請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80455完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃慶怡(Ching-I Huang) | |
| dc.contributor.author | YA-JUAN PENG | en |
| dc.contributor.author | 彭雅絹 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:07:00Z | - |
| dc.date.available | 2026-12-03 | |
| dc.date.available | 2022-11-24T03:07:00Z | - |
| dc.date.copyright | 2022-01-17 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-12-06 | |
| dc.identifier.citation | [1] R. Søndergaard; M. Hösel; D. Angmo; T. T. Larsen-Olsen; F. C. Krebs, Roll-to-Roll Fabrication of Polymer Solar Cells. Materials today 2012, 15 (1-2), 36-49. [2] M. C. Scharber; N. S. Sariciftci, Efficiency of Bulk-Heterojunction Organic Solar Cells. Progress in polymer science 2013, 38 (12), 1929-1940. [3] G. Zhang; J. Zhao; P. C. Chow; K. Jiang; J. Zhang; Z. Zhu; J. Zhang; F. Huang; H. Yan, Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chemical reviews 2018, 118 (7), 3447-3507. [4] M. Kaltenbrunner; G. Adam; E. D. Głowacki; M. Drack; R. Schwödiauer; L. Leonat; D. H. Apaydin; H. Groiss; M. C. Scharber; M. S. White; N. S. Sariciftci; S. Bauer, Flexible High Power-Per-Weight Perovskite Solar Cells with Chromium Oxide–Metal Contacts for Improved Stability in Air. Nature Materials 2015, 14 (10), 1032-1039. [5] K. M. Coakley; M. D. McGehee, Conjugated Polymer Photovoltaic Cells. Chemistry of Materials 2004, 16 (23), 4533-4542. [6] C. W. Tang, Two‐Layer Organic Photovoltaic Cell. Applied Physics Letters 1986, 48 (2), 183-185. [7] G. Yu; J. Gao; J. C. Hummelen; F. Wudl; A. J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270 (5243), 1789-1791. [8] Y. Zhou; M. Eck; M. Krüger, Bulk-Heterojunction Hybrid Solar Cells Based on Colloidal Nanocrystals and Conjugated Polymers. Energy Environmental Science 2010, 3 (12), 1851-1864. [9] Y.-J. Cheng; S.-H. Yang; C.-S. Hsu, Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chemical reviews 2009, 109 (11), 5868-5923. [10] A. Facchetti, Polymer Donor–Polymer Acceptor (All-Polymer) Solar Cells. Materials today 2013, 16 (4), 123-132. [11] P. Peumans; A. Yakimov; S. R. Forrest, Small Molecular Weight Organic Thin-Film Photodetectors and Solar Cells. Journal of Applied Physics 2003, 93 (7), 3693-3723. [12] S. Banerjee; S. S. K. Iyer, Short-Circuit Current Density and Spectral Response Modelling of Bulk-Heterojunction Solar Cells. Organic Electronics 2010, 11 (12), 2032-2036. [13] K. Gao; W. Deng; L. Xiao; Q. Hu; Y. Kan; X. Chen; C. Wang; F. Huang; J. Peng; H. Wu, New Insight of Molecular Interaction, Crystallization and Phase Separation in Higher Performance Small Molecular Solar Cells Via Solvent Vapor Annealing. Nano Energy 2016, 30, 639-648. [14] J. K. van Duren; X. Yang; J. Loos; C. W. Bulle‐Lieuwma; A. B. Sieval; J. C. Hummelen; R. A. Janssen, Relating the Morphology of Poly (P‐Phenylene Vinylene)/Methanofullerene Blends to Solar‐Cell Performance. Advanced functional materials 2004, 14 (5), 425-434. [15] M. C. Scharber; D. Mühlbacher; M. Koppe; P. Denk; C. Waldauf; A. J. Heeger; C. J. Brabec, Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency. Advanced Materials 2006, 18 (6), 789-794. [16] Y. Shen; K. Li; N. Majumdar; J. C. Campbell; M. C. Gupta, Bulk and Contact Resistance in P3ht: Pcbm Heterojunction Solar Cells. Solar Energy Materials and Solar Cells 2011, 95 (8), 2314-2317. [17] M.-S. Kim; B.-G. Kim; J. Kim, Effective Variables to Control the Fill Factor of Organic Photovoltaic Cells. ACS Applied Materials Interfaces 2009, 1 (6), 1264-1269. [18] J. T. Bloking; T. Giovenzana; A. T. Higgs; A. J. Ponec; E. T. Hoke; K. Vandewal; S. Ko; Z. Bao; A. Sellinger; M. D. McGehee, Comparing the Device Physics and Morphology of Polymer Solar Cells Employing Fullerenes and Non-Fullerene Acceptors. Advanced Energy Materials 2014, 4 (12), 1301426. [19] T. Wang; A. J. Pearson; D. G. Lidzey; R. A. L. Jones, Evolution of Structure, Optoelectronic Properties, and Device Performance of Polythiophene:Fullerene Solar Cells During Thermal Annealing. Advanced functional materials 2011, 21 (8), 1383-1390. [20] T. Wang; A. J. Pearson; A. D. F. Dunbar; P. A. Staniec; D. C. Watters; H. Yi; A. J. Ryan; R. A. L. Jones; A. Iraqi; D. G. Lidzey, Correlating Structure with Function in Thermally Annealed Pcdtbt:Pc70bm Photovoltaic Blends. Advanced functional materials 2012, 22 (7), 1399-1408. [21] C. Yan; S. Barlow; Z. Wang; H. Yan; A. K. Y. Jen; S. R. Marder; X. Zhan, Non-Fullerene Acceptors for Organic Solar Cells. Nature Reviews Materials 2018, 3 (3), 18003. [22] Y. Lin; J. Wang; Z. G. Zhang; H. Bai; Y. Li; D. Zhu; X. Zhan, An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Advanced Materials 2015, 27 (7), 1170-1174. [23] W. Zhao; S. Li; H. Yao; S. Zhang; Y. Zhang; B. Yang; J. Hou, Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. Journal of the American Chemical Society 2017, 139 (21), 7148-7151. [24] J. Yuan; Y. Zhang; L. Zhou; G. Zhang; H.-L. Yip; T.-K. Lau; X. Lu; C. Zhu; H. Peng; P. A. Johnson, Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3 (4), 1140-1151. [25] Y. Cui; H. Yao; J. Zhang; K. Xian; T. Zhang; L. Hong; Y. Wang; Y. Xu; K. Ma; C. An, Single‐Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Advanced Materials 2020, 32 (19), 1908205. [26] W. Zhao; D. Qian; S. Zhang; S. Li; O. Inganäs; F. Gao; J. Hou, Fullerene‐Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Advanced Materials 2016, 28 (23), 4734-4739. [27] S. Zhang; Y. Qin; J. Zhu; J. Hou, Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor. Advanced Materials 2018, 30 (20), 1800868. [28] Q. Liu; Y. Jiang; K. Jin; J. Qin; J. Xu; W. Li; J. Xiong; J. Liu; Z. Xiao; K. Sun, 18% Efficiency Organic Solar Cells. Science Bulletin 2020, 65 (4), 272-275. [29] Z. Fei; F. D. Eisner; X. Jiao; M. Azzouzi; J. A. Röhr; Y. Han; M. Shahid; A. S. R. Chesman; C. D. Easton; C. R. McNeill; T. D. Anthopoulos; J. Nelson; M. Heeney, An Alkylated Indacenodithieno[3,2-B]Thiophene-Based Nonfullerene Acceptor with High Crystallinity Exhibiting Single Junction Solar Cell Efficiencies Greater Than 13% with Low Voltage Losses. Advanced Materials 2018, 30 (8), 1705209. [30] Z. Zheng; H. Yao; L. Ye; Y. Xu; S. Zhang; J. Hou, Pbdb-T and Its Derivatives: A Family of Polymer Donors Enables over 17% Efficiency in Organic Photovoltaics. Materials today 2020, 35, 115-130. [31] B. Zheng; L. Huo; Y. Li, Benzodithiophenedione-Based Polymers: Recent Advances in Organic Photovoltaics. NPG Asia Materials 2020, 12 (1), 3. [32] F. Zhao; S. Dai; Y. Wu; Q. Zhang; J. Wang; L. Jiang; Q. Ling; Z. Wei; W. Ma; W. You; C. Wang; X. Zhan, Single-Junction Binary-Blend Nonfullerene Polymer Solar Cells with 12.1% Efficiency. Advanced Materials 2017, 29 (18), 1700144. [33] L. Gao; Z.-G. Zhang; H. Bin; L. Xue; Y. Yang; C. Wang; F. Liu; T. P. Russell; Y. Li, High-Efficiency Nonfullerene Polymer Solar Cells with Medium Bandgap Polymer Donor and Narrow Bandgap Organic Semiconductor Acceptor. Advanced Materials 2016, 28 (37), 8288-8295. [34] K. Li; Y. Wu; Y. Tang; M.-A. Pan; W. Ma; H. Fu; C. Zhan; J. Yao, Ternary Blended Fullerene-Free Polymer Solar Cells with 16.5% Efficiency Enabled with a Higher-Lumo-Level Acceptor to Improve Film Morphology. Advanced Energy Materials 2019, 9 (33), 1901728. [35] N. Gasparini; S. H. K. Paleti; J. Bertrandie; G. Cai; G. Zhang; A. Wadsworth; X. Lu; H.-L. Yip; I. McCulloch; D. Baran, Exploiting Ternary Blends for Improved Photostability in High-Efficiency Organic Solar Cells. ACS Energy Letters 2020, 5 (5), 1371-1379. [36] J. Hu; Q. Guo; J. Fang; Q. Liu; H. Liang; J. Lv; Z. Yin; J. Lin; X. Ou; X. Guo; M. Zhang, High-Performance Alloy-Like Ternary Organic Solar Cells with Two Compatible Non-Fullerene Acceptors. Organic Electronics 2021, 95, 106201. [37] Q. An; J. Wang; W. Gao; X. Ma; Z. Hu; J. Gao; C. Xu; M. Hao; X. Zhang; C. Yang; F. Zhang, Alloy-Like Ternary Polymer Solar Cells with over 17.2% Efficiency. Science Bulletin 2020, 65 (7), 538-545. [38] R. Ma; T. Liu; Z. Luo; K. Gao; K. Chen; G. Zhang; W. Gao; Y. Xiao; T.-K. Lau; Q. Fan; Y. Chen; L.-K. Ma; H. Sun; G. Cai; T. Yang; X. Lu; E. Wang; C. Yang; A. K. Y. Jen; H. Yan, Adding a Third Component with Reduced Miscibility and Higher Lumo Level Enables Efficient Ternary Organic Solar Cells. ACS Energy Letters 2020, 5 (8), 2711-2720. [39] Y. Tang; J. Yu; H. Sun; Z. Wu; C. W. Koh; X. Wu; B. Liu; J. Wang; Q. Liao; Y. Li; H. Guo; H. Y. Woo; F. Gao; X. Guo, Two Compatible Polymer Donors Enabling Ternary Organic Solar Cells with a Small Nonradiative Energy Loss and Broad Composition Tolerance. Solar RRL 2020, 4 (11), 2000396. [40] G. Xie; Z. Zhang; Z. Su; X. Zhang; J. Zhang, 16.5% Efficiency Ternary Organic Photovoltaics with Two Polymer Donors by Optimizing Molecular Arrangement and Phase Separation. Nano Energy 2020, 69, 104447. [41] B.-H. Jiang; Y.-P. Wang; C.-Y. Liao; Y.-M. Chang; Y.-W. Su; R.-J. Jeng; C.-P. Chen, Improved Blend Film Morphology and Free Carrier Generation Provide a High-Performance Ternary Polymer Solar Cell. ACS Applied Materials Interfaces 2021, 13 (1), 1076-1085. [42] M. Zhang; L. Zhu; G. Zhou; T. Hao; C. Qiu; Z. Zhao; Q. Hu; B. W. Larson; H. Zhu; Z. Ma; Z. Tang; W. Feng; Y. Zhang; T. P. Russell; F. Liu, Single-Layered Organic Photovoltaics with Double Cascading Charge Transport Pathways: 18% Efficiencies. Nature communications 2021, 12 (1), 309. [43] Q. An; J. Wang; X. Ma; J. Gao; Z. Hu; B. Liu; H. Sun; X. Guo; X. Zhang; F. Zhang, Two Compatible Polymer Donors Contribute Synergistically for Ternary Organic Solar Cells with 17.53% Efficiency. Energy Environmental Science 2020, 13 (12), 5039-5047. [44] C. Xu; X. Ma; Z. Zhao; M. Jiang; Z. Hu; J. Gao; Z. Deng; Z. Zhou; Q. An; J. Zhang; F. Zhang, Over 17.6% Efficiency Organic Photovoltaic Devices with Two Compatible Polymer Donors. Solar RRL 2021, 5 (8), 2100175. [45] L. Zhan; S. Li; T.-K. Lau; Y. Cui; X. Lu; M. Shi; C.-Z. Li; H. Li; J. Hou; H. Chen, Over 17% Efficiency Ternary Organic Solar Cells Enabled by Two Non-Fullerene Acceptors Working in an Alloy-Like Model. Energy Environmental Science 2020, 13 (2), 635-645. [46] Q. An; J. Wang; F. Zhang, Ternary Polymer Solar Cells with Alloyed Donor Achieving 14.13% Efficiency and 78.4% Fill Factor. Nano Energy 2019, 60, 768-774. [47] X. Ma; J. Wang; J. Gao; Z. Hu; C. Xu; X. Zhang; F. Zhang, Achieving 17.4% Efficiency of Ternary Organic Photovoltaics with Two Well-Compatible Nonfullerene Acceptors for Minimizing Energy Loss. Advanced Energy Materials 2020, 10 (31), 2001404. [48] Q. An; F. Zhang; W. Gao; Q. Sun; M. Zhang; C. Yang; J. Zhang, High-Efficiency and Air Stable Fullerene-Free Ternary Organic Solar Cells. Nano Energy 2018, 45, 177-183. [49] A. K. K. Kyaw; D. H. Wang; V. Gupta; W. L. Leong; L. Ke; G. C. Bazan; A. J. Heeger, Intensity Dependence of Current–Voltage Characteristics and Recombination in High-Efficiency Solution-Processed Small-Molecule Solar Cells. ACS Nano 2013, 7 (5), 4569-4577. [50] M. Zhang; F. Zhang; Q. An; Q. Sun; W. Wang; J. Zhang; W. Tang, Highly Efficient Ternary Polymer Solar Cells by Optimizing Photon Harvesting and Charge Carrier Transport. Nano Energy 2016, 22, 241-254. [51] S. M. Menke; N. A. Ran; G. C. Bazan; R. H. Friend, Understanding Energy Loss in Organic Solar Cells: Toward a New Efficiency Regime. Joule 2018, 2 (1), 25-35. [52] J. Yao; T. Kirchartz; M. S. Vezie; M. A. Faist; W. Gong; Z. He; H. Wu; J. Troughton; T. Watson; D. Bryant; J. Nelson, Quantifying Losses in Open-Circuit Voltage in Solution-Processable Solar Cells. Physical Review Applied 2015, 4 (1), 014020. [53] J. Liu; S. Chen; D. Qian; B. Gautam; G. Yang; J. Zhao; J. Bergqvist; F. Zhang; W. Ma; H. Ade; O. Inganäs; K. Gundogdu; F. Gao; H. Yan, Fast Charge Separation in a Non-Fullerene Organic Solar Cell with a Small Driving Force. Nature Energy 2016, 1 (7), 16089. [54] K. Vandewal; J. Benduhn; V. C. Nikolis, How to Determine Optical Gaps and Voltage Losses in Organic Photovoltaic Materials. Sustainable Energy Fuels 2018, 2 (3), 538-544. [55] F. M. Fowkes, Attractive Forces at Interfaces. Industrial Engineering Chemistry 1964, 56 (12), 40-52. [56] S. Wu, Calculation of Interfacial Tension in Polymer Systems. Journal of Polymer Science Part C: Polymer Symposia 1971, 34 (1), 19-30. [57] Z. Liang; M. Li; Q. Wang; Y. Qin; S. J. Stuard; Z. Peng; Y. Deng; H. Ade; L. Ye; Y. Geng, Optimization Requirements of Efficient Polythiophene:Nonfullerene Organic Solar Cells. Joule 2020, 4 (6), 1278-1295. [58] D. R. Kozub; K. Vakhshouri; L. M. Orme; C. Wang; A. Hexemer; E. D. Gomez, Polymer Crystallization of Partially Miscible Polythiophene/Fullerene Mixtures Controls Morphology. Macromolecules 2011, 44 (14), 5722-5726. [59] Y. Xiao; X. Lu, Morphology of Organic Photovoltaic Non-Fullerene Acceptors Investigated by Grazing Incidence X-Ray Scattering Techniques. Materials Today Nano 2019, 5, 100030. [60] P. Müller-Buschbaum, The Active Layer Morphology of Organic Solar Cells Probed with Grazing Incidence Scattering Techniques. Advanced Materials 2014, 26 (46), 7692-7709. [61] L. Gao; Z.-G. Zhang; L. Xue; J. Min; J. Zhang; Z. Wei; Y. Li, All-Polymer Solar Cells Based on Absorption-Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27%. Advanced Materials 2016, 28 (9), 1884-1890. [62] S. C. Price; A. C. Stuart; L. Yang; H. Zhou; W. You, Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer− Fullerene Solar Cells. Journal of the American Chemical Society 2011, 133 (12), 4625-4631. [63] C. Lee; S. Lee; G.-U. Kim; W. Lee; B. J. Kim, Recent Advances, Design Guidelines, and Prospects of All-Polymer Solar Cells. Chemical reviews 2019, 119 (13), 8028-8086. [64] B. Xiao; M. Zhang; J. Yan; G. Luo; K. Gao; J. Liu; Q. You; H.-B. Wang; C. Gao; B. Zhao; X. Zhao; H. Wu; F. Liu, High Efficiency Organic Solar Cells Based on Amorphous Electron-Donating Polymer and Modified Fullerene Acceptor. Nano Energy 2017, 39, 478-488. [65] X. Liu; Z. Zheng; Y. Xu; J. Wang; Y. Wang; S. Zhang; J. Hou, Quantifying Voc Loss Induced by Alkyl Pendants of Acceptors in Organic Solar Cells. Journal of Materials Chemistry C 2020, 8 (36), 12568-12577. [66] L. Zhong; L. Gao; H. Bin; Q. Hu; Z.-G. Zhang; F. Liu; T. P. Russell; Z. Zhang; Y. Li, High Efficiency Ternary Nonfullerene Polymer Solar Cells with Two Polymer Donors and an Organic Semiconductor Acceptor. Advanced Energy Materials 2017, 7 (14), 1602215. [67] N. Bauer; Q. Zhang; J. Zhao; L. Ye; J.-H. Kim; I. Constantinou; L. Yan; F. So; H. Ade; H. Yan; W. You, Comparing Non-Fullerene Acceptors with Fullerene in Polymer Solar Cells: A Case Study with Ftaz and Pycntaz. Journal of Materials Chemistry A 2017, 5 (10), 4886-4893. [68] P. Bi; T. Xiao; X. Yang; M. Niu; Z. Wen; K. Zhang; W. Qin; S. K. So; G. Lu; X. Hao; H. Liu, Regulating the Vertical Phase Distribution by Fullerene-Derivative in High Performance Ternary Organic Solar Cells. Nano Energy 2018, 46, 81-90. [69] Z.-C. Wen; H. Yin; X.-T. Hao, Recent Progress of Pm6:Y6-Based High Efficiency Organic Solar Cells. Surfaces and Interfaces 2021, 23, 100921. [70] Q. Guo; Q. Guo; Y. Geng; A. Tang; M. Zhang; M. Du; X. Sun; E. Zhou, Recent Advances in Pm6:Y6-Based Organic Solar Cells. Materials Chemistry Frontiers 2021, 5 (8), 3257-3280. [71] Z. Zhou; S. Xu; J. Song; Y. Jin; Q. Yue; Y. Qian; F. Liu; F. Zhang; X. Zhu, High-Efficiency Small-Molecule Ternary Solar Cells with a Hierarchical Morphology Enabled by Synergizing Fullerene and Non-Fullerene Acceptors. Nature Energy 2018, 3 (11), 952-959. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80455 | - |
| dc.description.abstract | "本研究探討在高效率PM6:Y6系統中加入不同共軛聚合物供體材料J51、FTAZ和PTO2形成供體/供體/受體系統的三元太陽能電池,我們使用紫外-可見光光譜儀(Ultraviolet–visible spectroscopy, UV-Vis)、光致發光光譜儀(Photoluminescence, PL)、原子力顯微鏡(Atomic Force Microscope, AFM)和低掠角廣角X射線散射(Grazing-Incidence Wide-Angle X-ray Scattering, GIWAXS)來分析材料之間的混溶性對三元共混薄膜的光電和型態特性的影響。其中,第三元材料J51、FTAZ和PTO2都展現出與PM6具有良好相溶性,並出現在富含PM6的區域中。值得注意的是,χJ51/Y6(1.79 K)和χJ51/PM6(0.34 K)之間較大的差異增強了Y6的分子堆積,然而,J51分子構型容易產生空間位阻而限制供體相內的電荷轉移和收集,從而導致光伏性能下降。當加入FTAZ時,則同樣觀察到Y6的分子堆疊強度增強(χY6/FTAZ=1.24 K),並因為具有較低的χFTAZ/PM6(0.13 K)使FTAZ/PM6形成良好混和的供體相,因此有效提升供體材料的HOMO能階使三元元件之VOC增加,並促進電荷傳遞和收集從而增強FF,進而提升能量轉換效率(power conversion efficiency, PCE)從14.3%(二元)提高至15.3%(三元)。在這三種測試的第三元聚合物供體中,PTO2展現出與PM6的最高混溶性大大增強了供體相有序的堆疊型態,並具有比PM6更深的HOMO能階有效提升VOC,因此,元件的PCE從14.8%(二元)提升至15.6%(三元)。最後,我們還研究了1-chloronaphthalene(CN)作為溶劑添加劑時,對PM6:PTO2:Y6和PM6:PTO2:BTP-eC9三元混摻系統的影響,證實少量的CN可以有效優化共混形態並實現元件的長期穩定性,獲得最高PCE為17.05和18.01%的優異表現。因此,通過我們對供體/供體/受體三元系統中的混合形態和光伏性能的一系列研究,期望我們的結果可以提供未來研究學者們設計穩定的高性能三元太陽能電池提供了有效的策略。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:07:00Z (GMT). No. of bitstreams: 1 U0001-0312202111272900.pdf: 5210220 bytes, checksum: a06c1b6f60b190a6d752b1c3175f9567 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii ABSTRACT iii 目錄 v 圖目錄 vi 表目錄 xi 第一章 前言 1 第二章 實驗設計 10 2.1 實驗藥品 12 2.1.1主動層材料 12 2.1.2傳輸層材料和使用溶劑 14 2.1.3製程設備及檢測儀器 15 2.2 高分子太陽能電池元件製備步驟 16 2.3 光學性質分析 19 2.4 光電性質分析 20 2.5 表面性質分析與內部共混型態 25 第三章 結果討論 29 3.1 添加聚合物供體J51和FTAZ於PM6:Y6二元系統 29 3.2 添加聚合物供體PTO2於PM6:Y6和PM6:BTPeC9二元系統 47 3.3 第三元供體材料對元件性能的影響 70 第四章 結論 74 參考文獻 76 | |
| dc.language.iso | zh-TW | |
| dc.subject | 能量轉換效率 | zh_TW |
| dc.subject | 三元太陽能電池 | zh_TW |
| dc.subject | 共軛聚合物 | zh_TW |
| dc.subject | 混溶性 | zh_TW |
| dc.subject | ternary organic photovoltaics | en |
| dc.subject | miscibility | en |
| dc.subject | conjugated polymer | en |
| dc.title | 共軛聚合物混溶性於高效三元有機太陽能電池光伏性能和堆疊型態的影響 | zh_TW |
| dc.title | Effects of the Miscibility of Conjugated Polymer Donors on Photovoltaic Performance and Stacking Type of Highly Efficiencnt Ternary Organic Solar Cells | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳志平(Hsin-Tsai Liu),王立義(Chih-Yang Tseng) | |
| dc.subject.keyword | 三元太陽能電池,共軛聚合物,混溶性,能量轉換效率, | zh_TW |
| dc.subject.keyword | ternary organic photovoltaics,conjugated polymer,miscibility, | en |
| dc.relation.page | 81 | |
| dc.identifier.doi | 10.6342/NTU202104508 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-12-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-12-03 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0312202111272900.pdf 未授權公開取用 | 5.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
