請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80451完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙修武(Shiu-Wu Chau) | |
| dc.contributor.author | Wei-You Huang | en |
| dc.contributor.author | 黃偉祐 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:06:56Z | - |
| dc.date.available | 2022-12-06 | |
| dc.date.available | 2022-11-24T03:06:56Z | - |
| dc.date.copyright | 2022-01-17 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-12-08 | |
| dc.identifier.citation | [1] E. Pfender, 'Thermal Plasma Technology: Where do we stand and where are we going?,' Plasma Chem. Plasma Process., vol. 19, no. 1, pp. 1-31, 1999/03/01 1999, doi: 10.1023/A:1021899731587. [2] J. P. Trelles, C. Chazelas, A. Vardelle, and J. V. R. Heberlein, 'Arc plasma torch modeling,' J. Therm. Spray Technol., vol. 18, no. 5, p. 728, 2009/06/16 2009, doi: 10.1007/s11666-009-9342-1. [3] E. Dalir, A. Dolatabadi, and J. Mostaghimi, 'Modeling of suspension plasma spraying process including arc movement inside the torch,' J. Therm. Spray Technol., vol. 28, no. 6, pp. 1105-1125, Aug 2019, doi: 10.1007/s11666-019-00883-z. [4] D. Q. Zhang, L. L. Zheng, X. Y. Hu, and H. Zhang, 'Numerical studies of arc plasma generation in single cathode and three-cathode plasma torch and its impact on plasma spraying,' International Journal of Heat and Mass Transfer, vol. 98, pp. 508-522, Jul 2016, doi: 10.1016/j.ijheatmasstransfer.2016.03.038. [5] M. F. Zhukov, 'Electric arc generators of thermal plasma (review),' Plasma Devices and Operations, vol. 5, no. 1, pp. 1-36, 1996/11/01 1996, doi: 10.1080/10519999608228824. [6] J. S. Baik and Y. J. Kim, 'Effect of nozzle shape on the performance of high velocity oxygen-fuel thermal spray system,' Surface Coatings Technology, vol. 202, no. 22-23, pp. 5457-5462, Aug 2008, doi: 10.1016/j.surfcoat.2008.06.061. [7] S. W. Chau, S. C. Hsu, and S. H. Chen, 'Modeling of air plasma in Direct-Current torch at nonatmospheric pressure,' Ieee Transactions on Plasma Science, vol. 44, no. 12, pp. 3117-3126, Dec 2016, doi: 10.1109/tps.2016.2599151. [8] J. Jenista, 'Steam torch plasma modelling,' Plasma Chem. Plasma Process., vol. 37, no. 3, pp. 653-687, May 2017, doi: 10.1007/s11090-017-9789-7. [9] A. Lebouvier, F. Cauneau, and L. Fulcheri, '2D Axisymmetric coupled computational fluid dynamics-kinetics modeling of a nonthermal arc plasma torch for diesel fuel reforming,' Energy Fuels, vol. 25, no. 7, pp. 2833-2840, Jul 2011, doi: 10.1021/ef200471r. [10] G. N. Throumoulopoulos and H. Tasso, 'Axisymmetric equilibria of a gravitating plasma with incompressible flows,' Geophysical and Astrophysical Fluid Dynamics, vol. 94, no. 3-4, pp. 249-262, 2001, doi: 10.1080/03091920108203409. [11] J.-L. Dorier, M. Gindrat, C. Hollenstein, A. Salito, M. Loch, and G. Barbezat, 'Time-resolved imaging of anodic arc root behavior during fluctuations of a DC plasma spraying torch,' IEEE Transactions on plasma science, vol. 29, no. 3, pp. 494-501, 2001. [12] R. Huang, H. Fukanuma, Y. Uesugi, and Y. Tanaka, 'Simulation of arc root fluctuation in a DC non-transferred plasma torch with three dimensional modeling,' J. Therm. Spray Technol., vol. 21, no. 3-4, pp. 636-643, 2012. [13] Z. L. Zhang, C. Wang, Q. Sun, and W. D. Xia, 'Fluctuation of arc plasma in arc plasma torch with multiple cathodes,' Chinese Physics B, vol. 28, no. 9, Sep 2019, Art no. 095201, doi: 10.1088/1674-1056/ab344b. [14] J. Hermann and C. Dutouquet, 'Local thermal equilibrium plasma modeling for analyses of gas-phase reactions during reactive-laser ablation,' Journal of Applied Physics, vol. 91, no. 12, pp. 10188-10193, Jun 2002, doi: 10.1063/1.1479467. [15] R. Z. Huang, H. Fukanuma, Y. Uesugi, and Y. Tanaka, 'An improved local thermal equilibrium model of DC arc plasma torch,' Ieee Transactions on Plasma Science, vol. 39, no. 10, pp. 1974-1982, Oct 2011, doi: 10.1109/tps.2011.2163828. [16] J. J. Beulens, D. Milojevic, D. C. Schram, and P. M. Vallinga, 'A 2-Dimensional Nonequilbrium model of cascaded arc plasma flows,' Physics of Fluids B-Plasma Physics, vol. 3, no. 9, pp. 2548-2557, Sep 1991, doi: 10.1063/1.859967. [17] K. S. C. Peerenboom, J. van Dijk, W. J. Goedheer, and G. M. W. Kroesen, 'A non-equilibrium simulation of thermal constriction in a cascaded arc hydrogen plasma,' Plasma Sources Science Technology, vol. 23, no. 2, Apr 2014, Art no. 025003, doi: 10.1088/0963-0252/23/2/025003. [18] S. Chau, C. Tai, and S. Chen, 'Nonequilibrium modeling of steam plasma in a nontransferred direct-current torch,' IEEE Transactions on Plasma Science, vol. 42, pp. 3797-3808, 2014. [19] J. M. Bauchire, J. J. Gonzalez, and A. Gleizes, 'Modeling of a DC plasma torch in laminar and turbulent flow,' Plasma Chem. Plasma Process., vol. 17, no. 4, pp. 409-432, Dec 1997, doi: 10.1023/a:1021847113956. [20] K. Cheng, X. Chen, and W. X. Pan, 'Comparison of laminar and turbulent thermal plasma jet characteristics - A modeling study,' Plasma Chem. Plasma Process., vol. 26, no. 3, pp. 211-235, Jun 2006, doi: 10.1007/s11090-006-9006-6. [21] M. Hur and S. H. Hong, 'Comparative analysis of turbulent effects on thermal plasma characteristics inside the plasma torches with rod- and well-type cathodes,' Journal of Physics D-Applied Physics, vol. 35, no. 16, pp. 1946-1954, Aug 2002, Art no. Pii s0022-3727(02)35390-7, doi: 10.1088/0022-3727/35/16/308. [22] P. Freton, J. J. Gonzalez, and A. Gleizes, 'Comparison between a two- and a three-dimensional arc plasma configuration,' Journal of Physics D-Applied Physics, vol. 33, no. 19, pp. 2442-2452, Oct 2000, doi: 10.1088/0022-3727/33/19/315. [23] J. J. Gonzalez, P. Freton, and A. Gleizes, 'Comparisons between two- and three-dimensional models: gas injection and arc attachment,' Journal of Physics D-Applied Physics, vol. 35, no. 24, pp. 3181-3191, Dec 2002, Art no. Pii s0022-3727(02)39466-x, doi: 10.1088/0022-3727/35/24/306. [24] J. Perambadur, A. Y. Klimenko, V. Rudolph, and P. Shukla, 'The investigation of arc fluctuations in thermal plasma torch using 3D modeling approach,' International Journal of Heat and Mass Transfer, vol. 165, Feb 2021, Art no. 120666, doi: 10.1016/j.ijheatmasstransfer.2020.120666. [25] T. H. Chung, 'Modeling the plasma-sheath boundary for a cylindrical probe in electronegative plasmas,' J. Korean Phys. Soc., vol. 54, no. 6, pp. 2282-2289, Jun 2009. [Online]. Available: <Go to ISI>://WOS:000267048500016. [26] J. H. Sun, S. R. Sun, C. Niu, and H. X. Wang, 'Non-equilibrium modeling on the plasma-electrode interaction in an argon DC plasma torch,' Journal of Physics D-Applied Physics, vol. 54, no. 46, Nov 2021, Art no. 465202, doi: 10.1088/1361-6463/ac122a. [27] Q. Sun, C. Wang, T. Chen, and W. D. Xia, 'Comparison of thermal and electric characteristic for free-burning arc using coupled and decoupled sheath models,' Journal of Physics D-Applied Physics, vol. 50, no. 42, Oct 2017, Art no. 425202, doi: 10.1088/1361-6463/aa882b. [28] S. Choi, T. H. Hwang, J. H. Seo, D. U. Kim, and S. H. Hong, 'Effects of anode nozzle geometry on ambient air entrainment into thermal plasma jets generated by nontransferred plasma torch,' Ieee Transactions on Plasma Science, vol. 32, no. 2, pp. 473-478, Apr 2004, doi: 10.1109/tps.2004.826365. [29] S. Choi, J. M. Park, W. T. Ju, and S. H. Hong, 'Effects of constrictor geometry, arc current, and gas flow rate on thermal plasma characteristics in a segmented arc heater,' Journal of Thermal Science and Technology, vol. 6, no. 2, pp. 210-218, 2011, doi: 10.1299/jtst.6.210. [30] K. Kim, D. Kim, J. Lee, D. Lee, M. Hur, and Y. Song, 'The effect of geometric modification on the performance of AC arc torch,' in Proc. Int. Plasma Chem. Soc. ISPC-Conf.(ISPC), 2011, pp. 595-599. [31] A. B. Murphy, 'Diffusion in equilibrium mixtures of ionized-gases,' Physical Review E, vol. 48, no. 5, pp. 3594-3603, Nov 1993, doi: 10.1103/PhysRevE.48.3594. [32] A. B. Murphy, 'Transport-coefficients of air, argon-air, nitrogen-air and oxygen-air plasmas,' Plasma Chem. Plasma Process., vol. 15, no. 2, pp. 279-307, Jun 1995, doi: 10.1007/bf01459700. [33] A. B. Murphy and C. J. Arundell, 'Transport-coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas,' (in English), Plasma Chem. Plasma Process., Article vol. 14, no. 4, pp. 451-490, Dec 1994, doi: 10.1007/bf01570207. [34] D. A. Scott, P. Kovitya, and G. N. Haddad, 'Temperatures in the plume of a DC plasma torch,' Journal of Applied Physics, vol. 66, no. 11, pp. 5232-5239, Dec 1989, doi: 10.1063/1.343709. [35] Y. P. Raizer, Gas discharge physics. Berlin; New York: Springer-Verlag (in English), 1991. [36] K. C. Hsu, K. Etemadi, and E. Pfender, 'Study of the free burning higˆ intensity argon arc,' Journal of Applied Physics, vol. 54, pp. 1293-1301, 1983. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80451 | - |
| dc.description.abstract | 本研究建立以貼壁非正交網格求解以磁流體動力模型描訴的軸對稱熱電漿流場的數值方法。本研究以有限體積法離散連續方程式、動量方程式、能量方程式和紊流模型,流場內的電流分佈由安培定律求得,磁場則是利用歐姆定律求得。流場中速度與壓力的耦合關係以SIMPLE法加以拆解,以隱式計算方法聯立求解離散後的流場統御方程式。本研究探討Step以及Horn設計根式非傳輸型火炬在氮氣流量範圍25至95 SLM以及工作電流範圍40至90 A的電漿火炬特性。根式火炬陰極位置假設固定於負電極處,陽極位置則是利用實驗電壓加以推估。Step及Horn 電漿火炬設計的出口平均軸向速度分別約為80至120 m/s以及20至80 m/s,出口平均溫度則皆介於3000至5000 K之間。Step及Horn 電漿火炬設計的出口平均軸向速度分別正比於工作電流的0.587次方及1.504次方,以及分別正比於流量的0.3796次方及0.019次方。出口平均溫度則是正比於流量的-0.4694次方及-0.4376次方,以及分別正比於工作電流的0.3389次方及0.4038次方。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:06:56Z (GMT). No. of bitstreams: 1 U0001-0612202115070900.pdf: 14047278 bytes, checksum: 97f76402d70dde7f2fc575d8df7d1b1b (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Abstract i 摘要 ii Contents iii Nomenclature v List of Figures ix List of Tables xii Chapter 1 Introduction 1 1.1 Overview 1 1.2 Literature Review 3 Chapter 2 Numerical Methods 4 2.1 Governing Equations 4 2.2 Numerical Approach 7 2.3 Convection Term Approximation 8 2.4 Diffusion Term Approximation 10 2.4.1 Momentum Equation 12 2.4.2 Energy Equation 24 2.4.3 Current Continuity Equation 27 2.4.4 Turbulence Kinetic Energy Equation 29 2.4.5 Turbulence Dissipation Rate Equation 32 2.5 Magnetic Field Calculation 35 2.6 Solution Procedure 37 Chapter 3 Numerical Setup 39 3.1 Computational Domain 39 3.2 Boundary Conditions 42 3.3 Mesh 48 3.4 Mesh Dependency 49 3.5 Torch Operation Characteristics 54 3.6 Convergence History 55 3.7 Case Description 57 Chapter 4 Numerical Results 58 4.1 Validation 58 4.2 Verification 60 4.3 Flow Characteristics of Step Design 63 4.3.1 Influence of Working Current 63 4.3.2 Influence of Flow Rate 74 4.4 Flow Characteristics of Horn Design 85 4.4.1 Influence of Working Current 85 4.4.2 Influence of Flow Rate 97 4.5 Outflow Characteristic 108 Chapter 5 Conclusion 119 References 121 | |
| dc.language.iso | en | |
| dc.subject | 磁流體動力模型 | zh_TW |
| dc.subject | 電漿火炬 | zh_TW |
| dc.subject | 氮氣 | zh_TW |
| dc.subject | 熱電漿 | zh_TW |
| dc.subject | 非傳輸型 | zh_TW |
| dc.subject | 直流電 | zh_TW |
| dc.subject | 非正交網格 | zh_TW |
| dc.subject | Non-transferred | en |
| dc.subject | Magnetohydrodynamic Model | en |
| dc.subject | Non-orthogonal Grid | en |
| dc.subject | Direct Current | en |
| dc.subject | Plasma Torch | en |
| dc.subject | Nitrogen | en |
| dc.subject | Thermal Plasma | en |
| dc.title | 以非正交網格方法模擬軸對稱熱電漿流場 | zh_TW |
| dc.title | Modeling of Axisymmetric Thermal Plasma Flow Using a Non-orthogonal Grid Approach | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 戴璽恆(Hsin-Tsai Liu),廖英皓(Chih-Yang Tseng),魏大欽,陳明志,陳孝輝 | |
| dc.subject.keyword | 電漿火炬,氮氣,熱電漿,非傳輸型,直流電,非正交網格,磁流體動力模型, | zh_TW |
| dc.subject.keyword | Plasma Torch,Nitrogen,Thermal Plasma,Non-transferred,Direct Current,Non-orthogonal Grid,Magnetohydrodynamic Model, | en |
| dc.relation.page | 124 | |
| dc.identifier.doi | 10.6342/NTU202104517 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-12-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0612202115070900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 13.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
