請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80458完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余明俊(Ming-Jiun Yu) | |
| dc.contributor.author | Hsiu-Hui Yang | en |
| dc.contributor.author | 楊琇惠 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:07:03Z | - |
| dc.date.available | 2021-12-30 | |
| dc.date.available | 2022-11-24T03:07:03Z | - |
| dc.date.copyright | 2021-12-30 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-12-22 | |
| dc.identifier.citation | 1. Leng, G., Dyball, R. E., and Luckman, S. M. (1992) Mechanisms of vasopressin secretion. Horm Res 37, 33-38 2. Knepper, M. A., Kwon, T. H., and Nielsen, S. (2015) Molecular physiology of water balance. N Engl J Med 372, 1349-1358 3. Mutig, K., Paliege, A., Kahl, T., Jons, T., Muller-Esterl, W., and Bachmann, S. (2007) Vasopressin V2 receptor expression along rat, mouse, and human renal epithelia with focus on TAL. Am J Physiol Renal Physiol 293, F1166-1177 4. Olesen, E. T. B., and Fenton, R. A. (2021) Aquaporin 2 regulation: implications for water balance and polycystic kidney diseases. Nat Rev Nephrol 17, 765-781 5. Trimpert, C., van den Berg, D. T., Fenton, R. A., Klussmann, E., and Deen, P. M. (2012) Vasopressin increases S261 phosphorylation in AQP2-P262L, a mutant in recessive nephrogenic diabetes insipidus. Nephrol Dial Transplant 27, 4389-4397 6. Loonen, A. J., Knoers, N. V., van Os, C. H., and Deen, P. M. (2008) Aquaporin 2 mutations in nephrogenic diabetes insipidus. Semin Nephrol 28, 252-265 7. Simon, H., Gao, Y., Franki, N., and Hays, R. M. (1993) Vasopressin depolymerizes apical F-actin in rat inner medullary collecting duct. Am J Physiol 265, C757-762 8. Saito, M., Tahara, A., and Sugimoto, T. (1997) 1-desamino-8-D-arginine vasopressin (DDAVP) as an agonist on V1b vasopressin receptor. Biochem Pharmacol 53, 1711-1717 9. Loo, C. S., Chen, C. W., Wang, P. J., Chen, P. Y., Lin, S. Y., Khoo, K. H., Fenton, R. A., Knepper, M. A., and Yu, M. J. (2013) Quantitative apical membrane proteomics reveals vasopressin-induced actin dynamics in collecting duct cells. Proc Natl Acad Sci U S A 110, 17119-17124 10. Klussmann, E., Tamma, G., Lorenz, D., Wiesner, B., Maric, K., Hofmann, F., Aktories, K., Valenti, G., and Rosenthal, W. (2001) An inhibitory role of Rho in the vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 276, 20451-20457 11. Lei, L., Huang, M., Su, L., Xie, D., Mamuya, F. A., Ham, O., Tsuji, K., Paunescu, T. G., Yang, B., and Lu, H. A. J. (2018) Manganese promotes intracellular accumulation of AQP2 via modulating F-actin polymerization and reduces urinary concentration in mice. Am J Physiol Renal Physiol 314, F306-F316 12. Khositseth, S., Pisitkun, T., Slentz, D. H., Wang, G., Hoffert, J. D., Knepper, M. A., and Yu, M. J. (2011) Quantitative protein and mRNA profiling shows selective post-transcriptional control of protein expression by vasopressin in kidney cells. Mol Cell Proteomics 10, M110 004036 13. Hsu, K. S., and Kao, H. Y. (2013) Alpha-actinin 4 and tumorigenesis of breast cancer. Vitam Horm 93, 323-351 14. Tentler, D., Lomert, E., Novitskaya, K., and Barlev, N. A. (2019) Role of ACTN4 in Tumorigenesis, Metastasis, and EMT. Cells 8 15. Agarwal, N., Adhikari, A. S., Iyer, S. V., Hekmatdoost, K., Welch, D. R., and Iwakuma, T. (2013) MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4. Oncogene 32, 462-470 16. Khurana, S., Chakraborty, S., Zhao, X., Liu, Y., Guan, D., Lam, M., Huang, W., Yang, S., and Kao, H. Y. (2012) Identification of a novel LXXLL motif in alpha-actinin 4-spliced isoform that is critical for its interaction with estrogen receptor alpha and co-activators. J Biol Chem 287, 35418-35429 17. Hoffert, J. D., Chou, C. L., and Knepper, M. A. (2009) Aquaporin-2 in the '-omics' era. J Biol Chem 284, 14683-14687 18. Zhao, X., Khurana, S., Charkraborty, S., Tian, Y., Sedor, J. R., Bruggman, L. A., and Kao, H. Y. (2017) alpha Actinin 4 (ACTN4) Regulates Glucocorticoid Receptor-mediated Transactivation and Transrepression in Podocytes. J Biol Chem 292, 1637-1647 19. Holzinger, A. (2009) Jasplakinolide: an actin-specific reagent that promotes actin polymerization. Methods Mol Biol 586, 71-87 20. Pospich, S., Merino, F., and Raunser, S. (2020) Structural Effects and Functional Implications of Phalloidin and Jasplakinolide Binding to Actin Filaments. Structure 28, 437-449 e435 21. Briones-Orta, M. A., Avendano-Vazquez, S. E., Aparicio-Bautista, D. I., Coombes, J. D., Weber, G. E., and Syn, W. K. (2017) Prediction of transcription factor bindings sites affected by SNPs located at the osteopontin promoter. Data Brief 14, 538-542 22. Wingender, E., Schoeps, T., Haubrock, M., Krull, M., and Donitz, J. (2018) TFClass: expanding the classification of human transcription factors to their mammalian orthologs. Nucleic Acids Res 46, D343-D347 23. Manke, T., Roider, H. G., and Vingron, M. (2008) Statistical modeling of transcription factor binding affinities predicts regulatory interactions. PLoS Comput Biol 4, e1000039 24. Meyer, T., and Wirtz, P. H. (2018) Mechanisms of Mitochondrial Redox Signaling in Psychosocial Stress-Responsive Systems: New Insights into an Old Story. Antioxid Redox Signal 28, 760-772 25. Bennesch, M. A., and Picard, D. (2015) Minireview: Tipping the balance: ligand-independent activation of steroid receptors. Mol Endocrinol 29, 349-363 26. Kuo, K. T., Yang, C. W., and Yu, M. J. (2018) Dexamethasone enhances vasopressin-induced aquaporin-2 gene expression in the mpkCCD cells. Am J Physiol Renal Physiol 314, F219-F229 27. Petersen, M., Thorikay, M., Deckers, M., van Dinther, M., Grygielko, E. T., Gellibert, F., de Gouville, A. C., Huet, S., ten Dijke, P., and Laping, N. J. (2008) Oral administration of GW788388, an inhibitor of TGF-beta type I and II receptor kinases, decreases renal fibrosis. Kidney Int 73, 705-715 28. Sun, R., Miller, R. L., Hemmert, A. C., Zhang, P., Shi, H., Nelson, R. D., and Kishore, B. K. (2005) Chronic dDAVP Infusion in Rats Decreases the Expression of P2Y2 Receptor in Inner Medulla and P2Y2 Receptor-mediated PGE2 Release by IMCD. Am J Physiol Renal Physiol 29. Hills, C. E., and Squires, P. E. (2010) TGF-beta1-induced epithelial-to-mesenchymal transition and therapeutic intervention in diabetic nephropathy. Am J Nephrol 31, 68-74 30. Ding, H., Chen, J., Qin, J., Chen, R., and Yi, Z. (2021) TGF-beta-induced alpha-SMA expression is mediated by C/EBPbeta acetylation in human alveolar epithelial cells. Mol Med 27, 22 31. Scanlon, C. S., Van Tubergen, E. A., Inglehart, R. C., and D'Silva, N. J. (2013) Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J Dent Res 92, 114-121 32. Xu, S. W., Zhan, M., and Wang, J. (2017) Epithelial-to-mesenchymal transition in gallbladder cancer: from clinical evidence to cellular regulatory networks. Cell Death Discov 3 33. Pisitkun, T., Jacob, V., Schleicher, S. M., Chou, C. L., Yu, M. J., and Knepper, M. A. (2008) Akt and ERK1/2 pathways are components of the vasopressin signaling network in rat native IMCD. Am J Physiol Renal Physiol 295, F1030-1043 34. Vander Ark, A., Cao, J., and Li, X. (2018) TGF-beta receptors: In and beyond TGF-beta signaling. Cell Signal 52, 112-120 35. Ho, C.-H., Yang, H.-H., Su, S.-H., Yeh, A.-H., and Yu, M.-J. (2021) α-Actinin 4 Links Vasopressin Short-Term and Long-Term Regulation of Aquaporin-2 in Kidney Collecting Duct Cells. Frontiers in Physiology 12 36. Scheschowitsch, K., Leite, J. A., and Assreuy, J. (2017) New Insights in Glucocorticoid Receptor Signaling-More Than Just a Ligand-Binding Receptor. Front Endocrinol (Lausanne) 8, 16 37. Datta, A., Yang, C. R., Salhadar, K., Park, E., Chou, C. L., Raghuram, V., and Knepper, M. A. (2021) Phosphoproteomic identification of vasopressin-regulated protein kinases in collecting duct cells. Br J Pharmacol 178, 1426-1444 38. Nguyen, M. T. N., Kniess, R. A., Daturpalli, S., Le Breton, L., Ke, X., Chen, X., and Mayer, M. P. (2017) Isoform-Specific Phosphorylation in Human Hsp90beta Affects Interaction with Clients and the Cochaperone Cdc37. J Mol Biol 429, 732-752 39. Vandevyver, S., Dejager, L., and Libert, C. (2012) On the trail of the glucocorticoid receptor: into the nucleus and back. Traffic 13, 364-374 40. Lin, S. T., Ma, C. C., Kuo, K. T., Su, Y. F., Wang, W. L., Chan, T. H., Su, S. H., Weng, S. C., Yang, C. H., Lin, S. L., and Yu, M. J. (2019) Transcription Factor Elf3 Modulates Vasopressin-Induced Aquaporin-2 Gene Expression in Kidney Collecting Duct Cells. Front Physiol 10, 1308 41. Raghuram, V., Salhadar, K., Limbutara, K., Park, E., Yang, C. R., and Knepper, M. A. (2020) Protein kinase A catalytic-alpha and catalytic-beta proteins have nonredundant regulatory functions. Am J Physiol Renal Physiol 319, F848-F862 42. Dinarello, C. A. (2000) Proinflammatory cytokines. Chest 118, 503-508 43. Cruz-Topete, D., and Cidlowski, J. A. (2015) One hormone, two actions: anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation 22, 20-32 44. Al-Lamki, R. S., and Mayadas, T. N. (2015) TNF receptors: signaling pathways and contribution to renal dysfunction. Kidney Int 87, 281-296 45. Kim, S. W., Lee, J. U., Nah, M. Y., Kang, D. G., Ahn, K. Y., Lee, H. S., and Choi, K. C. (2001) Cisplatin decreases the abundance of aquaporin water channels in rat kidney. J Am Soc Nephrol 12, 875-882 46. Hu, S., Xie, H., Luo, R., Feng, P., Liu, Q., Han, M., Kong, Y., Zou, X., Wang, W., and Li, C. (2019) Inhibition of IL-1beta by Aliskiren Improved Renal AQP2 Expression and Urinary Concentration Defect in Ureteral Obstruction and Release. Front Physiol 10, 1157 47. Gu, Y. Y., Liu, X. S., Huang, X. R., Yu, X. Q., and Lan, H. Y. (2020) Diverse Role of TGF-beta in Kidney Disease. Front Cell Dev Biol 8, 123 48. Meng, X. M., Nikolic-Paterson, D. J., and Lan, H. Y. (2016) TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol 12, 325-338 49. Sureshbabu, A., Muhsin, S. A., and Choi, M. E. (2016) TGF-beta signaling in the kidney: profibrotic and protective effects. Am J Physiol Renal Physiol 310, F596-F606 50. Lopez-Hernandez, F. J., and Lopez-Novoa, J. M. (2012) Role of TGF-beta in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res 347, 141-154 51. Romagnani, P., Remuzzi, G., Glassock, R., Levin, A., Jager, K. J., Tonelli, M., Massy, Z., Wanner, C., and Anders, H. J. (2017) Chronic kidney disease. Nat Rev Dis Primers 3, 17088 52. Loeffler, I., and Wolf, G. (2014) Transforming growth factor-beta and the progression of renal disease. Nephrol Dial Transplant 29 Suppl 1, i37-i45 53. Neuzillet, C., de Gramont, A., Tijeras-Raballand, A., de Mestier, L., Cros, J., Faivre, S., and Raymond, E. (2014) Perspectives of TGF-beta inhibition in pancreatic and hepatocellular carcinomas. Oncotarget 5, 78-94 54. Faustman, D. L., and Davis, M. (2013) TNF Receptor 2 and Disease: Autoimmunity and Regenerative Medicine. Front Immunol 4, 478 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80458 | - |
| dc.description.abstract | 生物體內所有生理功能的執行均有水分參與,因此維持水分恆定為一個十分重要的課題。在身體處於脫水狀態時,抗利尿激素會釋放至血液中,並和腎臟集尿管細胞上的V2受體結合進而調控第二型水分子通道蛋白(AQP2)以再吸收尿液中的水分。此調控可分為短期調控和長期調控兩類。短期調控可促進細胞頂尖膜下的F-肌動蛋白解聚,使AQP2能運送至頂尖膜上;長期調控則可增加AQP2的基因表達。然而,抗利尿激素是否透過完全分離的機制調節短期和長期調控,或其中有分子連結尚未可知。在本篇論文中,我們證明了alpha-輔肌動蛋白4在細胞內扮演連結短期和長期調控的角色。在抗利尿激素刺激時,alpha-輔肌動蛋白4會離開F-肌動蛋白而進入細胞核,並且在核內扮演糖皮質素受體(為一種基因活化因子)的輔助活化因子,共同增加AQP2的基因表達。在先前的實驗,我們敲低了糖皮質素受體以研究其功能。然而長期敲低糖皮質素受體會造成細胞全轉錄組改變,這些改變亦有可能影響AQP2基因表達。藉由分析信使核糖核酸量變化,我們找出了數個能正向及負向調控AQP2表現的訊息傳遞路徑。從中我們挑出兩個做為研究目標:腫瘤壞死因子訊息傳遞路徑以及轉化生長因子訊息傳遞路徑。在我們的實驗中,加入此二路徑之配體皆可顯著降低AQP2基因表達,顯示了兩者均作為AQP2基因表現之負調控路徑。針對轉化生長因子訊息傳遞路徑我們做了測試。結果顯示轉化生長因子抑制了因抗利尿激素而增加的蛋白激酶B磷酸化,但並不影響AQP2運送至細胞頂尖膜,亦不會造成細胞出現上皮-間質轉化。綜合以上所述,我們的發現指出alpha-輔肌動蛋白4為短期和長期調控間之連結,並且腫瘤壞死因子訊息傳遞路徑以及轉化生長因子訊息傳遞路徑為AQP2基因表現的負調控路徑。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:07:03Z (GMT). No. of bitstreams: 1 U0001-2411202116103500.pdf: 3968622 bytes, checksum: 8643445d4823db83d26693c03245daa9 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Introduction 1 Materials and Methods 7 Results 16 Vasopressin depolymerized F-actin while freeing a-actinin 4 into cell nucleus 16 Vasopressin enhances interaction between glucocorticoid receptor and a-actinin 4 17 Vasopressin increased nuclear translocation of glucocorticoid receptor in the presence of dexamethasone 17 Glucocorticoid receptor did not bind to putative GR binding sites within 1000 base pairs of the Aqp2 gene promoter 18 Nuclear translocation of glucocorticoid receptor was independent of a-actinin 4 19 Vasopressin-induced GR nuclear translocation is independent of dexamethasone 19 Alpha-actinin 4 knockdown reduced AQP2 mRNA level in the absence of dexamethasone 20 Glucocorticoid receptor knockdown suppressed transcription of genes involved in the TNF signaling pathway 21 Glucocorticoid receptor knockdown suppressed transcription of genes involved in TGFb signaling pathway 22 Inhibitors of TNF and TGFb receptor did not increase AQP2 mRNA in the absence of vasopressin 23 TNFa and TGFb1 ligand reduced Aqp2 gene expression 23 TGFb1 did not influence vasopressin-induced apical AQP2 trafficking 24 TGFb1 did not induce epithelial to mesenchymal transition (EMT) of mpkCCD cells 25 TGFb1 reduced vasopressin-induced Akt phosphorylation in the mpkCCD cells. 26 Discussion 28 Figures and Legends 33 Tables 56 References 59 | |
| dc.language.iso | en | |
| dc.subject | 第二型水通道蛋白 | zh_TW |
| dc.subject | 集尿管 | zh_TW |
| dc.subject | 轉化生長因子 | zh_TW |
| dc.subject | aquaporin 2 | en |
| dc.subject | TGF beta | en |
| dc.subject | collecting duct | en |
| dc.title | 轉化生長因子 beta 1抑制腎臟集尿管細胞中由抗利尿激素促進之第二型水通道蛋白基因表達 | zh_TW |
| dc.title | TGF beta 1 Suppresses Vasopressin-Induced Aquaporin 2 Gene Expression in the Kidney Collecting Duct Cells | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林水龍(Hsin-Tsai Liu),顏伯勳(Chih-Yang Tseng) | |
| dc.subject.keyword | 第二型水通道蛋白,轉化生長因子,集尿管, | zh_TW |
| dc.subject.keyword | aquaporin 2,TGF beta,collecting duct, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU202104491 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-12-22 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2411202116103500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
