Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80525
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘建源(Chien-Yuan Pan)
dc.contributor.authorHua-Hua Wuen
dc.contributor.author吳畫畫zh_TW
dc.date.accessioned2022-11-24T03:08:33Z-
dc.date.available2021-11-03
dc.date.available2022-11-24T03:08:33Z-
dc.date.copyright2021-11-03
dc.date.issued2021
dc.date.submitted2021-10-26
dc.identifier.citationAlberghina, L., and Colangelo, A.M. (2006). The modular systems biology approach to investigate the control of apoptosis in Alzheimer's disease neurodegeneration. BMC Neuroscience 7, S2. 10.1186/1471-2202-7-S1-S2. Berridge, M.J. (1998). Neuronal calcium signaling. Neuron 21, 13-26. Berridge, M.J., Bootman, M.D., and Roderick, H.L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nature reviews Molecular cell biology 4, 517-529. Berridge, M.J., Lipp, P., and Bootman, M.D. (2000). The versatility and universality of calcium signalling. Nature Reviews Molecular Cell Biology 1, 11-21. 10.1038/35036035. Chao, M.V. (2003). Neurotrophins and their receptors: a convergence point for many signalling pathways. Nature Reviews Neuroscience 4, 299-309. Chin, D., and Means, A.R. (2000). Calmodulin: a prototypical calcium sensor. Trends in cell biology 10, 322-328. de Los Rios, C., Cano-Abad, M.F., Villarroya, M., and López, M.G. (2018). Chromaffin cells as a model to evaluate mechanisms of cell death and neuroprotective compounds. Pflügers Archiv-European Journal of Physiology 470, 187-198. Di Donato, V., Auer, T.O., Duroure, K., and Del Bene, F. (2013). Characterization of the Calcium Binding Protein Family in Zebrafish. PLOS ONE 8, e53299. 10.1371/journal.pone.0053299. Dong, Z., Wu, S., Zhu, C., Wang, X., Li, Y., Chen, X., Liu, D., Qiang, L., Baas, P.W., and Liu, M. (2019). CRISPR/Cas9-mediated Kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in zebrafish. Traffic (Copenhagen, Denmark) 20, 71. Driever, W., Stemple, D., Schier, A., and Solnica-Krezel, L. (1994). Zebrafish: genetic tools for studying vertebrate development. Trends in Genetics 10, 152-159. Duchen, M.R. (1999). Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. The Journal of physiology 516, 1-17. Elíes, J., Yáñez, M., Pereira, T.M.C., Gil-Longo, J., MacDougall, D.A., and Campos-Toimil, M. (2020). An Update to Calcium Binding Proteins. In Calcium Signaling, M.S. Islam, ed. (Springer International Publishing), pp. 183-213. 10.1007/978-3-030-12457-1_8. Few, A.P., Nanou, E., Scheuer, T., and Catterall, W.A. (2011). Molecular determinants of CaV2.1 channel regulation by calcium-binding protein-1. Journal of Biological Chemistry 286, 41917-41923. Findeisen, F., and Minor, J., Daniel L (2010). Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels 4, 459-474. Findeisen, F., and Minor Jr, D.L. (2010). Structural basis for the differential effects of CaBP1 and calmodulin on CaV1.2 calcium-dependent inactivation. Structure 18, 1617-1631. Fucile, S. (2004). Ca2+ permeability of nicotinic acetylcholine receptors. Cell calcium 35, 1-8. Gutzman, J.H., Sahu, S.U., and Kwas, C. (2015). Non-muscle myosin IIA and IIB differentially regulate cell shape changes during zebrafish brain morphogenesis. Developmental biology 397, 103-115. Haeseleer, F., Imanishi, Y., Maeda, T., Possin, D.E., Maeda, A., Lee, A., Rieke, F., and Palczewski, K. (2004). Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nature neuroscience 7, 1079-1087. Haeseleer, F., Sokal, I., Verlinde, C.L., Erdjument-Bromage, H., Tempst, P., Pronin, A.N., Benovic, J.L., Fariss, R.N., and Palczewski, K. (2000). Five members of a novel Ca2+-binding protein (CABP) subfamily with similarity to calmodulin. Journal of Biological Chemistry 275, 1247-1260. Higley, M.J., and Sabatini, B.L. (2008). Calcium signaling in dendrites and spines: practical and functional considerations. Neuron 59, 902-913. Hradsky, J., Bernstein, H.-G., Marunde, M., Mikhaylova, M., and Kreutz, M.R. (2015). Alternative splicing, expression and cellular localization of Calneuron-1 in the rat and human brain. J Histochem Cytochem 63, 793-804. 10.1369/0022155415595841. Hradsky, J., Raghuram, V., Reddy, P.P., Navarro, G., Hupe, M., Casado, V., McCormick, P.J., Sharma, Y., Kreutz, M.R., and Mikhaylova, M. (2011). Post-translational membrane insertion of tail-anchored transmembrane EF-hand Ca2+ sensor calneurons requires the TRC40/Asna1 protein chaperone. Journal of Biological Chemistry 286, 36762-36776. Huang, J.-z., Chen, Y.-z., Su, M., Zheng, H.-f., Yang, Y.-p., Chen, J., and Liu, C.-F. (2010). dl-3-n-Butylphthalide prevents oxidative damage and reduces mitochondrial dysfunction in an MPP+-induced cellular model of Parkinson's disease. Neuroscience Letters 475, 89-94. Kawasaki, H., Nakayama, S., and Kretsinger, R. (1998). Classification and evolution of EF-hand proteins. Biometals 11, 277-295. Keil, K.P., Miller, G.W., Chen, H., Sethi, S., Schmuck, M.R., Dhakal, K., Kim, J.W., and Lein, P.J. (2018). PCB 95 promotes dendritic growth in primary rat hippocampal neurons via mTOR-dependent mechanisms. Archives of Toxicology 92, 3163-3173. 10.1007/s00204-018-2285-x. Kepecs, A., and Fishell, G. (2014). Interneuron cell types are fit to function. Nature 505, 318-326. Kettunen, P. (2020). Calcium Imaging in the Zebrafish. In Calcium Signaling, M.S. Islam, ed. (Springer International Publishing), pp. 901-942. 10.1007/978-3-030-12457-1_36. Kim, J., Kim, C.Y., Song, J., Oh, H., Kim, C.H., and Park, J.H. (2016). Trimethyltin chloride inhibits neuronal cell differentiation in zebrafish embryo neurodevelopment. Neurotoxicol Teratol 54, 29-35. 10.1016/j.ntt.2015.12.003. Klee, C., Crouch, T., and Richman, P. (1980). Calmodulin. Annual review of biochemistry 49, 489-515. Lee, Y.-W., Stachowiak, E.K., Birkaya, B., Terranova, C., Capacchietti, M., Claus, P., Aletta, J.M., and Stachowiak, M.K. (2013). NGF-induced cell differentiation and gene activation is mediated by integrative nuclear FGFR1 signaling (INFS). PloS one 8, e68931. Lewit-Bentley, A., and Réty, S. (2000). EF-hand calcium-binding proteins. Current opinion in structural biology 10, 637-643. Li, C., Chan, J., Haeseleer, F., Mikoshiba, K., Palczewski, K., Ikura, M., and Ames, J.B. (2009). Structural insights into Ca2+-dependent regulation of inositol 1, 4, 5-trisphosphate receptors by CaBP1. Journal of Biological Chemistry 284, 2472-2481. Lister, J.A., Robertson, C.P., Lepage, T., Johnson, S.L., and Raible, D.W. (1999). Nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 126, 3757-3767. Lodato, S., Shetty, A.S., and Arlotta, P. (2015). Cerebral cortex assembly: generating and reprogramming projection neuron diversity. Trends in Neurosciences 38, 117-125. Lyons, M.R., and West, A.E. (2011). Mechanisms of specificity in neuronal activity-regulated gene transcription. Progress in neurobiology 94, 259-295. Marcelo, K.L., Means, A.R., and York, B. (2016). The Ca(2+)/Calmodulin/CaMKK2 Axis: Nature's Metabolic CaMshaft. Trends Endocrinol Metab 27, 706-718. 10.1016/j.tem.2016.06.001. Martorana, F., Gaglio, D., Bianco, M.R., Aprea, F., Virtuoso, A., Bonanomi, M., Alberghina, L., Papa, M., and Colangelo, A.M. (2018). Differentiation by nerve growth factor (NGF) involves mechanisms of crosstalk between energy homeostasis and mitochondrial remodeling. Cell Death Dis 9, 391-391. 10.1038/s41419-018-0429-9. Matsuzaki, Y., Maruta, R., Takaki, K., Kotani, E., Kato, Y., Yoshimura, R., Endo, Y., Whitty, C., Pernstich, C., and Gandhi, R. (2019). Sustained neurotrophin release from protein nanoparticles mediated by matrix metalloproteinases induces the alignment and differentiation of nerve cells. Biomolecules 9, 510. McCue, H.V., Burgoyne, R.D., and Haynes, L.P. (2009). Membrane targeting of the EF-hand containing calcium-sensing proteins CaBP7 and CaBP8. Biochemical and Biophysical Research Communications 380, 825-831. McCue, H.V., Burgoyne, R.D., and Haynes, L.P. (2011). Determination of the membrane topology of the small EF-Hand Ca2+-sensing proteins CaBP7 and CaBP8. PLoS One 6, e17853. McCue, H.V., Haynes, L.P., and Burgoyne, R.D. (2010a). Bioinformatic analysis of CaBP/calneuron proteins reveals a family of highly conserved vertebrate Ca2+-binding proteins. BMC Research Notes 3, 118. 10.1186/1756-0500-3-118. McCue, H.V., Haynes, L.P., and Burgoyne, R.D. (2010b). The diversity of calcium sensor proteins in the regulation of neuronal function. Cold Spring Harbor perspectives in biology 2, a004085. Mercier, A., Pelletier, É., and Hamel, J.-F. (1994). Metabolism and subtle toxic effects of butyltin compounds in starfish. Aquatic toxicology 28, 259-273. Mikhaylova, M., Hradsky, J., and Kreutz, M.R. (2011a). Between promiscuity and specificity: novel roles of EF-hand calcium sensors in neuronal Ca2+ signalling. Journal of Neurochemistry 118, 695-713. 10.1111/j.1471-4159.2011.07372.x. Mikhaylova, M., Hradsky, J., and Kreutz, M.R. (2011b). Between promiscuity and specificity: novel roles of EF‐hand calcium sensors in neuronal Ca2+ signalling. Journal of neurochemistry 118, 695-713. Mikhaylova, M., Reddy, P.P., Munsch, T., Landgraf, P., Suman, S.K., Smalla, K.-H., Gundelfinger, E.D., Sharma, Y., and Kreutz, M.R. (2009). Calneurons provide a calcium threshold for trans-Golgi network to plasma membrane trafficking. Proceedings of the National Academy of Sciences 106, 9093-9098. 10.1073/pnas.0903001106. Mikhaylova, M., Sharma, Y., Reissner, C., Nagel, F., Aravind, P., Rajini, B., Smalla, K.-H., Gundelfinger, E.D., and Kreutz, M.R. (2006). Neuronal Ca2+ signaling via caldendrin and calneurons. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1763, 1229-1237. Mundhenk, J., Fusi, C., and Kreutz, M.R. (2019). Caldendrin and Calneurons-EF-Hand CaM-Like Calcium Sensors With Unique Features and Specialized Neuronal Functions. Front Mol Neurosci 12, 16. 10.3389/fnmol.2019.00016. Neher, E., and Sakaba, T. (2008). Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59, 861-872. Numakawa, T., and Odaka, H. (2021). Brain-Derived Neurotrophic Factor Signaling in the Pathophysiology of Alzheimer's Disease: Beneficial Effects of Flavonoids for Neuroprotection. Int J Mol Sci 22. 10.3390/ijms22115719. Oz, S., Tsemakhovich, V., Christel, C.J., Lee, A., and Dascal, N. (2011). CaBP1 regulates voltage-dependent inactivation and activation of CaV1.2 (L-type) calcium channels. Journal of Biological Chemistry 286, 13945-13953. Parekh, A.B. (2011). Decoding cytosolic Ca2+ oscillations. Trends in Biochemical Sciences 36, 78-87. Ramsey, I.S., Delling, M., and Clapham, D.E. (2006). An introduction to TRP channels. Annu. Rev. Physiol. 68, 619-647. Rieke, F., Lee, A., and Haeseleer, F. (2008). Characterization of Ca2+-binding protein 5 knockout mouse retina. Investigative ophthalmology visual science 49, 5126-5135. Rosenberg, S.S., and Spitzer, N.C. (2011). Calcium signaling in neuronal development. Cold Spring Harb Perspect Biol 3, a004259. 10.1101/cshperspect.a004259. Salter, M.W., and Hicks, J.L. (1995). ATP causes release of intracellular Ca2+ via the phospholipase C beta/IP3 pathway in astrocytes from the dorsal spinal cord. J Neurosci 15, 2961-2971. 10.1523/jneurosci.15-04-02961.1995. Sammels, E., Parys, J.B., Missiaen, L., De Smedt, H., and Bultynck, G. (2010). Intracellular Ca2+ storage in health and disease: A dynamic equilibrium. Cell Calcium 47, 297-314. Schmuck, M.R., Keil, K.P., Sethi, S., Morgan, R.K., and Lein, P.J. (2020). Automated high content image analysis of dendritic arborization in primary mouse hippocampal and rat cortical neurons in culture. Journal of Neuroscience Methods 341, 108793. Schwaller, B. (2010). Cytosolic Ca2+ buffers. Cold Spring Harbor perspectives in biology 2, a004051. Shih, P.-Y., Lin, C.-L., Cheng, P.-W., Liao, J.-H., and Pan, C.-Y. (2009). Calneuron I inhibits Ca2+ channel activity in bovine chromaffin cells. Biochemical and Biophysical Research Communications 388, 549-553. Skelton, N.J., Kördel, J., Akke, M., Forsén, S., and Chazin, W.J. (1994). Signal transduction versus buffering activity in Ca2+–binding proteins. Nature structural biology 1, 239-245. Toth, A.B., Shum, A.K., and Prakriya, M. (2016). Regulation of neurogenesis by calcium signaling. Cell Calcium 59, 124-134. 10.1016/j.ceca.2016.02.011. Wang, H.-G., George, M.S., Kim, J., Wang, C., and Pitt, G.S. (2007). Ca<sup>2+</sup>/Calmodulin Regulates Trafficking of CaV1.2 Ca2+ Channels in Cultured Hippocampal Neurons. The Journal of Neuroscience 27, 9086-9093. 10.1523/jneurosci.1720-07.2007. Wang, W.-L., Dai, R., Yan, H.-W., Han, C.-N., Liu, L.-S., and Duan, X.-H. (2015). Current situation of PC12 cell use in neuronal injury study. International Journal of Biotechnology for Wellness Industries 4, 61-66. Wiatrak, B., Kubis-Kubiak, A., Piwowar, A., and Barg, E. (2020). PC12 Cell Line: Cell Types, Coating of Culture Vessels, Differentiation and Other Culture Conditions. Cells 9, 958. 10.3390/cells9040958. Wu, Y.-Q., Lin, X., Liu, C.-M., Jamrich, M., and Shaffer, L.G. (2001). Identification of a human brain-specific gene, calneuron 1, a new member of the calmodulin superfamily. Molecular genetics and metabolism 72, 343-350. Yáñez, M., Gil-Longo, J., and Campos-Toimil, M. (2012). Calcium Binding Proteins. In Calcium Signaling, M.S. Islam, ed. (Springer Netherlands), pp. 461-482. 10.1007/978-94-007-2888-2_19. Zhang, P., Xu, R., Guo, Y., Qin, J., Dai, Y., Liu, N., and Wu, C. (2018). DL-3-n-butylphthalide promotes dendrite development in cortical neurons subjected to oxygen-glucose deprivation/reperfusion. Cell Biology International 42, 1041-1049. Zhao, Y., Liu, D., Li, J., Zhang, X., and Wang, X. (2019). L-NBP, a multiple growth factor activator, attenuates ischemic neuronal impairments possibly through promoting neuritogenesis. Neurochemistry International 124, 94-105. Zucker, R.S. (1999). Calcium-and activity-dependent synaptic plasticity. Current opinion in neurobiology 9, 305-313.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80525-
dc.description.abstract"鈣訊號參與於多種細胞活性如神經傳遞,突觸可塑性,以及學習記憶等高階腦功能。有一群與calmodulin結構類似的鈣離子結合蛋白,但在4個EF-hand motifs之中,僅有2-3個具有鈣離子結合能力。Calneuron 1(Caln1)僅在N端有2個具功能的EF-hand motifs,和一個在C端幫助定位於膜上的跨膜疏水段。我們先前實驗已證實Caln1主要表現於成鼠腦中,而非胚胎,且可削弱鈣離子通道活性,但Caln1如何影響神經分化仍未知。為了探討Caln1在神經發育上的功能,我們將Caln1和其突變體,表現於初級培養的大鼠胚胎皮質神經細胞中,結果顯示,喪失疏水段的突變體,能夠增加神經纖維的數量,並增強谷氨酸誘導的鈣離子反應。為了進一步探究Caln1在神經分化中扮演的角色,我們將其轉染於有或無 NGF處理的PC12細胞;結果顯示,Caln1的過表達,會拮抗NGF增加細胞直徑與鈣離子上升反應的效果,因此Caln1在調控神經分化和鈣離子濃度恆定中,可扮演關鍵角色。為了解Caln1在腦發育中的功能,我們以RT-PCR分析斑馬魚胚胎不同發育時期, caln1同源基因 (z-caln1和z-caln2) 的表現。該結果顯示,選擇性剪接的異構型z-caln1-X2和z-caln2-X2,在胚胎發育早期便有高表現量,而其他異構型則是24 hpf後才有顯著表現。因此我們將z-caln1-X2和z-caln2-X2這兩個異構型亞克隆進載體,並設計嗎啉代寡核苷酸( morpholino oligos, MOs)以探討降低或增加表現,对斑馬魚胚胎發育的影響。已有報導指出,Caln1與思覺失調症高度相關,我們的結果不僅說明Caln1如何調控神經發育,並發展相關病變的可能治療方式。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:08:33Z (GMT). No. of bitstreams: 1
U0001-2610202116593800.pdf: 2191951 bytes, checksum: d3bb88aed233c9c7a58c04b0ad958ecd (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsAcknowledgement i 摘要 ii Abstract iii 1. Introduction 1 1.1. Neuronal calcium signaling 1 1.2. CaM superfamily and EF-hand calcium binding motif 2 1.3. The basic functions of CaM and CaBP family 4 1.4. Caln1 structure in human and rat 6 1.5. The basic functions and distributions of Caln1 in human and rat 7 1.6. Caln1 expression patterns in zebrafish early development 9 1.7. Regulation of neuronal development and neuronal differentiation by calcium signaling 10 1.8. NGF in initiating neuronal differentiation 12 1.9. Cultured rat embryonic neurons and zebrafish embryos as neuronal differentiation models 12 2. Aims 14 3. Materials and Methods 15 3.1. Chemicals and solutions/buffer 15 3.2. Primary cultured neurons and PC12 cells preparation 15 3.3. Zebrafish embryos collection 16 3.4. Plasmid construction 16 3.5. Transfection 17 3.6. Fluorescence imaging 17 3.7. Ca2+ imaging 18 3.8. RNA extraction and RT-PCR (primers design) 20 3.9. Data analysis 21 4. Results 22 4.1. Alignment of Caln1 in different species 22 4.2. Caln1ΔHT enhances neurite outgrowth in cultured cortical neurons 23 4.3. Caln1ΔHT enhances glutamate-induced Ca2+ response in cortical neurons 24 4.4. Caln1 overexpression decreases PC12 cell size 26 4.5. Caln1 enhances Ca2+ response in ATP-stimulated PC12 cells 26 4.6. Z-caln1 and z-caln2 isoforms are differentially expressed during the development zebrafish embryos 27 4.7. MO sequences are designed for z-caln1-X2 and z-caln2-X2 knockdown 29 4.8. Construct expression vector to overexpress z-caln1-X2 and z-caln2-X2 in zebrafish embryos 29 5. Discussion 30 5.1. Caln1 and neuron differentiation 30 5.2. Effects of Caln1 on Ca2+ responses 31 5.3. Caln1 might play an important role of brain development in zebrafish 32 6. Conclusion 33 7. References 34 Table. 43 Figures 45
dc.language.isoen
dc.subject嗎啉代寡核苷酸zh_TW
dc.subject鈣離子結合蛋白zh_TW
dc.subjectPC12細胞zh_TW
dc.subject神經發育zh_TW
dc.subject鈣離子穩態zh_TW
dc.subjectPC12 cellen
dc.subjectCa2+-binding proteinen
dc.subjectCa2+ homeostasisen
dc.subjectCalneuron 1en
dc.subjectmorpholinoen
dc.subjectneuron developmenten
dc.title探討 Calneuron I 在大鼠胚胎皮質神經細胞及斑馬魚腦發育中的功能zh_TW
dc.titleStudy the Functions of Calneuron I in the Development of Cultured Rat Embryonic Cortical Neurons and Zebrafish Brainen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周銘翊(Hsin-Tsai Liu),周申如(Chih-Yang Tseng)
dc.subject.keyword鈣離子結合蛋白,鈣離子穩態,嗎啉代寡核苷酸,神經發育,PC12細胞,zh_TW
dc.subject.keywordCa2+-binding protein,Ca2+ homeostasis,Calneuron 1,morpholino,neuron development,PC12 cell,en
dc.relation.page61
dc.identifier.doi10.6342/NTU202104252
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-27
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
U0001-2610202116593800.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved