請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80460完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐治平(Jyh-Ping Hsu) | |
| dc.contributor.author | Yu-Jen Lee | en |
| dc.contributor.author | 李友仁 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:07:06Z | - |
| dc.date.available | 2022-02-21 | |
| dc.date.available | 2022-11-24T03:07:06Z | - |
| dc.date.copyright | 2022-02-21 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-01-01 | |
| dc.identifier.citation | [1] Valizadeh B, Nguyen Tu N, Stylianou KC. Shape engineering of metal-organic frameworks. Polyhedron 2018;145:1‒15. [2] Kumar P, Pournara A, Kim KH, Bansal V, Rapti S, Manos MJ. Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications. Prog Mater Sci 2017;86:25‒74. [3] Li J, Wang XX, Zhao GX, Chen CL, Chai ZF, Alsaedi A, Hayat T, Wang XK. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 2018;47:2322‒2356. [4] Chen YZ, Zhang R, Jiao L, Jiang HL. Metal-organic framework-derived porous materials for catalysis. Coordination Chem Rev 2018;362:1‒23. [5] Kempahanumakkagari S, Kumar V, Samaddar P, Kumar P, Ramakrishnappa T, Kim HK. Biomolecule-embedded metal-organic frameworks as an innovative sensing platform. Biotechnol Adv 2018;36:467‒481. [6] Wang L, Zheng M, Xie ZG. Nanoscale metal-organic frameworks for drug delivery: a conventional platform with new promise. J Mater Chem B 2018;6:707‒717. [7] Zhao JX, Li HY, Li CW, Zhang QC, Sun J, Wang XN, Guo JB, Xie LY, Xie JX, He B, Zhao ZY, Lu CH, Lu WB, Zhu G, Yao YG. MOF for template-directed growth of well-oriented nanowire hybrid arrays on carbon nanotube fibers for wearable electronics integrated with triboelectric nanogenerators. Nano Energy 2018;45:420‒431. [8] Xue CF, Wang EY, Feng L, Yuan QC, Hao XG, Xiao B. Large uniform copper 1,3,5-benzenetricarboxylate metal-organic-framework particles from slurry crystallization and their outstanding CO2 adsorption capacity. Microporous Mesoporous Mater 2018;264:190‒197. [9] Zhong RQ, Yu XF, Meng W, Han SB, Liu J, Ye YX, Sun CY, Chen GJ, Zou RQ. A solvent ‘squeezing’ strategy to graft ethylenediamine on Cu-(BTC)2 for highly efficient CO2/CO separation. Chem Eng Sci 2018;184:85‒92. [10] Schoenecker PM, Carson CG, Jasuja H, Flemming CJJ, Walton KS. Effect of water adsorption on retention of structure and surface area of metal-organic framework. Ind. Eng. Chem. Res. 2012;51:6513‒6519. [11] Bai Y, Dou Y, Xie LH, Rutledge W, Li JR, Zhou HC. Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 2016;45:2327-2367. [12] Cavka JH, Jakobesn S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 2008;130:13860‒13851. [13] Gelfand BS, Shimizu GKH. Parameterizing and grading hydrolytic stability in metal-organic frameworks. Dalton Trans 2016;4:3668‒3678. [14] Safaei M, Foroughi MM, Ebrahimpoor N, Jahani S, Omidi A, Khatami M. A review on metal-organic frameworks: Synthesis and applications. Trends Analyt. Chem. 2019; 118: 401-425. [15] Moreno GAO, Bernini MC, Blanco AAG, Marchetti SG, Barbero BP, Narda GE. Influence of different activation strategies on the activity and stability of MIL-53(Fe) as a dark-Fenton heterogeneous catalyst. Microporous Mesoporous Mater. 2020; 303: 110267. [16] Li Z, Wang M, Jin C, Kang J, Liu J, Yang H, Zhang Y, Pu Q, Zhao Y, You M, Wu Z. Synthesis of novel Co3O4 hierarchical porous nanosheets via corn stem and MOF-Co templates for efficient oxytetracycline degradation by peroxymonosulfate activation. Chem. Eng. J. 2020; 392: 123789. [17] Kaur R, Marwaha A, Chhabra VA, Kaushal K, Kim KH, Tripsthi SK. Facile synthesis of a Cu-based metal-organic framework from plastic waste and its application as a sensor of acetone. J. Clean Prod. 2020; 263: 121492. [18] Wang W, Ge A, Zhu H, Yang P. A water-stable Zn(II)-based metal-organic framework for selective detection of Fe3+ ion and treatment effect on children asthma by reducing apoptosis of eosinophil. Inorg. Chim. Acta 2020; 506: 119526. [19] Guo X, Zhu N, Lou Y, Ren S, Pang S, He Y, Chen XB, Shi Z, Feng S. A stable nanoscaled Zr-MOF for the detection of toxic mycotoxin through a pH-modulated ratiometric luminescent switch. Chem. Comm. 2020; 40: 5389-5392. [20] Tshuma P, Makhubela BCE, Ohrstrom L, Bourne SA, Chatterjee N, Beas IN, Darkwa J, Mehlana G. Cyclometalation of lanthanum(III) based MOF for catalytic hydrogenation of carbon dioxide to formate. RSC Adv. 2020; 10(6): 3593-3605. [21] Zhou J, Liu H, Lin Y, Zhou C, Huang A. Synthesis of well-shaped and high-crystalline Ce-based metal organic framework for CO2/CH4 separation. Microporous Mesoporous Mater. 2020; 302: 110224. [22] Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999; 283, 1148-1150. [23] Katsoulidis AP, Park KS, Antypov D, Marti-Gastaldo C, Miller GJ, Robertson CM, Warren JE, Blanc F, Darling G, Berry N, Purton J, Adams D, Rosseinsky MJ. Guest-adaptable and water-stable peptide-based porous materials by imidazolate side chain control. Angew. Chem. Int. Ed. 2014; 53, 193. [24] Chen L, Mowat JPS, Fairen-Jimenez D, Morrison CA, Thompson SP, Wright PA, Düren T. Elucidating the breathing of the metal-organic framework MIL-53(Sc) with ab initio molecular dynamics simulations and in situ X-ray powder diffraction experiments. J. Am. Chem. Soc., 2013; 135, 15763–15773. [25] Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112(2): 933-969. [26] Qin J, Wang J, Yang J, Hu Y, Fu M, Ye D. Metal organic framework derivative-TiO2 composite as efficient and durable photocatalyst for the degradation of toluene. Appl. Catal. B 2020; 267: 118667. [27] Noorian SA, Hemmatinejad N, Navarro JAR. Bioactive molecule encapsultation on metal-organic framework via simple mechanochemical method for controlled topical drug delivery systems. Microporous Mesoporous Mater. 2020; 302: 110199. [28] Zhang X, Wan K, Subramanian P, Xu M, Luo J, Fransaer J. Electrochemical deposition of metal-organic framework films and their applications. J. Mat. Chem. A 2020; 8(16): 7569-7587. [29] Dang YT, Hoang HT, Dong HC, Bui KBT, Nguyen LHT, Phan TB, Kawazoe Y, Doan TLH. Microwave-assisted synthesis of nano Hf- and Zr- based metal-organic frameworks for enhancement of curcumin adsorption. Microporous Mesoporous Mater. 2020; 298: 110064. [30] Haghighi E, Zeinali S. Formaldehyde detection using quartz crystal microbalance (QCM) nanosensor coated by nanoporous MIL-101(Cr) film. Microporous Mesoporous Mater. 2020; 300: 110065. [31] Chang YS, Li JH, Chen YC, Ho WH, Song YD, Kung CW. Electrodeposition of pore-confined cobalt in metal-organic framework thin films toward electrochemical H2O2 detection. Electrochim. Acta 2020; 347: 136276. [32] Wang Q, Astruc D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020; 120(2): 1438-1511. [33] Troyano J, Carne-Sanchez A, Avci C, Imaz I, Maspoch D. Colloidal metal-organic framework particle: the pioneering case of ZIF-8. Chem. Soc. Rev. 2020; 48(23): 5534-5546. [34] Qadir NU, Said SAM, Bahaidarah HM. Structural stability of metal organic frameworks in aqueous media – controlling factors and methods to improve hydrostability and hydrothermal cyclic stability. Microporous Mesoporous Mater 2015;201:61–90. [35] Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM. Hydrogen storage in microporous metal-organic frameworks. Science 2003;300:1127‒1129. [36] Kaye SS, Daily A, Yaghi OM, Long JR. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J Am Chem Soc 2007;129:14176‒14177. [37] Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Ferey G. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. - Eur. J. 2004;10:1373‒1382. [38] DeCoste JB, Peterson GW, Jasuja H, Glover TG, Huang YG, Walton KS. Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secondary building unit. J Mater Chem A 2013;1:5642‒5650. [39] Burtch NC, Jasuja H, Walton KS. Water stability and adsorption in metal–organic frameworks. Chem Rev 2014;114:10575‒10612 [40] Low JJ, Benin AI, Jakubczak P, Abrahamian JF, Faheem SA, Willis RR, Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. J Am Chem Soc 2009;131:15834‒15842. [41] Colombo V, Galli S, Choi HJ, Maspero A, Palmisano G, Masciocchi N, Long JR. High thermal and chemical stability in pyrazolate-bridged metal-organic frameworks with exposed metal sites. Chem Sci 2011;2:1311‒1319. [42] Jasuja H, Walton KS. Effect of catenation and basicity of pillared ligands on the water stability of MOFs. Dalton Trans 2013;42:15421‒15426. [43] Rosi NL, Kim J, Eddaoudi M, Chen B, O;Keeffe M, Yaghi OM. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc 2005;127:1504‒1518. [44] Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P. Stable metal–organic frameworks: design, synthesis, and applications. Adv Mater 2018;1704303 [45] Yang J, Grzech A, Mulderb FM, Dingemans TJ. Methyl modified MOF-5: a water stable hydrogen storage material. Chem Comm 2011;47:5244‒5246. [46] Chen B, Ma S, Zapata F, Fronczek FR, Lobkovsky EB, Zhou HC. Rationally designed micropores within a metal-organic framework for selective sorption of gas molecules. Inorg Chem 2007;46:1233‒1236. [47] Cohen SM. The postsynthetic renaissance in porous solids. J Am Chem Soc 2017;139:2855‒2863. [48] Wang B, Lv XL, Fen D, Xie LH, Zhang J, Li M, Xie Y, Li JR, Zhou HC. Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water. J Am Chem Soc 2016;138:6204‒6216. [49] Lv XL, Tong M, Huang H, Wang B, Gan L, Yang Q, Zhong C, Li JR. A high surface area Zr(IV)-based metal-organic framework showing stepwise gas adsorption and selective dye uptake. J Solid State Chem 2015;223:104‒108. [50] Lin Q, Bu X, Kong A, Mao C, Zhao X, Bu F, Feng P. New heterometallic zirconium metalloporphyrin frameworks and their heteroatom-activated high-surface-area carbon derivatives. J Am Chem Soc 2015;137:2235‒2238. [51] Bon V, Senkovska I, Baburin IA, Kaskel S. Zr- and Hf-based metal-organic frameworks: tracking down the polymorphism. Cryst Growth Design 2013b;13:1231‒1237. [52] Zhang Y, Ruan Q, Peng Y, Han G, Huang H, Zhong C. 2018. Synthesis of hierarchical-pore metal-organic framework on liter scale for large organic pollutants capture in wastewater. J Colloid Interf Sci 2018;525:39‒47. [53] Guillerm V, Ragon F, Dan-Hardi M, Devic T, Vishnuvarthan M, Campo B, Vimont A, Clet G, Yang Q, Maurin G, Ferey G, Vittadini A, Gross S, Serre C. A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks. Angew Chem Int Edn 2012;51:9267‒9271. [54] Stassin T, Reinsch H, Van de Voorde B, Wuttke S, Medina DD, Stock N, Bein T, Ameloot R, de Vos D. Adsorption and reactive desorption on metal–organic frameworks: A direct strategy for lactic acid recovery. ChemSusChem 2017;10:643‒650 [55] Mouchaham G, Cooper L, Guillou N, Martineau C, Elkaim E, Bourrelly S, Llewellyn PL, Allain C, Clavier G, Serre C, Devic T. A robust infinite zirconium phenolate building unit to enhance the chemical stability of Zr MOFs. Angew Chem Int Edn 2015;54:13297‒13301. [56] Chen Y, Hoang T, Ma S. Biomimetic catalysis of a porous iron-based metal-metalloporphyrin framework. Inorg Chem 2012;51:12600‒12602. [57] Morris W, Volosskiy B, Demir S, Gandara F, McGrier PL, Furukawa H, Cascio D, Stoddart JF, Yaghi OM. 2012. Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. Inorg Chem 2012;51:6443‒6445. [58] Fukukawa H, Gandara F, Zhang YB, Jiang J, Queen WL, Hudson MW, Yaghi OM. 2014. Water adsorption in porous metal-organic frameworks and related materials. J Am Chem Soc 2014;136:4369‒4381. [59] Motegi H, Yano K, Setoyama N, Matsuoka Y, Ohmura T, Usuki A. A facile synthesis of UiO-66 systems and their hydrothermal stability. J Porous Mater 2017;24:1327‒1333. [60] Alamgir, Talha K, Wang B, Liu JH, Ullah R, Feng F, Yu J, Chen S, Li JR. Effective adsorption of metronidazole antibiotic from water with a stable Zr(IV)-MOFs: Insights from DFT, kinetics and thermodynamics studies. J. Environ. Chem. Eng. 2020; 8(1): 103642. [61] Wang S, Wang J, Cheng W, Yang X, Zhang Z, Xu Y, Liu H, Wu Y, Fang M. A Zr metal–organic framework based on tetrakis (4-carboxyphenyl) silane and factors affecting the hydrothermal stability of Zr-MOFs. Dalton Trans 2015;44:8049‒8061 [62] Mondloch J E, Katz M J, Planas N, Semrouni D, Gagliardi L, Hupp J T, Farha O K. Are Zr 6-based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse. Chem Comm 2014;50:8944-8946 [63] Howarth AJ, Liu Y, Hupp JT, Farha OK. Metal-organic frameworks for applications in remediation of oxynion/cation-contaminated water. CrystEngComm 2015;17:7245. [64] Gutov OV, Bury W, Gomez-Gualdron DA, Krungleviciute V, Fairen-Jimenez D, Mondloch JE, Sarjeant AA, Al-Juaid SS, Snurr RQ, Hupp JT, Yildirim T, Farha OK. 2014. Water-stable zirconium-based metal-organic framework material with high-surface area and gas-storage capacities. Chem Eur J 2014;20:12389‒12393. [65] Taddei M, Costantino F, Vivani R, Sabatini S, Lim SH, Cohen SM. The use of a rigid tritopic phosphonic ligand for the synthesis of a robust honeycomb-like layered zirconium phosphonate framework. Chem Comm 2014;50:5737. [66] Feng D, Gu ZY, Li JR, Jiang HL, Wei Z, Zhou HC. Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew Chem Int Edn 2012;51:10307‒10310. [67] Feng D, Gu ZY, Chen YP, Park J, Wei Z, Sun Y, Bosch M, Yuan S, Zhou HC. A highly stable porphyrinic zirconium metal-organic framework with shp-a topology. J Am Chem Soc 2014;136:17714‒17717. [68] Feng D, Chung W, Wei Z, Gu ZY, Jiang HL, Chen YP, Darensbourg DJ, Zhou HC. Construction of ultrastable porphyrin Zr metal–organic frameworks through linker elimination. J Am Chem Soc 2013;135:17105‒17110 [69] Jiang HL, Feng D, Wang K, Gu ZY, Wei Z, Chen YP, Zhou HC. An exceptionally stable, porphyrine Zr metal-organic framework exhibiting pH-dependent fluorescence. J Am Chem Soc 2013;135:13934‒13938. [70] Liu TF, Feng D, Chen YP, Zou L, Bosch M, Yuan S, Wei Z, Fordham S, Wnag K, Zhou HC. Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal-organic frameworks with high surface area. J Am Chem Soc 2015;137:413‒419. [71] Jiang HL, Feng D, Liu TF, Li JR, Zhou HC. Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal-organic frameworks. J Am Chem Soc 2012;134:14690‒14693. [72] Lammert M, Glibmann C, Stock N. Turning the stability of biometallic Ce(IV)/Zr(IV)-based MOFs with UiO-66 and MOF-808 structures. Dalton Comm 2017;46:2425. [73] Lin S, Reddy DHK, Bediako JK, Song MH, Wei W, Kim JA, Yun YS. Effective adsorption of Pd(II), Pt(IV) and Au(III) by Zr(IV)-based metal-organic frameworks from strongly acidic solutions. J Mater Chem A 2017;5:13557. [74] Molavi H, Hakimian A, Shojaei A, Raeiszadeh M. Selective dye adsorption by highly water stable metal-organic framework: long term stability analysis in aqueous media. Appl Surf Sci 2018;445:424‒436. [75] Wang K, Li C, Liang Y, Han T, Huang H, Yang Q, Liu D, Zhong C. Rational construction of defects in a metal–organic framework for highly efficient adsorption and separation of dyes. Chem Eng J 2016;289:486‒493 [76] Lin KYA, Chen SY, Jochems AP. Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine. Mater Chem Phys 2015;160:168‒176. [77] Lee SJ, Kim S, Ki, EJ, Kim M, Bae YS. Adsorptive separation of xenon/krypton mixtures using ligand controls in a zirconium-based metal-organic framework. Chem Eng J 2018;335:345‒351 [78] Ploskonka AM, Marzen SE, DeCoste JB. Facile synthesis and direct Activation of zirconium based metal–organic frameworks from acetone. Ind Eng Chem Res 2017;56:1478‒1484 [79] Hu Z, Peng Y, Kang Z, Qian Y, Zhao D. A modulated hydrothermal (MHT) approach for the facile synthesis of UiO-66-type MOFs. Inorg Chem 2015;54:4862‒4868. [80] Embaby MS, Elwany SD, Setyaningsih W, Saber MR. The adsorptive properties of UiO-66 towards organic dyes: A record adsorption capacity for the anionic dye Alizarin Red S. Chin J Chem Eng 2018;26:737‒739 [81] Chavan SM, Shearer GC, Svelle S, Olsbye U, Bonino F, Ethiraj J, Lillerud KP, Bordiga S. Synthesis and characterization of amine-functionalized mixed-ligand metal–organic frameworks of UiO-66 topology. Inorg Chem 2014;53:9509‒9515. [82] Pu S, Xu L, Sun L, Du H. Tuning the optical properties of the zirconium-UiO-66 metal-organic framework for photocatalytic degradation of methyl orange. Inorg Chem Comm 2015;52:50‒52. [83] Leus K, Perez J P H, Folens K, Meledina M, Van Tendeloo G, Du Laing G, van der Voort P. UiO-66-(SH)2 as stable, selective and regenerable adsorbent for the removal of mercury from water under environmentally-relevant conditions. Faraday Discuss 2017;201:145‒161. [84] Chen L, Bai Zg, Zhu L, Zhang L, Cai Y, Li Y, Liu W, Wang Y, Chen L, Diwu J, Wang J, Chai Z, Wang S. Ultrafast and efficient extraction of uranium from seawater using an amidoxime appended metal–organic framework. ACS Appl Mater Interf 2017;9:32446‒32451. [85] Molavi H, Moghimi H, Taheri RA. Zr-based MOFs with high drug loading for adsorption removal of anti-cancer drugs: A potential drug storage. Appl. Organomet. Chem. 2020; 34(4): e5549. [86] Xu R, Ji Q, Zhao P, Jian M, Xiang C, Hu C, Zhang G, Tang C, Liu R, Zhang X, Qu J. Hierarchically porous UiO-66 with tunable mesopores and oxygen vacancies for enhanced arsenic removal. J. Mat. Chem. A 2020; 8(16): 7870-7879. [87] Ma J, Wong-Foy AG, Matzger AJ. The role of modulators in controlling layer spacings in a tritopic linker based zirconium 2D microporous coordination polymer. Inorg Chem 2015;54:4591‒4593. [88] Zhang XD, Hou SZ, Wu JX, Gu ZY. Two-dimensional metal-organic framework nanosheets with cobalt-porphyrins for high-performance CO2 reduction. Chem. Eur. J. 2020; 26(7): 1604-1611. [89] Kalidindi S B, Nayak S, Briggs M E, Jansat S, Katsoulidis A P, Miller G J, Warren J E, Antypov D, Corà F, Slater B. Chemical and structural stability of zirconium‐based metal–organic frameworks with large three‐dimensional pores by linker engineering. Angew Chem Int Edn 2015b; 54: 221‒226. [90] Yoon M, Moon D. New Zr(IV) based metal-organic framework comprising a sulfur-containing ligand: Enhancement of CO2 and H2 storage capacity. Microporous Mesoporous Mater. 2015;215:116‒122. [91] Wang K, Huang H, Xue W, Liu D, Zhao X, Xiao Y, Li Z, Yang Q, Wang L, Zhong C. An ultrastable Zr metal-organic framework with a thiophene-type ligand containing methyl groups. CrystEngComm 2015c;17:3586. [92] Wang TC, Bury W, Gomez-Gualdron DA, Vermeulen NA, Mondloch JE, Deria P, Zhang K, Moghadam PZ, Sarjeant AA, Snurr RQ, Stoddart JF, Hupp JT, Farha OK. 2015. Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory. J Am Chem Soc 2015;137:3585‒3591. [93] Chen SS. The roles of imidazole ligands in coordination supramolecular systems. CrysEngComm 2016;18:6543‒6565. [94] Lv XL, Wang K, Wang B, Su J, Zou X, Xie Y, Li JR, Zhou HC. A base-resistant metalloporphyrin metal-organic framework for C-H bond halogention. J Am Chem Soc 2017;139:211‒217. [95] Hajek J, Caratelli C, Demuynck R, de Wispelaere K, Vanduyfhuys L, Waroquier M, van Speybroeck V. On the intrinsic dynamic nature of the rigid UiO-66 metal-organic framework. Chem Sci 2018;9:2723. [96] Wang C. Metal-organic materials for harmful anionic species removal from aqueous solution: investigation, characterization and application. PhD dissertation, National University of Singapore, 2017. [97] Liu X. Metal-organic framework UiO-66 membranes. Chem. Sci. Eng. 2020; 14(2): 216-232. [98] Reinsch H, Stassen I, Bueken B, Lieb A, Ameloot R, de Vos D. First examples of aliphatic zirconium MOFs and the influence of inorganic anions on their crystal structures. CrystEngComm 2015;17:331‒337. [99] Kim M, Cohen SM. Discovery, development, and functionalization of Zr(IV)-based metal-organic frameworks. CrystEngComm 2012;14:4096‒4104. [100] Zhao X., Liu D., Huang H. Zhang W., Yang Q., Zhong C. The stability and defluoridation performance of MOFs in fluoride solutions. Microporous Mesoporous Mater. 2013; 185: 72-78. [101] Howarth A.J., Katz M.J., Wang T.C., Platero-Prats A.E., Chapman K.W., Hupp J.T., Farha O.K. High efficiency adsorption and removal of selenite and selenite from water using metal-organic frameworks. J. Am. Chem. Soc. 2015; 137: 7488-7494. [102] Wang C., Liu X., Chen J.P., Li K. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66. Sci. Rep. 2015; 5: 16613-16622. [103] Lin KYA, Chen SY, Jochems AP. Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine. Mater Chem Phys 2015; 160: 168‒176. [104] Saleem H., Rafique U., Davies R.P. Investigations on post-synthetically modified UiO-66-NH2 for the adsorption of heavy metal ions from aqueous solution. Microporous Mesoporous Mater. 2016; 221: 238-244. [105] Taddei M. 2017. When defects turn into virtues: the curious case of zirconium-based metal-organic frameworks. Coor Chem Rev 343, 1-24. [106] Orellana-Tavra C., Baxter E.F., Tian T., Bennett T.D., Slater N.K.H., Cheetham A.K., Fairen-Jimenez D. 2015. Amorphous metal-organic frameworks for drug delivery. Chem Comm 51, 13878-13881. [107] Orellana-Tavra C., Marshall R.J., Baxter E.F., Lazaro I.A. 2016. Drug delivery and controlled release from biocompatible metal-organic frameworks using mechanical amorphization. J Mater Chem B 4, 7697-7707. [108] Zhang T., Wang J., ZhangW., Yang C. Zhang L., Zhu W., Sun J., Ki G., Ki T., Wang J. Amorphous Fe/Mn bimetal-organic frameworks: outer and inner structural design for efficient arsenic(III) removal. J Mater Chem 7, 2845-2854. [109] Gao Y, Deng S.Q., Jin X., Cai S.L., Zheng S.R., Zhang W.G. 2019. The construction of amorphous metal-organic cage-based solid for rapid dye adsorption and time-dependent dye separation from water. Chem. Eng. J. 357, 129-139. [110] Erkartal M., Durandurdu M. 2018. Pressure-induced amorphization of MOF-5: A first principles study. ChemistrySelect 3, 8056-8063. [111] Wang Y., Zhang N., Chen D., Ma D., Liu G., Zou X., Chen Y., Shu R., Song Q. Lv W. 2019aa. Facile synthesis of acid-modified UiO-66 to enhance the removal of Cr(VI) from aqueous solutions. [112] Qiu H., Yang L., Liu F., Zhao Y., Liu L., Zhu J., Song M. 2017. Highly selective capture of phosphate ions from water by a water stable metal-organic framework modified with polyethyleneimine. Environ. Sci. Pollut. Res. 24, 23694-23703. [113] Qiu H., Ye M. Zeng Q., Li W., Fortner J., Liu L., Yang L. 2019. Fabrication of agricultural waste supported UiO-66 nanoparticles with high utilization in phosphate removal from water. Chem. Eng. J. 360, 621-630. [114] Klet RC, Liu Y, Wang TC, Hupp JT, Farha OK. Evaluation of Bronsted acidity and proton topology in Zr- and Hf-based metal-organic frameworks using potentiometric acid-base titration. J Mater Chem A 2016;4:1479‒1485. [115] Dai W, Fang Y, Yu L, Zhao G, Yan X. Rubidium ion capture with composite adsorbent PMA@HKUST-1. J Taiwan Inst Chem Engrs 2018;84:222‒228. [116] Ayati A, Shahrak MN, Tanhaei B, Sillanpaa M. Emerging adsorptive removal of zao dye by metal-organic frameworks. Chemosphere 2016;160:30‒44. [117] Bao S, Li K, Ning P, Peng J, Jin X, Tang L. Synthesis of amino-functionalization magnetic multi-metal organic framework (Fe3O4/MIL-101(Al0.9Fe0.1)/NH2) for efficient removal of methyl orange from aqueous solution. J Taiwan Inst Chem Engrs 2018;87:64‒72. [118] Zhang X, Sun F, He J, Xu H, Cui F, Wang W. Robust phosphate capture over inorganic adsorbents derived from lanthanum metal organic frameworks. Chem Eng J 2017;326:1086‒1094. [119] Li Y, Xie Q, Hu Q, Li C, Huang Z, Yang X, Guo H. Surface modification of hollow magnetic Fe3O4@NH2-MIL-101(Fe) derived from metal-organic frameworks for enhanced selective removal of phosphates from aqueous solution. Sci Rep 2016;6:30651 [120] Yang Q, Zhao Q, Ren SS, Chen Z, Zheng H. Assembly of Zr-MOF crystals onto magnetic beads as a highly adsorbent for recycling nitrophenol. Chem Eng J 2017;323:74–83. [121] Yang Q, Wang J, Chen X, Yang W, Pei H, Hu N, Li Z, Suo Y, Li T, Wang J. The simultaneous detection and removal of organphosphorus pesticides by a novel Zr-MOF based smart adsorbent. J Mater Chem A 2018;6:2184. [122] Abney CW, Taylor-Pashow ML, Russell SR, Chen Y, Samantaray R, Lockard JV, Lin W. Topotactic transformations of metal-organic frameworks to highly porous and stable inorganic sorbents for efficient radionuclide sequestration. Chem Mater 2014;26:5231. [123] Wang YC, Lu WH, Chen HB, Yen SC. Synergetic effect of aluminum and Mo/Al etching in phosphoric aid-based etchant with nitric acid. J. Electrochem. Soc. 2012;159:103‒107. [124] Shibata J, Morikawa M, Yamamoto H. Separation and recovery of acid from waste acid mixture in silicon wafer manufacturing industry. Kagaku Kogaku Ronbunshu 2003;28:338‒344. [125] Chen JY, Lin CW, Lin PH, Li CW, Liang YM, Liu JC, Chen SS. Fluoride recovery from spent fluoride etching solution through crystallization of Na3AlF6 (synthetic cryolite). Separ. Purif. Technol. 2014;137:53‒58. [126] Yamamoto H, Sumoge I. Distillation separation of hydrofluoric acid and nitric acid from acid waste using the salt effect on vapor-liquid equilibrium. Int J Thermophys.2011;32:706‒719. [127] Kim JY, Shin CH, Choi H, Bae W. Recovery of phosphoric acid from mixed waste acids of semiconductor industry by diffusion dialysis and vacuum distillation. Separ. Purif. Technol. 2012;90:64‒68. [128] Chen F, Wang X, Liu W, Liang B, Yue H, Li C. Selective extraction of nitric and acetic acids from etching waste acid using N235 and MIBK mixtures. Separ. Purif. Technol.2016;169:50‒58. [129] Motoda Y, Morikawa M, Murayama N. Recovery of phosphoric acid from waste acid mixture with solvent extraction. Technol. Rep. Kansei Univ. 2004;46:21‒30. [130] Jia X, Li J, Jin Y, Luo J, Wang B, Qi Y. Liquid-liquid equilibrium in the nitric acid/phosphoric acid/water/tri-n-octylamine system. J. Chem. Eng. Data. 2013;58:78‒83. [131] Xie Q, Li Y, Lv Z, Zhou H, Yang X, Chen J, Guo H. Effective adsorption and removal of phosphate from solutions and eutrophic water by Fe-based MOFs of MIL101. Sci. Rep. 2017;7:3316. [132] Liu Z, Zhang Y, Yan P, Luo J, Kong L, Chang J, Liu B, Xu D, He F, Wu Z. Synergistic control of internal phosphorus loading from eutrophic lake sediment using MMF coupled with submerged macrophytes. Sci. Total Environ. 2020; 731:138697. [133] Shalaby MS, Abdallah H, Cenian A, SolowskiG, Sawczak M, Shaban AM, Ramadan R. Laser synthesized gold-nanoparticles, blending NF membrane for phosphate separation from wastewater. Sep. Purif. Technol. 2020; 247:116994. [134] Hermassi M, Valderrama C, Font O, Moreno N, Querol X, Batis NH, Cortina JL. Phosphate recovery from aqueous solution by K-zeolite synthesized from fly ash for subsequent valorisation as slow release fertilizer. Sci. Total Envion. 2020; 731: 139002. [135] Cui Q, Xu J, Wang W, Tan L, Cui Y, Wang T, Li G, She D, Zheng J. Phosphorus recovery by core-shell γ-Al2O3/Fe3O4 biochar composite from aqueous phosphate solutions. Sci. Total Environ. 2020; 729: 13889. [136] Rabbani D, Rashidipour F, Nasseri S, Mousavi SGA, Shaterian M. High-efficiency removal of phosphorus from filtered activated sludge effluent using electrochemical process. J. Clean Prod. 2020; 263: 121444. [137] Ding M, Cai X, Jiang HL. Improving MOF stability: approaches and applications. Chem. Sci. 2019; 10: 10209. [138] Li Z, Cai W, Yang X, Zhou A, Zhu Y, Wang H, Zhou X, Xiong K, Zhang Q, Gai Y. Cationic metal-organic frameworks based on linear zwitterionic ligands for Cr2O72- and ammonia sensing. Cryst. Growth Des. 2020; 20(5): 3466-3473. [139] Cui Y, Chen F, Yin, XB. A ratiometric fluorescence platform based on boric-acid-functional Eu-MOF for sensitive detection of H2O2 and glucose. Biosens. Bioelectron. 2019; 135: 208-215. [140] Xu W, Dong M, Di L, Zhang X. A facile method for preparting UiO-66 encapsulated Ru catalyst and its application in plasma-assisted CO2 methanation. Nanomaterials 2019;9:1432. [141] Lin S, Bediako JK, Cho CW, Song MH, Zhao Y, Kim JA, Choi JW, Yun YS. Selective adsorption of Pd (II) over interfering metal ions (Co (II), Ni (II), Pt (IV)) from acidic aqueous phase by metal-organic frameworks. Chem. Eng. J. 2018;345:337‒344. [142] Elwakeel KZ, Al-Bogami AS. Influence of Mo(VI) immobilization and temperature on As(V) sorption onto magnetic separable poly-p-phenylenediamine-thiourea-formaldehyde polymer. J Hazard Mater 2018;342:335‒346. [143] Elwakeel KZ, El-Bindary AA, Kouta EY. Retention of copper, cadmium and lead from water by Na-Y-zeolite confined in methyl methacrylate shell. J Environ Chem Eng 2017;5:3698‒3710. [144] Diaz-Torres R., Alvarez S. 2011. Coordinating ability of anions and solvents towards transition metals and lanthanides. Dalton Trans. 40, 10742-10750. [145] Ciesla U, Stucky G, Schuth F. Improvement of the thermal stability of mesostructured metal oxides with zirconia as the example. Studies Surf. Sci. Catal. 1998; 117, 527-534. [146] Sadeghi S, Jafarzadeh M, Abbasi AR, Daasbjerg K. 2017. Incorporation of CuO NPs into modified UiO-66-NH2 metal-organic frameworks (MOFs) with melamine for catalytic C-O coupling in the Ullmann condensation. New J Chem 41, 12014-12027. [147] Abdi D., Cade-Menun B.J., Ziadi N., Shi Y., Belanger G., Lajeunesse J., Lafond J. 2019. A 31P-NMR spectroscopic study of phosphorus forms in two phosphorus-fertilized grassland soils in eastern Canada. Can. J. Soil Sci. 99, 161-172. [148] Cade-Menun B.J., Carter M.R., James D.C., Liu C.W. 2010. Phosphorus forms and chemistry in the soil profile under long-term conservation tillage: a phosphorus-31 nuclear magnetic resonance study. J. Environ. Qual. 39, 1647-1656. [149] Sannigrahi P., Ingall E. 2005. Polyphosphates as a source of enhanced P fluxes in marine sediments overlain by anoxic waters: Evidence from 31P NMR. Geochem. Trans. 6, 52. [150] Hu Z, Zhao D. De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal-organic frameworks and membrane materials. Dalton Trans 2015;44:19018‒19040. [151] Rubio-Martinez M, Batten MP, Polyzos A, Carey KC, Mardel JI, Lim KS, Hill MR. High quality and scalable continuous flow production of metal-organic frameworks. Sci Rep 2014;4:5443. [152] Dunne PW, Lester E, Walton RI. Towards scalable and controlled synthesis of metal-organic framework materials using continuous flow reactors. React Chem Eng 2016;1:352‒360. [153] Taddei M, Steitz DA, van Bokhoven JA, Ronocchiari. Continuous-flow microwave synthesis of metal-organic frameworks: a highly efficient method for large-scale production. Chem Eur J 2016;22:3245‒3249. [154] McKinstry C, Cussen EJ, Fletcher AJ, Patwardhan SV, Sefcik J. Scalable continuous production of high quality HKUST-1 via conventional and microwave heating. Chem Eng J 2017;326:570‒577. [155] Witman M, Ling S, Gladysiak A, Stylianou KC, Smit B, Slater B, Haranczyk M. Rational design of a low-cost, high-performance metal-organic framework for hydrogen storage and carbon capture. J Phys Chem C 2017;121:1171‒1181. [156] DeSantis D, Mason JA, James BD, Houchins C, Long JR, Veenstra M. Techno-economic analysis of metal-organic frameworks for hydrogen and natural gas storage. Energy Fuels 2017;31:2024‒2032. "……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80460 | - |
| dc.description.abstract | "金屬有機骨架 (MOF) 為一群以過渡金屬離子為核心,有機分子為配位基團的固態晶體。 MOF 多半具有中孔徑的特性,且其孔隙內通常具有巨大的表面積。 雖然眾多有關於MOF的特性已經被廣泛研究,MOF被親核基團攻擊的機制,以及被攻擊後產生的多孔材料的性質則依舊不清楚。 本論文首先回顧於水中穩定的MOF之研究,以及其初步應用。 對水穩定的MOF具有從水溶液中吸附分子的潛力。 我們已經成功製備並分析其中一類鋯金屬為核心的MOF,UiO-66 和 UiO-66-NH2。 有鑑於UiO-66 和 UiO-66-NH2對磷酸的吸附力大幅優於市面上的吸附劑,在此研究中合成的UiO-66 和 UiO-66-NH2 首次被用於從極強酸性 (pH < -1) 的溶液中吸附磷酸。使用朗謬爾方程式做回歸後,其在25 oC廢棄混合酸,硝酸-磷酸-醋酸混合物,以及重量百分率85% 磷酸中,對磷酸之最大吸附量 (qmax) 分別為 3360, 8510 和 4790 mg-H3PO4/g。 吸附過磷酸之UiO-66/UiO-66-NH2,其磷與鋯的比例為6.2‒13.5,可能的原因為高濃度的磷酸堆積在UiO-66 的表面,形成一個類似聚磷酸的結構,並以氫鍵作為連結。 當MOF被浸泡於無機酸溶液中,質子與親核基團均有可能攻擊MOF,並破壞其晶體結構。本論文首次發現在極強酸性溶液中,親核基團,而非質子,會取代晶體中原有之有機配基,而破壞晶體之結構,肇因於親核基團為強路易斯鹼,和四價鋯具有強親和力。 MOF受攻擊後所產生的不定型中孔徑固體,若其沒有完全溶解,亦可以用於吸附劑。 由於這些不定型中孔徑固體,對於二價銅離子以及親核基團的吸附能力,與固體的晶體結構與內表面積並無明顯關聯,其吸附力可能為摻於固體內之親核基團所提供。 根據上述的發現,我們使用了UiO-66以合成對pH、溫度,以及親核基團穩定的不定型固體。 此固體由 UiO-66 浸泡於10或50 mM 磷酸中得到,並以1 M 鹽酸/1 M 氫氧化鈉進行再處理。 無經酸鹼再處理之固體則作為對照。 這些無配基的官能基團,以及磷酸根,可以做為吸附鉛離子的活性位置。 綜上所述,本論文提升了我們對親核基團攻擊UiO-66的認知,並提出了高效轉化UiO-66成為穩定性高的不定型多孔固體之方法。此類固體有被使用於極端環境中的能力。 " | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:07:06Z (GMT). No. of bitstreams: 1 U0001-2411202112575600.pdf: 4766230 bytes, checksum: 51d9685bcf5b52e281d107c4d749be37 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | "Acknowledgements .....i Abstract .....ii 摘要 .....iv Contents .....vi List of Figures .....ix List of Tables .....xii Chapter 1 Introduction .....1 Chapter 2 Literature review .....3 2.1 General .....3 2.2 Chemically Stable MOF .....6 2.2.1 Water-stable MOF .....6 2.2.2 pH stable MOF .....7 2.3 Water-stable zirconium(Zr)-based MOF .....14 2.4 MOF under modification .....18 2.5 MOF as adsorbent .....18 2.5.1 Use with anionic adsorbates .....18 2.5.2 Use with cationic or neutral adsorbates .....22 2.5.3 Use of MOF in extremely acidic solution as adsorbent .....23 2.5.3.1 Recovery of resources from extremely acidic mix .....23 2.5.3.2 Stability of UiO-66 as adsorbents in waste mixed acids .....24 2.6 Phosphorus .....26 2.7 Nature of nucleophile and reaction with MOF .....27 2.8 Main theme of this work .....27 Chapter 3 Experimental .....29 3.1 UiO-66 synthesis and sample preparation .....29 3.2 Adsorption Tests .....31 3.3 Instrumental analysis .....33 3.3.1 pH determination .....3 3.3.2 Ion chromatography (IC) .....33 3.3.3 Powder X-ray diffraction (XRD) .....34 3.3.4 Fourier-transform infrared (FTIR) spectrometry .....34 3.3.5 Nuclear magnetic resonance (NMR) analysis .....34 3.3.6 Zeta potential determination .....34 3.3.7 Scanning electron microscopy (SEM) .....35 3.3.8 Thermogravimetric analysis (TGA) .....35 Chapter 4 Results and discussion .....36 4.1 Characterization of the synthesized UiO-66 salts .....36 4.2 Adsorption of phosphoric acid from extremely acidic solution .....40 4.2.1 General .....40 4.2.2 Adsorption from extremely acidic solutions .....40 4.2.3 Discussion .....44 4.2.4 Summary .....51 4.3 Impact of nucleophiles on UiO-66 stability .....52 4.3.1 General .....52 4.3.2 Tests with mixed acids .....52 4.3.3 Stability of UiO-66 in nucleophile solutions with different pH .....60 4.3.4 Pivotal study of adsorption of cation – Use Cu2+ as an example .....60 4.3.5 Pivotal study of adsorption of anions .....64 4.3.6 XRD patterns and zeta potential analysis of modified UiO-66 .....66 4.3.7 Effects of nucleophile on structures of UiO-66 .....79 4.3.8 Summary .....83 4.4 Making stable amorphous matrix from UiO-66 template .....84 4.4.1 General .....84 4.4.2 Effects of acid, base treatment .....84 4.4.2.1 XRD pattern .....85 4.4.2.2 FTIR spectrum .....88 4.4.2.3 TGA test .....91 4.4.2.4 Zeta potential test .....93 4.4.2.5 XPS test .....97 4.4.2.6 Adsorption of lead .....100 4.4.3 Discussion .....102 4.4.4 Summary .....104 Chapter 5 Prospects and challenge .....105 Chapter 6 Conclusions .....109 References .....111 Appendices .....126" | |
| dc.language.iso | en | |
| dc.subject | 親核基團 | zh_TW |
| dc.subject | 金屬有機骨架 | zh_TW |
| dc.subject | 吸附劑 | zh_TW |
| dc.subject | 不定型固體 | zh_TW |
| dc.subject | Amorphous | en |
| dc.subject | Adsorbent | en |
| dc.subject | Nucleophile | en |
| dc.subject | Metal-organic framework | en |
| dc.title | 使用受親核基團攻擊之金屬有機骨架UiO-66為水溶液中吸附劑 | zh_TW |
| dc.title | Nucleophile Attacked Metal Organic Framework UiO-66 with Its Use as Adsorbent in Aqueous Solutions | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王大銘(Hsin-Tsai Liu),諶玉真(Chih-Yang Tseng),張嘉修,曾琇瑱 | |
| dc.subject.keyword | 金屬有機骨架,不定型固體,吸附劑,親核基團, | zh_TW |
| dc.subject.keyword | Metal-organic framework,Amorphous,Adsorbent,Nucleophile, | en |
| dc.relation.page | 128 | |
| dc.identifier.doi | 10.6342/NTU202104489 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-01-03 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2411202112575600.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
