becker-Andre M, Hahlbrock K. Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY). Nucleic Acids Res. 1989;17(22):9437-46. 4.Chelly J, Kaplan JC, Maire P, Gautron S, Kahn A. Transcription of the dystrophin gene in human muscle and non-muscle tissue. Nature. 1988;333(6176):858-60. 5.Carter LJ, Garner LV, Smoot JW, Li Y, Zhou Q, Saveson CJ, et al. Assay Techniques and Test Development for COVID-19 Diagnosis. ACS Cent Sci. 2020;6(5):591-605. 6.Afzal A. Molecular diagnostic technologies for COVID-19: Limitations and challenges. J Adv Res. 2020;26:149-59. 7.Safiabadi Tali SH, LeBlanc JJ, Sadiq Z, Oyewunmi OD, Camargo C, Nikpour B, et al. Tools and Techniques for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)/COVID-19 Detection. Clin Microbiol Rev. 2021;34(3). 8.Falzone L, Musso N, Gattuso G, Bongiorno D, Palermo CI, Scalia G, et al. Sensitivity assessment of droplet digital PCR for SARS-CoV-2 detection. Int J Mol Med. 2020;46(3):957-64. 9.Yu L, Wu S, Hao X, Dong X, Mao L, Pelechano V, et al. Rapid Detection of COVID-19 Coronavirus Using a Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP) Diagnostic Platform. Clin Chem. 2020;66(7):975-7. 10.van Kasteren PB, van der Veer B, van den Brink S, Wijsman L, de Jonge J, van den Brandt A, et al. Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. J Clin Virol. 2020;128:104412. 11.Kandimalla R, John A, Abburi C, Vallamkondu J, Reddy PH. Current Status of Multiple Drug Molecules, and Vaccines: An Update in SARS-CoV-2 Therapeutics. Mol Neurobiol. 2020;57(10):4106-16. 12.Ortiz-Prado E, Simbana-Rivera K, Gomez-Barreno L, Rubio-Neira M, Guaman LP, Kyriakidis NC, et al. Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the Coronavirus Disease 2019 (COVID-19), a comprehensive literature review. Diagn Microbiol Infect Dis. 2020;98(1):115094. 13.Falzone L, Gattuso G, Tsatsakis A, Spandidos DA, Libra M. Current and innovative methods for the diagnosis of COVID19 infection (Review). Int J Mol Med. 2021;47(6). 14.Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3). 15.Kubina R, Dziedzic A. Molecular and Serological Tests for COVID-19 a Comparative Review of SARS-CoV-2 Coronavirus Laboratory and Point-of-Care Diagnostics. Diagnostics (Basel). 2020;10(6). 16.Chong ZX, Liew WPP, Ong HK, Yong CY, Shit CS, Ho WY, et al. Current diagnostic approaches to detect two important betacoronaviruses: Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pathol Res Pract. 2021;225:153565. 17.Verma N, Patel D, Pandya A. Emerging diagnostic tools for detection of COVID-19 and perspective. Biomed Microdevices. 2020;22(4):83. 18.Vallejo L, Martinez-Rodriguez M, Nieto-Bazan MJ, Delgado-Iribarren A, Culebras E. Comparative study of different SARS-CoV-2 diagnostic techniques. J Virol Methods. 2021;298:114281. 19.Mitchell SL, St George K, Rhoads DD, Butler-Wu SM, Dharmarha V, McNult P, et al. Understanding, Verifying, and Implementing Emergency Use Authorization Molecular Diagnostics for the Detection of SARS-CoV-2 RNA. J Clin Microbiol. 2020;58(8). 20.LeBlanc JJ, Gubbay JB, Li Y, Needle R, Arneson SR, Marcino D, et al. Real-time PCR-based SARS-CoV-2 detection in Canadian laboratories. J Clin Virol. 2020;128:104433. 21.Younes N, Al-Sadeq DW, Al-Jighefee H, Younes S, Al-Jamal O, Daas HI, et al. Challenges in Laboratory Diagnosis of the Novel Coronavirus SARS-CoV-2. Viruses. 2020;12(6). 22.Phan LMT, Tieu MV, Pham TT, Cho S. Clinical Utility of Biosensing Platforms for Confirmation of SARS-CoV-2 Infection. Biosensors (Basel). 2021;11(6). 23.Cerutti F, Burdino E, Milia MG, Allice T, Gregori G, Bruzzone B, et al. Urgent need of rapid tests for SARS CoV-2 antigen detection: Evaluation of the SD-Biosensor antigen test for SARS-CoV-2. J Clin Virol. 2020;132:104654. 24.Augustine R, Das S, Hasan A, S A, Abdul Salam S, Augustine P, et al. Rapid Antibody-Based COVID-19 Mass Surveillance: Relevance, Challenges, and Prospects in a Pandemic and Post-Pandemic World. J Clin Med. 2020;9(10). 25.Kobayashi R, Murai R, Asanuma K, Fujiya Y, Takahashi S. Evaluating a novel, highly sensitive, and quantitative reagent for detecting SARS-CoV-2 antigen. J Infect Chemother. 2021;27(6):800-7. 26.Aoki K, Nagasawa T, Ishii Y, Yagi S, Kashiwagi K, Miyazaki T, et al. Evaluation of clinical utility of novel coronavirus antigen detection reagent, Espline(R) SARS-CoV-2. J Infect Chemother. 2021;27(2):319-22. 27.Majumder J, Minko T. Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19. AAPS J. 2021;23(1):14. 28.Alghounaim M, Almazeedi S, Al Youha S, Papenburg J, Alowaish O, AbdulHussain G, et al. Low-Cost Polyester-Tipped Three-Dimensionally Printed Nasopharyngeal Swab for the Detection of Severe Acute Respiratory Syndrome-Related Coronavirus 2 (SARS-CoV-2). J Clin Microbiol. 2020;58(11). 29.Williams E, Bond K, Isles N, Chong B, Johnson D, Druce J, et al. Pandemic printing: a novel 3D-printed swab for detecting SARS-CoV-2. Med J Aust. 2020;213(6):276-9. 30.Tan AS, Nerurkar SN, Tan WCC, Goh D, Lai CPT, Poh Sheng Yeong J. The Virological, Immunological, and Imaging Approaches for COVID-19 Diagnosis and Research. SLAS Technol. 2020;25(6):522-44. 31.Linares M, Perez-Tanoira R, Carrero A, Romanyk J, Perez-Garcia F, Gomez-Herruz P, et al. Panbio antigen rapid test is reliable to diagnose SARS-CoV-2 infection in the first 7 days after the onset of symptoms. J Clin Virol. 2020;133:104659. 32.Dong X, Liu L, Tu Y, Zhang J, Miao G, Zhang L, et al. Rapid PCR powered by microfluidics: A quick review under the background of COVID-19 pandemic. Trends Analyt Chem. 2021;143:116377. 33.Shaffaf T, Ghafar-Zadeh E. COVID-19 Diagnostic Strategies. Part I: Nucleic Acid-Based Technologies. Bioengineering (Basel). 2021;8(4). 34.Dinnes J, Deeks JJ, Berhane S, Taylor M, Adriano A, Davenport C, et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev. 2021;3:CD013705. 35.Dinnes J, Deeks JJ, Adriano A, Berhane S, Davenport C, Dittrich S, et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev. 2020;8:CD013705. 36.Brummer LE, Katzenschlager S, Gaeddert M, Erdmann C, Schmitz S, Bota M, et al. Accuracy of novel antigen rapid diagnostics for SARS-CoV-2: A living systematic review and meta-analysis. PLoS Med. 2021;18(8):e1003735. 37.Mina MJ, Parker R, Larremore DB. Rethinking Covid-19 Test Sensitivity - A Strategy for Containment. N Engl J Med. 2020;383(22):e120. 38.Benzigar MR, Bhattacharjee R, Baharfar M, Liu G. Current methods for diagnosis of human coronaviruses: pros and cons. Anal Bioanal Chem. 2021;413(9):2311-30. 39.Hauser F, Sprinzl MF, Dreis KJ, Renzaho A, Youhanen S, Kremer WM, et al. Evaluation of a laboratory-based high-throughput SARS-CoV-2 antigen assay for non-COVID-19 patient screening at hospital admission. Med Microbiol Immunol. 2021;210(2-3):165-71. 40.C SP, M MP. The evolution of rapid antigen detection systems and their application for COVID-19 and other serious respiratory infectious diseases. J Microbiol Immunol Infect. 2021. 41.Dao Thi VL, Herbst K, Boerner K, Meurer M, Kremer LP, Kirrmaier D, et al. A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci Transl Med. 2020;12(556). 42.Lu R, Wu X, Wan Z, Li Y, Jin X, Zhang C. A Novel Reverse Transcription Loop-Mediated Isothermal Amplification Method for Rapid Detection of SARS-CoV-2. Int J Mol Sci. 2020;21(8). 43.Kabir MA, Ahmed R, Iqbal SMA, Chowdhury R, Paulmurugan R, Demirci U, et al. Diagnosis for COVID-19: current status and future prospects. Expert Rev Mol Diagn. 2021;21(3):269-88. 44.Baek YH, Um J, Antigua KJC, Park JH, Kim Y, Oh S, et al. Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2. Emerg Microbes Infect. 2020;9(1):998-1007. 45.Newman CM, Ramuta MD, McLaughlin MT, Wiseman RW, Karl JA, Dudley DM, et al. Initial evaluation of a mobile SARS-CoV-2 RT-LAMP testing strategy. medRxiv. 2021. 46.Alpdagtas S, Ilhan E, Uysal E, Sengor M, Ustundag CB, Gunduz O. Evaluation of current diagnostic methods for COVID-19. APL Bioeng. 2020;4(4):041506. 47.Giri B, Pandey S, Shrestha R, Pokharel K, Ligler FS, Neupane BB. Review of analytical performance of COVID-19 detection methods. Anal Bioanal Chem. 2021;413(1):35-48. 48.Mertens P, De Vos N, Martiny D, Jassoy C, Mirazimi A, Cuypers L, et al. Development and Potential Usefulness of the COVID-19 Ag Respi-Strip Diagnostic Assay in a Pandemic Context. Front Med (Lausanne). 2020;7:225. 49.Schuit E, Veldhuijzen IK, Venekamp RP, van den Bijllaardt W, Pas SD, Lodder EB, et al. Diagnostic accuracy of rapid antigen tests in asymptomatic and presymptomatic close contacts of individuals with confirmed SARS-CoV-2 infection: cross sectional study. BMJ. 2021;374:n1676.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80530-
dc.description.abstract研究背景 新冠肺炎全球疫情自2020年於世界各地發生社區流行傳播以來,由於其高傳播力以及無症狀與症狀前傳播之特性,使罹病個案在感染後但臨床症狀尚未發生時即具有傳染力。此一特性也使新冠肺炎防疫往往需運用大規模非藥物防疫措施(non-pharmaceutical intervention,NPI)以降低社區傳播之風險,NPI雖在世界疫情初期顯現其對於疫情控制之功效,但對於社會經濟活動之衝擊使其無法作為長期防疫措施。因此運用快速且準確的檢測工具早期辨識出高病毒量且具傳播風險之感染個案即成為重要的防疫策略。傳統的Real-time PCR(real-time Polymerase chain reaction,即時定量聚合酶連鎖反應)為罹病檢測的黃金標準,在新冠肺炎疫情中也廣泛運用於診斷罹病個案,但進行Real-time PCR在時間、人力,與設備上皆須投入較多資源。抗原快速檢測由於檢測進行之便利與快速,可做為臨床上判斷是否罹病以及具有傳染力之重要工具,亦有利於在社區傳播情境中大規模於高風險地區對具有感染風險者進行篩檢,也因此成為新冠肺炎主要防疫措施之一。以抗原快速檢測作為社區主動監測之防疫措施於台灣尚未有實證評估結果,因此本研究旨在運用台北市立聯合醫院仁愛院區於台北爆發社區流行之檢測實證資料進行以下之研究目標: 1. 描述台北市以及鄰近區域COVID-19檢測陽性之區域分佈以及時間趨勢; 2. 評估抗原快篩檢測對於COVID-19包含敏感度與特異度之工具效度; 3. 評估不同Ct值對於抗原快篩檢測工具效度之影響; 4. 尋找抗原快篩檢測對於COVID-19個案臨床偵測的最適Ct值切點。 材料與方法 本研究運用隨時間改變之並行效度(time-varying concurrent validity)研究設計評估抗原快篩與核酸檢測包含敏感度以及特異度之工具效度。對於參與研究之個案同時對採樣檢體進行核酸檢測以及抗原快篩檢測,並且以核酸檢測做為黃金標準評估抗原快篩之工具效度。納入研究之個案為2021年5月及6月台北市爆發社區流行期間至本院設立之社區主動監測站民眾。本研究收集抗原快篩檢測結果、核酸檢結果、Ct值,與參與研究個案之個人特性如年齡、性別,接受採檢日期,以及居住地資料進行評估。核酸檢測之方法包含以半自動的核酸萃取儀加上手動式Real-time PCR檢測儀的半自動操作模式以及高通量自動化PCR儀器的全自動模式。本研究運用所收集的台北市社區主動監測實證資料評估社區傳播流行爆發期間隨時間改變之COVID-19盛行率、敏感度、特異度,以及各行政區別之COVID-19盛行狀況。並估算抗原快篩工具之貝氏因子。對於抗原快篩最適Ct值切點之評估,本研究以收集之實證資料建立羅吉斯回歸模式並估算其對應之接受者作業特徵曲線(receiver operation characteristics curve,ROC curve),據以尋找抗原快篩臨床運用之最佳Ct切點值。 結果 於2021年5月到6月期間,本研究共計納入7643位個案,接受核酸PCR檢測以及抗原快篩,其中284位個案RT-PCR陽性,184位個案抗原快篩陽性。COVID-19盛行率為3.7% (95% CI: 3.3-4.1%)。抗原快篩陽性率為2.1% (95% CI: 2.1-2.8%)。抗原快篩之敏感度為58.1% (95% CI: 52.4-63.8%),特異度為99.7% (95% CI: 99.6-99.9%)。抗原快篩工具之陽性概似比(positive likelihood ratio)為225,陰性概似比則為0.42。顯示抗原快篩陽性對於COVID-19個案偵測能力極佳。於5月期間,COVID-19盛行率為6.0% (95% CI: 4.9-7.0%),抗原快篩敏感度為78.0% (95% CI: 70.5-85.4%);6月期間之COVID-19盛行率則下降為2.9% (95% CI: 2.5-3.4%),抗原快篩敏感度為44.0% (95% CI: 36.4-51.5%)。 社區主動監測之個案其Ct值由5月疫情初期之21漸次上升至6月初期之24以及6月底之30。抗原快篩敏感度之週別趨勢亦由5月初期之85% 下降至6月底之25%。抗原快篩特異度則均維持高於99%。COVID-19盛行率則以萬華區以及鄰近之大同區為最高,此盛行率隨時間下降。 運用羅吉斯回歸模式評估之結果顯示Ct值為主要影響抗原快篩陽性結果之因子,以AUC評估Ct值解釋程度達93.5% (95% CI: 90.9-96.2%)。抗原快篩運用之最佳Ct值切點為25,在此一切點值下,抗原快篩之敏感度與特異度可分別達82.1 (95% CI: 75.6-88.6)與99.4 (95% CI: 99.3-99.6)。 結論 本研究結果顯示於台北市運用抗原快篩作為社區主動監測之工具在5月疫情初期其敏感度與特異度可分別達78.0% (95% CI: 70.5-85.4%)與99.8% (95% CI: 99.7-100.0%)。抗原快篩之高特異使其具有良好之COVID-19個案偵測能力,抗原快篩之陽性概似比可達225,若對於高病毒量Ct值低於25個案,其敏感可達82.1% (95% CI: 75.6-88.6%),陽性概似比則為137,顯示抗原快篩陽性可有效偵測高病毒量與高傳播風險個案,可運用於社區主動監測工具阻斷社區COVID-19傳播控制流行。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:08:40Z (GMT). No. of bitstreams: 1
U0001-2610202116183500.pdf: 3370003 bytes, checksum: 157412915e3d8c7f79a5c365c5a1a2a7 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝...........................I 中文摘要.......................II 英文摘要.......................V 目錄..........................Ⅷ 圖目錄.........................Ⅸ 表目錄.........................Ⅹ 第一章 導論....................1 1.1 實習單位特色與簡介......1 1.2 研究背景與動機..........2 第二章 文獻回顧............. ...5 第三章 研究方法.................9 3.1 研究設計...............9 3.2 檢驗方法...............12 3.3 檢測時間...............16 3.4 統計分析...............20 第四章 研究結果................22 第五章 討論與結論..............46 參考文獻......................49
dc.language.isozh-TW
dc.subject嚴重特殊傳染性肺炎zh_TW
dc.subject嚴重急性呼吸道症候群冠狀病毒2型zh_TW
dc.subject抗原快速檢測zh_TW
dc.subject循環數閾值zh_TW
dc.subject即時定量聚合酶連鎖反應zh_TW
dc.subjectSARS-CoV-2en
dc.subjectCoronavirus disease 2019en
dc.subjectRapid antigen testen
dc.subjectcycle threshold valueen
dc.subjectCOVID-19en
dc.subjectReal-time PCRen
dc.title新冠肺炎PCR檢測與抗原快篩探討zh_TW
dc.titleStudying PCR test and rapid antigen screening of COVID-19en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.coadvisor許辰陽(Chen-Yang Hsu),賴昭智(Chao-Chih Lai)
dc.contributor.oralexamcommittee#VALUE!
dc.subject.keyword嚴重特殊傳染性肺炎,嚴重急性呼吸道症候群冠狀病毒2型,即時定量聚合酶連鎖反應,抗原快速檢測,循環數閾值,zh_TW
dc.subject.keywordCoronavirus disease 2019,COVID-19,SARS-CoV-2,Real-time PCR,Rapid antigen test,cycle threshold value,en
dc.relation.page53
dc.identifier.doi10.6342/NTU202104244
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-27
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept公共衛生碩士學位學程zh_TW
顯示於系所單位:公共衛生碩士學位學程

文件中的檔案:
檔案 大小格式 
U0001-2610202116183500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved