Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8050
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林淑萍
dc.contributor.authorDai-Hua Tsaien
dc.contributor.author蔡黛華zh_TW
dc.date.accessioned2021-05-19T18:04:26Z-
dc.date.available2022-12-31
dc.date.available2021-05-19T18:04:26Z-
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-07-05
dc.identifier.citation1. Jemal, A., et al., Global cancer statistics. CA Cancer J Clin, 2011. 61(2): p. 69-90.
2. El-Serag, H.B., Hepatocellular carcinoma. N Engl J Med, 2011. 365(12): p. 1118-27.
3. Parkin, D.M., The global health burden of infection-associated cancers in the year 2002. Int J Cancer, 2006. 118(12): p. 3030-44.
4. Zanetti, A.R., P. Van Damme, and D. Shouval, The global impact of vaccination against hepatitis B: a historical overview. Vaccine, 2008. 26(49): p. 6266-73.
5. Chang, M.H., et al., Decreased incidence of hepatocellular carcinoma in hepatitis B vaccinees: a 20-year follow-up study. J Natl Cancer Inst, 2009. 101(19): p. 1348-55.
6. El-Serag, H.B., Epidemiology of hepatocellular carcinoma in USA. Hepatol Res, 2007. 37 Suppl 2: p. S88-94.
7. Bosetti, C., et al., Trends in mortality from hepatocellular carcinoma in Europe, 1980-2004. Hepatology, 2008. 48(1): p. 137-45.
8. Forner, A., et al., Current strategy for staging and treatment: the BCLC update and future prospects. Semin Liver Dis, 2010. 30(1): p. 61-74.
9. Kudo, M., Current status of molecularly targeted therapy for hepatocellular carcinoma: clinical practice. Int J Clin Oncol, 2010. 15(3): p. 242-55.
10. Pugh, R.N., et al., Transection of the oesophagus for bleeding oesophageal varices. Br J Surg, 1973. 60(8): p. 646-9.
11. Llovet, J.M., M. Schwartz, and V. Mazzaferro, Resection and liver transplantation for hepatocellular carcinoma. Semin Liver Dis, 2005. 25(2): p. 181-200.
12. Llovet, J.M., A. Burroughs, and J. Bruix, Hepatocellular carcinoma. Lancet, 2003. 362(9399): p. 1907-17.
13. Forner, A., J.M. Llovet, and J. Bruix, Hepatocellular carcinoma. Lancet, 2012. 379(9822): p. 1245-55.
14. Mazzaferro, V., et al., Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med, 1996. 334(11): p. 693-9.
15. Yao, F.Y., et al., Liver transplantation for hepatocellular carcinoma: expansion of the tumor size limits does not adversely impact survival. Hepatology, 2001. 33(6): p. 1394-403.
16. Lin, S.M., et al., Radiofrequency ablation improves prognosis compared with ethanol injection for hepatocellular carcinoma < or =4 cm. Gastroenterology, 2004. 127(6): p. 1714-23.
17. Shiina, S., et al., A randomized controlled trial of radiofrequency ablation with ethanol injection for small hepatocellular carcinoma. Gastroenterology, 2005. 129(1): p. 122-30.
18. Chen, M.S., et al., A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann Surg, 2006. 243(3): p. 321-8.
19. Livraghi, T., et al., Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: Is resection still the treatment of choice? Hepatology, 2008. 47(1): p. 82-9.
20. Bruix, J., M. Sala, and J.M. Llovet, Chemoembolization for hepatocellular carcinoma. Gastroenterology, 2004. 127(5 Suppl 1): p. S179-88.
21. Giuliani, F. and G. Colucci, Treatment of hepatocellular carcinoma. Oncology, 2009. 77 Suppl 1: p. 43-9.
22. Ueshima, K., et al., Hepatic arterial infusion chemotherapy using low-dose 5-fluorouracil and cisplatin for advanced hepatocellular carcinoma. Oncology, 2010. 78 Suppl 1: p. 148-53.
23. Jemal, A., et al., Cancer statistics, 2005. CA Cancer J Clin, 2005. 55(1): p. 10-30.
24. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70.
25. Sia, D. and A. Villanueva, Signaling pathways in hepatocellular carcinoma. Oncology, 2011. 81 Suppl 1: p. 18-23.
26. Whittaker, S., R. Marais, and A.X. Zhu, The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene, 2010. 29(36): p. 4989-5005.
27. Yoshiji, H., et al., Vascular endothelial growth factor tightly regulates in vivo development of murine hepatocellular carcinoma cells. Hepatology, 1998. 28(6): p. 1489-96.
28. Moon, W.S., et al., Overexpression of VEGF and angiopoietin 2: a key to high vascularity of hepatocellular carcinoma? Mod Pathol, 2003. 16(6): p. 552-7.
29. Yamaguchi, R., et al., Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology, 1998. 28(1): p. 68-77.
30. Poon, R.T., et al., High serum levels of vascular endothelial growth factor predict poor response to transarterial chemoembolization in hepatocellular carcinoma: a prospective study. Oncol Rep, 2004. 11(5): p. 1077-84.
31. Chao, Y., et al., Prognostic significance of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin in patients with resectable hepatocellular carcinoma after surgery. Ann Surg Oncol, 2003. 10(4): p. 355-62.
32. Siegel, A.B., et al., Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol, 2008. 26(18): p. 2992-8.
33. Liu, Y., et al., Both antiangiogenesis- and angiogenesis-independent effects are responsible for hepatocellular carcinoma growth arrest by tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res, 2005. 65(9): p. 3691-9.
34. Wedge, S.R., et al., AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res, 2005. 65(10): p. 4389-400.
35. Buckley, A.F., et al., Epidermal growth factor receptor expression and gene copy number in conventional hepatocellular carcinoma. Am J Clin Pathol, 2008. 129(2): p. 245-51.
36. Altimari, A., et al., Investigation of ErbB1 and ErbB2 expression for therapeutic targeting in primary liver tumours. Dig Liver Dis, 2003. 35(5): p. 332-8.
37. Schiffer, E., et al., Gefitinib, an EGFR inhibitor, prevents hepatocellular carcinoma development in the rat liver with cirrhosis. Hepatology, 2005. 41(2): p. 307-14.
38. Philip, P.A., et al., Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J Clin Oncol, 2005. 23(27): p. 6657-63.
39. Ramanathan, R.K., et al., A phase II study of lapatinib in patients with advanced biliary tree and hepatocellular cancer. Cancer Chemother Pharmacol, 2009. 64(4): p. 777-83.
40. O'Dwyer PJ, G.B., Levy DE, Kauh JS, Fitzgerald DB, Benson III AB. , Gefitinib in advanced unresectable hepatocellular carcinoma: Results from the Eastern Cooperative Oncology Group's Study E1203. Journal of Clinical Oncology, 2006. 24: p. (Suppl): 213s.
41. Zhu, A.X., et al., Phase 2 study of cetuximab in patients with advanced hepatocellular carcinoma. Cancer, 2007. 110(3): p. 581-9.
42. Gruenwald V, W.V., Gebel M, Greten TF, Kubicka S, Ganser A, et al., A phase II open-label study of cetuximab in unresectable hepatocellular carcinoma: final results. . J Clin Oncol 2007. 25: p. (Suppl): 222s.
43. Zhu, A.X., et al., Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. J Clin Oncol, 2009. 27(18): p. 3027-35.
44. Faivre, S., et al., Safety and efficacy of sunitinib in patients with advanced hepatocellular carcinoma: an open-label, multicentre, phase II study. Lancet Oncol, 2009. 10(8): p. 794-800.
45. Forner, A., J.M. Llovet, and J. Bruix, Sunitinib and the benefits of a negative study. Lancet Oncol, 2009. 10(8): p. 743-4.
46. Kudo, M., Signaling pathway and molecular-targeted therapy for hepatocellular carcinoma. Dig Dis, 2011. 29(3): p. 289-302.
47. Park, J.W., et al., Phase II, open-label study of brivanib as first-line therapy in patients with advanced hepatocellular carcinoma. Clin Cancer Res, 2011. 17(7): p. 1973-83.
48. Hwang, Y.H., et al., Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. Hepatol Res, 2004. 29(2): p. 113-121.
49. Lee, H.C., et al., Loss of Raf kinase inhibitor protein promotes cell proliferation and migration of human hepatoma cells. Gastroenterology, 2006. 131(4): p. 1208-17.
50. Lowinger, T.B., et al., Design and discovery of small molecules targeting raf-1 kinase. Curr Pharm Des, 2002. 8(25): p. 2269-78.
51. Wilhelm, S.M., et al., BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res, 2004. 64(19): p. 7099-109.
52. Liu, L., et al., Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res, 2006. 66(24): p. 11851-8.
53. Huynh, H., et al., Sorafenib and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J Cell Mol Med, 2009. 13(8B): p. 2673-83.
54. Llovet, J.M., et al., Sorafenib in advanced hepatocellular carcinoma. N Engl J Med, 2008. 359(4): p. 378-90.
55. Kudo, M., et al., Phase III study of sorafenib after transarterial chemoembolisation in Japanese and Korean patients with unresectable hepatocellular carcinoma. Eur J Cancer, 2011. 47(14): p. 2117-27.
56. Awada, A., et al., Phase I safety and pharmacokinetics of BAY 43-9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours. Br J Cancer, 2005. 92(10): p. 1855-61.
57. Abou-Alfa, G.K., et al., Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol, 2006. 24(26): p. 4293-300.
58. Wolber, C., et al., Perforating folliculitis, angioedema, hand-foot syndrome--multiple cutaneous side effects in a patient treated with sorafenib. J Dtsch Dermatol Ges, 2009. 7(5): p. 449-52.
59. Iijima, M., et al., Sorafenib-associated hand-foot syndrome in Japanese patients. J Dermatol, 2011. 38(3): p. 261-6.
60. Williams, V.L., P.R. Cohen, and D.J. Stewart, Sorafenib-induced premalignant and malignant skin lesions. Int J Dermatol, 2011. 50(4): p. 396-402.
61. Arnault, J.P., et al., Keratoacanthomas and squamous cell carcinomas in patients receiving sorafenib. J Clin Oncol, 2009. 27(23): p. e59-61.
62. Takimoto, C.H. and A. Awada, Safety and anti-tumor activity of sorafenib (Nexavar) in combination with other anti-cancer agents: a review of clinical trials. Cancer Chemother Pharmacol, 2008. 61(4): p. 535-48.
63. Abou-Alfa, G.K., et al., Doxorubicin plus sorafenib vs doxorubicin alone in patients with advanced hepatocellular carcinoma: a randomized trial. JAMA, 2010. 304(19): p. 2154-60.
64. Prete, S.D., et al., Sorafenib plus octreotide is an effective and safe treatment in advanced hepatocellular carcinoma: multicenter phase II So.LAR. study. Cancer Chemother Pharmacol, 2010. 66(5): p. 837-44.
65. Hsu, C.H., et al., Phase II study of combining sorafenib with metronomic tegafur/uracil for advanced hepatocellular carcinoma. J Hepatol, 2010. 53(1): p. 126-31.
66. Zhou, X.W., K.Q. Su, and Y.M. Zhang, Applied modern biotechnology for cultivation of Ganoderma and development of their products. Appl Microbiol Biotechnol, 2012. 93(3): p. 941-63.
67. J.J. Gao, A.H., B.S. Min, N. Nakamura and M. Hattori, In vivo antitumor effects of bitter principles from the antlered form of fruiting bodies of Ganoderma lucidum. J Nat Med, 2006. 60: p. 42-48.
68. Paterson, R.R., Ganoderma - a therapeutic fungal biofactory. Phytochemistry, 2006. 67(18): p. 1985-2001.
69. Shi, L., et al., Current progress in the study on biosynthesis and regulation of ganoderic acids. Appl Microbiol Biotechnol, 2010. 88(6): p. 1243-51.
70. Lockshin, R.A. and Z. Zakeri, Apoptosis, autophagy, and more. Int J Biochem Cell Biol, 2004. 36(12): p. 2405-19.
71. Maiuri, M.C., et al., Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol, 2007. 8(9): p. 741-52.
72. Kerr, J.F., A.H. Wyllie, and A.R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972. 26(4): p. 239-57.
73. Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4): p. 495-516.
74. Vermeulen, K., D.R. Van Bockstaele, and Z.N. Berneman, Apoptosis: mechanisms and relevance in cancer. Ann Hematol, 2005. 84(10): p. 627-39.
75. Otera, H., et al., Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J, 2005. 24(7): p. 1375-86.
76. Soldani, C. and A.I. Scovassi, Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis, 2002. 7(4): p. 321-8.
77. Ferraro, E. and F. Cecconi, Autophagic and apoptotic response to stress signals in mammalian cells. Arch Biochem Biophys, 2007. 462(2): p. 210-9.
78. Chou, T.C. and P. Talalay, Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul, 1984. 22: p. 27-55.
79. Zhao, L., M.G. Wientjes, and J.L. Au, Evaluation of combination chemotherapy: integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clin Cancer Res, 2004. 10(23): p. 7994-8004.
80. Cifone, M.A., In vitro growth characteristics associated with benign and metastatic variants of tumor cells. Cancer Metastasis Rev, 1982. 1(4): p. 335-47.
81. Shoemaker, R.H., et al., Application of a human tumor colony-forming assay to new drug screening. Cancer Res, 1985. 45(5): p. 2145-53.
82. Malumbres, M. and M. Barbacid, To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer, 2001. 1(3): p. 222-31.
83. Seglen, P.O. and P.B. Gordon, 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A, 1982. 79(6): p. 1889-92.
84. Strumberg, D., et al., Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol, 2005. 23(5): p. 965-72.
85. Varghese, L., et al., Silibinin efficacy against human hepatocellular carcinoma. Clin Cancer Res, 2005. 11(23): p. 8441-8.
86. Relja, B., et al., Simvastatin inhibits cell growth and induces apoptosis and G0/G1 cell cycle arrest in hepatic cancer cells. Int J Mol Med, 2010. 26(5): p. 735-41.
87. Wang, J., et al., MDM2 antagonist can inhibit tumor growth in hepatocellular carcinoma with different types of p53 in vitro. J Gastroenterol Hepatol, 2011. 26(2): p. 371-7.
88. Fernando, J., et al., Sorafenib sensitizes hepatocellular carcinoma cells to physiological apoptotic stimuli. J Cell Physiol, 2012. 227(4): p. 1319-25.
89. Auclair, D., et al., Antitumor activity of sorafenib in FLT3-driven leukemic cells. Leukemia, 2007. 21(3): p. 439-45.
90. Huether, A., et al., Sorafenib alone or as combination therapy for growth control of cholangiocarcinoma. Biochem Pharmacol, 2007. 73(9): p. 1308-17.
91. Yang, F., et al., Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas. Mol Cancer Ther, 2008. 7(11): p. 3519-26.
92. Kakodkar, N.C., et al., Sorafenib inhibits neuroblastoma cell proliferation and signaling, blocks angiogenesis, and impairs tumor growth. Pediatr Blood Cancer, 2011.
93. Tai, W.T., et al., Signal transducer and activator of transcription 3 is a major kinase-independent target of sorafenib in hepatocellular carcinoma. J Hepatol, 2011. 55(5): p. 1041-8.
94. Alao, J.P., The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer, 2007. 6: p. 24.
95. Musgrove, E.A., et al., Cyclin D as a therapeutic target in cancer. Nat Rev Cancer, 2011. 11(8): p. 558-72.
96. Yu, Q., Y. Geng, and P. Sicinski, Specific protection against breast cancers by cyclin D1 ablation. Nature, 2001. 411(6841): p. 1017-21.
97. Huang, J.W., et al., Development of small-molecule cyclin D1-ablative agents. J Med Chem, 2006. 49(15): p. 4684-9.
98. Joe, A.K., et al., Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin Cancer Res, 2002. 8(3): p. 893-903.
99. Mukhopadhyay, A., et al., Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene, 2002. 21(57): p. 8852-61.
100. Li, K.K., et al., Activation of cyclin-dependent kinases CDC2 and CDK2 in hepatocellular carcinoma. Liver, 2002. 22(3): p. 259-68.
101. Hanse, E.A., et al., Cdk2 plays a critical role in hepatocyte cell cycle progression and survival in the setting of cyclin D1 expression in vivo. Cell Cycle, 2009. 8(17): p. 2802-9.
102. Lapenna, S. and A. Giordano, Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov, 2009. 8(7): p. 547-66.
103. Shapiro, G.I., Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol, 2006. 24(11): p. 1770-83.
104. Chiou, J.F., et al., Sorafenib induces preferential apoptotic killing of a drug- and radio-resistant Hep G2 cells through a mitochondria-dependent oxidative stress mechanism. Cancer Biol Ther, 2009. 8(20): p. 1904-13.
105. Park, M.A., et al., Vorinostat and sorafenib increase CD95 activation in gastrointestinal tumor cells through a Ca(2+)-de novo ceramide-PP2A-reactive oxygen species-dependent signaling pathway. Cancer Res, 2010. 70(15): p. 6313-24.
106. Chen, K.F., et al., Synergistic interactions between sorafenib and bortezomib in hepatocellular carcinoma involve PP2A-dependent Akt inactivation. J Hepatol, 2010. 52(1): p. 88-95.
107. Gu, F.M., et al., Sorafenib inhibits growth and metastasis of hepatocellular carcinoma by blocking STAT3. World J Gastroenterol, 2011. 17(34): p. 3922-32.
108. Blivet-Van Eggelpoel, M.J., et al., Epidermal growth factor receptor and HER-3 restrict cell response to sorafenib in hepatocellular carcinoma cells. J Hepatol, 2012.
109. Fujimaki, S., et al., Blockade of ataxia telangiectasia mutated sensitizes hepatoma cell lines to sorafenib by interfering with Akt signaling. Cancer Lett, 2012. 319(1): p. 98-108.
110. Chen, K.F., et al., Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Exp Ther, 2011. 337(1): p. 155-61.
111. Shi, Y.H., et al., Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma via ER stress-related apoptosis. Autophagy, 2011. 7(10): p. 1159-72.
112. Shimizu, S., et al., Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. Int J Cancer, 2012. 131(3): p. 548-57.
113. Park, M.A., et al., Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer Biol Ther, 2008. 7(10): p. 1648-62.
114. Bareford, M.D., et al., Sorafenib enhances pemetrexed cytotoxicity through an autophagy-dependent mechanism in cancer cells. Cancer Res, 2011. 71(14): p. 4955-67.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8050-
dc.description.abstractHepatocellular carcinoma (HCC) is the third cause of cancer-related death in the world. There is no efficient treatment for unresectable HCC. Sorafenib, a multiple kinase inhibitor, is the only targeted therapy drug for the treatment of unresectable HCC. It can improve the overall survival and progression time of the HCC patients. In clinical, lowering dosage is the solution to reduce sorafenib-induced side effects, like rash and hand-foot skin reaction. However, it leads to lower effectiveness of treatment. Low-dose sorafenib combined with other drugs (or adjuvant) to improve sorafenib efficacy may resolve the dilemma. In this study, Ganoderma triterpenoid T-612 from Lingzhi, a traditional Chinese medicine, was developed as an adjuvant of sorafenib for HCC. In HCC cell lines, compared to sorafenib alone, the combination with T-612 displayed synergistic cytotoxicity and growth inhibitory effects (IC50 of sorafenib was reduced 12 % to 51 %). Sorafenib treatment decreased colony formation efficiency, arrested cell growth in G0/G1 phase resulted by insufficiency of cyclin D, E and CDK2, increased reactive oxygen species, induced mitochondrial membrane damage and inhibited ERK phosphorylation. Apoptosis phenotypes, such as DNA fragmentation, caspase activation and AIF activation, were not detected whereas slight autophagy occurred by sorafenib treatment. However, autophagy is not the reason of cell death. Combined treatment with T-612 reinforced the effects of sorafenib, except ERK phosphorylation. The combination treatment induced serious autophagy, indicated by the increases of LC3-II and acidic vacule organells. Autophagy could be partially restored by autophagy inhibitor 3-MA. In conclusion, T-612 is a potential anti-cancer adjuvant that enhances the therapeutic efficacy of sorafenib in HCC cells.en
dc.description.provenanceMade available in DSpace on 2021-05-19T18:04:26Z (GMT). No. of bitstreams: 1
ntu-101-R99424012-1.pdf: 2098213 bytes, checksum: 6f0c3cb5c2915aa7bd5d1f7fe4d2e96f (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents摘要 I
Abstract II
英文名詞縮寫對照表 III
目錄 V
圖目錄 VII
1.研究背景 1
1.1.肝癌(Hepatocellular carcinoma) 1
1.2.肝癌的訊息傳遞與標靶治療 4
1.3.蕾莎瓦(Sorafenib) 5
1.4.靈芝(Ganoderma) 7
1.5.細胞週期(Cell cycle) 7
1.6.細胞程序性死亡(Programmed cell death) 9
2.研究目標 12
3.材料與方法 13
3.1.細胞培養 13
3.2.細胞活性測定 13
3.3.細胞膜通透性測定 13
3.4.胞落形成試驗 13
3.5.細胞週期分析 14
3.6.西方墨點法 14
3.7.細胞內粒線體活性氧化物(Reactive oxygen species,ROS)測定 15
3.8.細胞內粒線體膜完整性測定 15
3.9.細胞內Caspase活性測定 15
3.10.細胞內酸性囊狀胞器測定 15
3.11.統計分析 15
4.研究結果 16
4.1.T-612顯著地促進sorafenib對肝癌細胞株的抗癌活性 16
4.2.T-612促進sorafenib造成的細胞G0/G1時期停滯 18
4.3.T-612促進sorafenib造成的細胞活性氧化物累積及粒線體受損,移除活性氧化物無法恢復細胞活性,但可減緩粒線體受損情形 19
4.4.合併使用T-612無法增強sorafenib造成之訊息傳遞抑制 20
4.5.Sorafenib單獨處理或合併T-612皆不透過誘導細胞凋亡使細胞死亡 20
4.6.T-612增強sorafenib誘導之細胞自噬並使細胞死亡 20
5.討論 22
6.圖 26
7.參考文獻 37
8.附錄 42
附錄1.肝癌分期系統 42
附錄2.細胞自噬過程與其抑制劑 44
9.藥品材料清單 45
9.1.藥品與試劑 45
9.2.抗體 46
dc.language.isozh-TW
dc.subject抗癌佐劑zh_TW
dc.subject靈芝三&#33820zh_TW
dc.subjectsorafenibzh_TW
dc.subject肝癌zh_TW
dc.subject細胞週期停滯zh_TW
dc.subject細胞自噬zh_TW
dc.title靈芝三萜T-612透過誘導細胞自噬以促進Sorafenib於肝癌細胞株之效能zh_TW
dc.titleGanoderma Triterpenoid T-612 Enhances Efficacy of Sorafenib in Hepatocellular Carcinoma Cell Line through Induction of Autophagyen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊雅倩,胡忠怡,張雅雯
dc.subject.keyword肝癌,sorafenib,靈芝三&#33820,抗癌佐劑,細胞週期停滯,細胞自噬,zh_TW
dc.subject.keywordhepatocellular carcinoma,sorafenib,Ganoderma,G0/G1 arrest,autophagy,en
dc.relation.page46
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-07-06
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf2.05 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved