請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80509完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李苑玲(Yuan-Ling Le) | |
| dc.contributor.author | Yi-Ling Chen | en |
| dc.contributor.author | 陳怡伶 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:08:12Z | - |
| dc.date.available | 2021-11-05 | |
| dc.date.available | 2022-11-24T03:08:12Z | - |
| dc.date.copyright | 2021-11-05 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-29 | |
| dc.identifier.citation | Aguilar, P. and Linsuwanont, P., 2011. Vital Pulp Therapy in Vital Permanent Teeth with Cariously Exposed Pulp: A Systematic Review. Journal of Endodontics, 37: 581–587. Atmeh, A.R., Chong, E.Z., Richard, G., Festy, F. and Watson, T.F., 2012. Dentin-cement interfacial interaction: calcium silicates and polyalkenoates. Journal of Dental Research, 91: 454-459. Boulle, K.D., Glogau, R., Kono, T., Nathan, M., Tezel, A., Palawa, S. and Stroumpoulis, D., 2013. A Review of the Metabolism of 1,4-Butanediol Diglycidyl Ether–Crosslinked Hyaluronic Acid Dermal Fillers. Journal of Dermatologic Surgery, 39: 1758-1766. Chan, B.P. and Leong, K.W., 2008. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. European Spine Journal, 17: 467-479. Chen, T.N., Wen, Q., Janmey, P.A., Crocker, J.C. and Yodh, A.G., 2010. Rheology of Soft Materials. UPenn physics, 1: 301-322. Chrepa, V., Austah, O. and Diogenes, A., 2017. Evaluation of a Commercially Available Hyaluronic Acid Hydrogel (Restylane) as Injectable Scaffold for Dental Pulp Regeneration: An In Vitro Evaluation. Journal of Endodontics, 43: 257–262. Cowman, M.K., Cozart, D., Nakanishi, K. and Balazs, E.A., 1984. 1H NMR of glycosaminoglycans and hyaluronic acid oligosaccharides in aqueous solution: the amide proton environment. Archives of Biochemistry and Biophysics, 230: 203-212. Engler, A.J., Sen, S., Sweeney, H.L. and Dische, D.E., 2006. Matrix Elasticity Directs Stem Cell Lineage Specification. Cells 126: 677-689. Fakhari, A. and Berkland, C., 2013. Applications and Emerging Trends of Hyaluronic Acid in Tissue Engineering, as a Dermal Filler, and in Osteoarthritis Treatment. Acta Biomaterialia, 9: 7081–7092. Fallacara, A., Baldini, E., Manfredini, S. and Vertuani, S., 2018. Hyaluronic Acid in the Third Millennium. Polymers 10: 1-36. Friedman, S. and Mor, C., 2004. The success of endodontic therapy - healing and functionality. Journal of the Canadian Dental Association, 32: 493-503. Gronthos, S., Mankani, M., Brahim, J., Gehron Robey, P. and Shi, S., 2000. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. PNAS 97: 13625–13630. Huang, G.T.-J., Yamaza, T., Shea, L.D., Djouad, F., Kuhn, N.Z., Tuan, R.S. and Shi, S., 2010. Stem/Progenitor Cell–Mediated De Novo Regeneration of Dental Pulp with Newly Deposited Continuous Layer of Dentin in an In Vivo Model. Tissue Engineering: Part A, 16: 605-615. Huang, G.T.J., 2012. Dental pulp and dentin tissue engineering and regeneration – advancement and challenge. Frontiers in Bioscience, 3: 788-800. Iohara, K., Murakami, M., Takeuchi, N., Osako, Y., Ito, M., Ishizaka, R., Utunomiya, s., Nakamura, H., Matsushita, K. and Nakashima, M., 2013. A Novel Combinatorial Therapy With Pulp Stem Cells and Granulocyte Colony-Stimulating Factor for Total Pulp Regeneration. Stem cells translation medicine, 2: 521-533. ISO, 2009. 10993-5. Biological evaluation of medical devices-Part 5: Tests for in vitro cytotoxicity. 1-34. ISO, 2021. 10993-12. Biological evaluation of medical devices — Part 12: Sample preparation and reference materials., pp. 1-21. Kao, C.C., 2018. 研發搭載洛伐他汀之雙相型透明質酸膠體在牙髓組織再生的應用. 碩士論文. Karbanová, J., Corbeil, D., Soukup, T. and Mokrý, J., 2011. Characterization of Dental Pulp Stem Cells from Impacted Third Molars Cultured in Low Serum-Containing Medium. Cells Tissues Organs 193: 344-365. Kenne, L., Gohil, S., Nilsson, E.M., Karlsson, A., Ericsson, D., Kenne, A.H. and Nord, L.I., 2013. Modification and cross-linking parameters in hyaluronic acid hydrogels—Definitions and analytical methods. Carbohydrate Polymers 91: 410-418. Koh, I.S. and Lee, W., 2019. Filler Complications: Filler-Induced Hypersensitivity Reactions, Granuloma, Necrosis, and Blindness. Springer Singapore. Kuo, K.C., 2020. 搭載洛伐他汀之雙相型透明質酸膠體之降解行為及生物相容性分析. 碩士論文. Kvam, B.J., Atzori, M., Toffanin, R., Paoletti, S. and Biiviano, F., 1992. 1H- and 13C-NMR studies of solutions of hyaluronic acid esters and salts in methyl sulfoxide: comparison of hydrogen-bond patterns and conformational behaviour. Carbohydrate Research, 230: 1-13. Lei, T., Zhang, X. and Du, H., 2021. Characteristics, Classification, and Application of Stem Cells Derived from Human Teeth. Stem Cells International, 2021: 1-11. Lin, J.C., Lu, J.X., Zeng, Q., Zhao, W., Li, W.Q. and Ling, J.Q., 2016. Comparison of mineral trioxide aggregate and calcium hydroxide for apexification of immature permanent teeth: A systematic review and meta-analysis. Journal of the Formosan Medical Association, 115: 523-530. Liu, C.C., 2019. 研發搭載Tideglusib之雙相型透明質酸膠體在牙本質牙髓組織再生的應用. 碩士論文. Malson, T. and Lindqvist, B.L., 1987. Gel of crosslinked hyaluronic acid for use as a vitreous humor substitute. Masako, M., Stan, G., Mingrui, Z., Bai, L., Larry, W., Fisher, P., Gehron, R. and Songtao, S., 2003. SHED: Stem cells from human exfoliated deciduous teeth. PNAS 100: 5807-5812. Min, K.S., Park, H.J., Lee, S.K., Park, S.H., Hong, C.U., Kim, H.W., Lee, H.H. and Kim, E.C., 2008. Effect of mineral trioxide aggregate on dentin bridge formation and expression of dentin sialoprotein and heme oxygenase-1 in human dental pulp. Journal of Endodontics, 34: 666-670. Misra, S., Hascall, V., Markwald, R. and Ghatak, S., 2015. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Frontiers in Immunology, 6: 1-31. Molliard, S.G., Bétemps, J.B., Hadjab, B., Topchian, D., Micheels, P. and Salomon, D., 2018. Key rheological properties of hyaluronic acid fillers: from tissue integration to product degradation. Plastic and Aesthetic Research, 5: 1-8. Moussa, D. and Aparicio, C., 2019. Present and future of tissue engineering scaffolds for dentinpulp complex regeneration. Journal of Tissue Engineering and Regenerative Medicine, 13: 58-75. Nakashima, M., Iohara, K. and Sugiyama, M., 2009. Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration. Cytokine Growth Factor Reviews, 20: 435-440. Nygaard-Ostby, B. and Hjortdal, O., 1971. Tissue formation in the root canal following pulp removal. Scandinavian Journal of Dental Research, 79: 333-349. Pardue, E.L., Ibrahim , S. and Ramamurthi, A., 2008. Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering. Organogenesis 4: 203-214. Park, D., Kim, Y., Kim, H., Kim, k., Lee, Y.-S., Choe, J., Hahn, J.-H., Lee, H., Jeon, J., Choi, C., Kim, Y.-M. and Jeoung, D., 2012. Hyaluronic Acid Promotes Angiogenesis by Inducing RHAMM-TGFβ Receptor Interaction via CD44-PKCδ. Molecules and Cells, 33: 563-574. Patricia, B., Domenico, R., Simona, L., Jennifer, L.G. and Louis, M.L., 2014. Histologic Study of a Human Immature Permanent Premolar with Chronic Apical Abscess after Revascularization/ Revitalization. Journal of Endodontics, 40: 133– 139. Qu, T., Jing, J., Ren, Y., Ma, C., Q. Feng, J., Yu, Q. and Liu, X., 2015. Complete pulpodentin complex regeneration by modulating the stiffness of biomimetic matrix. Acta Biomaterialia., 16: 60-70. Silujjai, J. and Linsuwanont, P., 2017. Treatment Outcomes of Apexification or Revascularization in Nonvital Immature Permanent Teeth: A Retrospective Study. Journal of Endodontics, 43: 238–245. Sonoyama, W., Liu, Y., Yamaza, T., Tuan, R.S., Wang, S., Shi, S. and Huang, G.T.-J., 2008. Characterization of the Apical Papilla and Its Residing Stem Cells from Human Immature Permanent Teeth: A Pilot Study. Journal of Endodontics, 34: 166-171. Wende, F.J., Gohil, S., Nord, L.I., Kenne, A.H. and Sandström, C., 2017. 1D NMR methods for determination of degree of cross-linking and BDDE substitution positions in HA hydrogels. Carbohydrate Polymers 157: 1525-1530. West, D.C., Hampson, I.N., Arnold, F. and Kumar, S., 1985. Angiogenesis Induced by Degradation Products of Hyaluronic Acid. Science, 228(4705): 1324-1326. Yang, B., Guoa, X., Zang, H. and Liu, J., 2015. Determination of modification degree in BDDE-modified hyaluronic acid hydrogel by SEC/MS. Carbohydrate Polymers 131: 233-239. Yang, R., Tan, L., Cen, L. and Zhang, Z., 2016. An injectable scaffold based on crosslinked hyaluronic acid gel for tissue regeneration. RSC Advances, 6: 16838-16850. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80509 | - |
| dc.description.abstract | "應用組織工程技術促進牙髓-牙本質組織再生為現今研究趨勢。雙相型玻尿酸膠體材料(biphasic hyaluronic acid gel, biHAG)結合交聯型玻尿酸(crosslinked hyaluronic acid gel, cHAG)提供穩定立體結構,非交聯型玻尿酸(non-crosslinked hyaluronic acid gel, ncHA)易於生物降解釋放小分子玻尿酸促進血管新生的性質,做為支架材料應用於牙髓-牙本質組織再生深具潛力。本研究團隊使用1,4-丁二醇縮水甘油醚(1,4-butanediol diglycidal ether, BDDE)做為交聯劑所研發之biHAG,已被證實具有良好黏彈性、可注射性與良好生物相容性,但於活體皮下注射實驗結果發現biHAG生物降解時間過長,可能不利於牙髓-牙本質組織再生之應用。因此本研究目的為調整BDDE交聯反應濃度藉以改變cHAG交聯程度,進而調控biHAG生物降解性質,研發出適合應用於牙髓-牙本質組織再生之biHAG材料。以11%、8.25%、5.5% 之BDDE/HA(wt%)的條件分別製備高(H)、中(M)、低(L)三種不同交聯程度之2% cHAG,之後分別經420 μm(w)或250 μm(s)篩網製備出兩種不同尺寸之cHAG,再將2% cHAG與2% ncHA依設定比例混合製備出biHAGs。同時評估biHAGs之物理化學性質、體外與活體之生物相容性及降解行為,並使用de novo牙根植入實驗模型評估biHAGs促進牙髓-牙本質再生之能力。研究結果顯示降低BDDE/HA反應比例可降低cHAG之交聯度,其交聯修飾度(MoD)分別為14.87%(H)、8.42%(M)、5.29%(L)。同時隨交聯度降低,biHAGs的可注射性與生物降解性皆有提升,M與L組材料可通過30G注射針頭;在一天體外降解率方面,L組(46.5~48.8%)顯著高於H組(31.8~32.6%),而在16周小鼠皮下注射之活體生物降解率的表現,同樣是L組(41.6~50.4%)顯著高於H組(29.9~31.1%)。此外就粒徑分布而言,s組的材料在顆粒均勻度與可注射性表現上優於w組。此外,體外與活體研究證實不同交聯度biHAGs材料皆具有良好生物相容性。而於皮下注射動物實驗,不同交聯度biHAGs材料均可觀察到有纖維組織生成(fibrous tissue formation)與血管新生(angiogenesis),且隨著時間增長材料的降解與組織的增生都有明顯增加的趨勢。而將biHAGs與人類牙髓幹細胞(human dental pulp stem cells, hDPSCs)混合置入牙根片段的de novo牙根植入動物實驗結果顯示,H和M組於根管內有明顯較多的材料殘留,在靠近根尖開口處有少數纖維組織及血管生成,並伴隨多處發炎細胞浸潤與細胞碎片團塊;不過在少數樣本可觀察到鈣化程度不佳的類牙本質(dentin-like)結構生成,推測可能是材料剛性特質(stiffness)較高,有利於誘導細胞分化為牙本質母細胞。而不同於控制組在靠近根尖開口處長入富含血管的緻密結締組織與脂肪組織,L組材料在靠近根尖開口處可觀察到結構良好之纖維結締組織與血管組成的類牙髓組織(pulp-like tissue)生成,與根管壁相鄰處可觀察到有一層細胞排列,疑似為類牙本質母細胞(odontoblast-like cells),但沒有類牙本質組織的生成。總結而言,改變製程之BDDE/HA比例可調控cHAGs交聯度,進而影響biHAGs之黏彈性質、可注射性、生物可降解性、誘導組織生成特性等性質。低交聯之biHAG具有良好可注射性與生物相容性,生物降解性質適中可促進類牙髓組織生成,但在誘導類牙本質硬組織的能力不佳。而交聯較高之biHAGs雖在促進牙髓組織生成的能力不佳,但似乎具有誘導牙本質生成的潛力。未來若進一步結合不同交聯度biHAG之特性,其在牙髓–牙本質組織再生之可應用性將更具潛力。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:08:12Z (GMT). No. of bitstreams: 1 U0001-2710202108161700.pdf: 3952574 bytes, checksum: 9e895fc5a88834520de7c1b119872aa9 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 中文摘要 i 英文摘要 iii 目錄 vi 圖目錄 xi 表目錄 xiii 縮寫表 xiv 第一章 前言 1 第二章 文獻回顧 3 2.1 現代根管治療之發展與限制 3 2.2 組織工程於牙髓-牙本質再生之發展與應用 3 2.3 幹細胞於牙髓再生組織工程之應用 5 2.4 人類牙髓幹細胞之純化與繼代培養 6 2.5 支架材料的選擇 7 2.5.1 玻尿酸的特性 8 2.5.2 交聯型玻尿酸(cHAG) 9 2.5.3 玻尿酸材料於牙髓-牙本質再生之應用 9 2.5.4 雙相型玻尿酸膠體(biHAG) 10 第三章 動機與目的 12 第四章 材料與方法 13 4.1 儀器裝置 13 4.2 藥品材料 14 4.3 材料製備 15 4.3.1 交聯型玻尿酸膠體顆粒(cHAG)製備 15 4.3.2 雙相型玻尿酸膠體顆粒 16 4.3.3 材料命名方式 16 4.4 物理性質分析 16 4.4.1 交聯程度分析 16 4.4.2 粒徑分析 17 4.4.3 膨脹比例分析 18 4.4.4 流變性質分析 18 4.4.5 可注射性分析 19 4.5 體外生物相容性與降解行為分析 19 4.5.1 細胞生物相容性檢測 19 4.5.1.1 細胞選擇與培養 19 4.5.1.2 材料萃取液取得 20 4.5.1.3 細胞存活率檢測 21 4.5.1.4 細胞死亡率檢測 21 4.5.1.5 細胞生物相容性數據統計分析 22 4.5.2 體外降解行為分析 22 4.6 小鼠皮下注射材料之組織反應 23 4.6.1 製備注射材料 23 4.6.2 小鼠皮下注射 23 4.6.3 檢體製備與組織切片分析 24 4.6.4 統計分析 24 4.7 小鼠背部皮下人類牙根植入之組織反應 25 4.7.1 製備材料 25 4.7.2 人類牙根選擇與製備 25 4.7.3 小鼠背部植入人類牙根片段 26 4.7.3.1 小鼠術前麻醉 26 4.7.3.2 背部皮下植入牙根手術 26 4.7.3.3 牙根片段檢體製備與組織切片觀察 27 第五章 結果 28 5.1 玻尿酸材料之物理性質分析 28 5.1.1 交聯程度分析 28 5.1.2 粒徑分析 28 5.1.3 膨脹比例分析 29 5.1.4 流變性質分析 29 5.1.5 可注射性分析 30 5.2 玻尿酸材料之體外生物相容性分析 31 5.2.1 細胞存活率分析 31 5.2.2 細胞死亡率分析 31 5.3 玻尿酸材料活體生物相容性評估―小鼠皮下注射模型 31 5.3.1 材料檢體外觀 31 5.3.2 組織學觀察評估 31 5.4 玻尿酸材料降解行為評估 32 5.4.1 體外一天降解行為分析 32 5.4.2 活體材料降解行為評估 32 5.5 玻尿酸材料牙髓-牙本質組織再生潛力評估—牙根皮下植入模型 33 5.5.1 檢體外觀 33 5.5.2 牙根植入之組織學結果分析 34 第六章 討論 35 6.1 玻尿酸膠體材料之物理性質探討 35 6.1.1 交聯劑濃度對玻尿酸膠體之交聯程度影響 35 6.1.2 不同交聯程度玻尿酸材料之粒徑分布探討 36 6.1.3 玻尿酸材料交聯程度對膨脹比例影響之探討 38 6.1.4 玻尿酸材料交聯程度對流變性質影響之探討 38 6.1.5 不同玻尿酸材料之可注射性探討 40 6.2 不同玻尿酸材料之生物相容性探討 40 6.3 玻尿酸材料交聯程度對組織生成與降解行為影響之探討 42 6.4 小鼠背部皮下人類牙根片段植入模型之探討 44 6.4.1 牙髓-牙本質再生活體實驗模型探討 44 6.4.2 組織固定方式之探討 44 6.4.3 牙根脫鈣方式之探討 45 6.4.4 牙髓-牙本質組織生成潛力探討 45 第七章 結論 47 參考文獻 49 附錄 53 | |
| dc.language.iso | zh-TW | |
| dc.subject | 玻尿酸 | zh_TW |
| dc.subject | 牙根植入 | zh_TW |
| dc.subject | 皮下注射 | zh_TW |
| dc.subject | 生物降解性 | zh_TW |
| dc.subject | 生物相容性 | zh_TW |
| dc.subject | 牙髓-牙本質組織再生 | zh_TW |
| dc.subject | 交聯程度 | zh_TW |
| dc.subject | hyaluronic acid | en |
| dc.subject | degree of cross-linking | en |
| dc.subject | biocompatibility | en |
| dc.subject | biodegradability | en |
| dc.subject | dentin-pulp tissue regeneration | en |
| dc.subject | de novo animal study | en |
| dc.title | 不同交聯程度之雙相型玻尿酸膠體於牙髓—牙本質組織再生之應用 | zh_TW |
| dc.title | Biphasic Hyaluronic Acid Gel with Different Crosslinking Degree in Dentin-Pulp Tissue Regeneration | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李伯訓(Hsin-Tsai Liu),林峰輝(Chih-Yang Tseng) | |
| dc.subject.keyword | 牙髓-牙本質組織再生,玻尿酸,交聯程度,生物相容性,生物降解性,皮下注射,牙根植入, | zh_TW |
| dc.subject.keyword | dentin-pulp tissue regeneration,hyaluronic acid,degree of cross-linking,biocompatibility,biodegradability,de novo animal study, | en |
| dc.relation.page | 87 | |
| dc.identifier.doi | 10.6342/NTU202104305 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2710202108161700.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
