Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80447
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊鎧鍵(Kai-Chien Yang)
dc.contributor.authorChih-Fan Yehen
dc.contributor.author葉志凡zh_TW
dc.date.accessioned2022-11-24T03:06:51Z-
dc.date.available2021-12-30
dc.date.available2022-11-24T03:06:51Z-
dc.date.copyright2021-12-30
dc.date.issued2021
dc.date.submitted2021-12-09
dc.identifier.citation1. P. A. Heidenreich et al., Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123, 933-944 (2011). 2. S. Wang, M. Petzold, J. Cao, Y. Zhang, W. Wang, Direct medical costs of hospitalizations for cardiovascular diseases in Shanghai, China: trends and projections. Medicine (Baltimore) 94, e837 (2015). 3. P. Libby, Inflammation in atherosclerosis. Nature 420, 868-874 (2002). 4. R. S. Rosenson, Statins: can the new generation make an impression? Expert Opin Emerg Drugs 9, 269-279 (2004). 5. B. G. Nordestgaard et al., Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J 34, 3478-3490a (2013). 6. J. L. Goldstein, M. S. Brown, A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161, 161-172 (2015). 7. B. A. Ference et al., Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 38, 2459-2472 (2017). 8. M. J. Domanski et al., Time Course of LDL Cholesterol Exposure and Cardiovascular Disease Event Risk. J Am Coll Cardiol 76, 1507-1516 (2020). 9. Y. I. Miller et al., Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res 108, 235-248 (2011). 10. M. Navab et al., The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res 45, 993-1007 (2004). 11. A. Gistera, G. K. Hansson, The immunology of atherosclerosis. Nat Rev Nephrol 13, 368-380 (2017). 12. J. R. Petrie, T. J. Guzik, R. M. Touyz, Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can J Cardiol 34, 575-584 (2018). 13. A. M. Centner, P. G. Bhide, G. Salazar, Nicotine in Senescence and Atherosclerosis. Cells 9, (2020). 14. T. Munzel et al., Effects of tobacco cigarettes, e-cigarettes, and waterpipe smoking on endothelial function and clinical outcomes. Eur Heart J 41, 4057-4070 (2020). 15. J. J. Chiu, S. Chien, Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91, 327-387 (2011). 16. L. J. Ignarro, C. Napoli, Novel features of nitric oxide, endothelial nitric oxide synthase, and atherosclerosis. Curr Diab Rep 5, 17-23 (2005). 17. H. Li, M. I. Cybulsky, M. A. Gimbrone, Jr., P. Libby, An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb 13, 197-204 (1993). 18. M. R. Bennett, S. Sinha, G. K. Owens, Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res 118, 692-702 (2016). 19. A. Wanschel et al., Neuroimmune guidance cue Semaphorin 3E is expressed in atherosclerotic plaques and regulates macrophage retention. Arterioscler Thromb Vasc Biol 33, 886-893 (2013). 20. F. K. Swirski, M. Nahrendorf, P. Libby, The ins and outs of inflammatory cells in atheromata. Cell Metab 15, 135-136 (2012). 21. P. Libby, G. K. Hansson, Inflammation and immunity in diseases of the arterial tree: players and layers. Circ Res 116, 307-311 (2015). 22. J. L. Ruiz, J. D. Hutcheson, E. Aikawa, Cardiovascular calcification: current controversies and novel concepts. Cardiovasc Pathol 24, 207-212 (2015). 23. Y. J. Geng, P. Libby, Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme. Am J Pathol 147, 251-266 (1995). 24. M. C. Clarke, S. Talib, N. L. Figg, M. R. Bennett, Vascular smooth muscle cell apoptosis induces interleukin-1-directed inflammation: effects of hyperlipidemia-mediated inhibition of phagocytosis. Circ Res 106, 363-372 (2010). 25. T. Quillard et al., TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur Heart J 36, 1394-1404 (2015). 26. G. Franck et al., Flow Perturbation Mediates Neutrophil Recruitment and Potentiates Endothelial Injury via TLR2 in Mice: Implications for Superficial Erosion. Circ Res 121, 31-42 (2017). 27. Y. Alexander et al., Endothelial function in cardiovascular medicine: a consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovasc Res 117, 29-42 (2021). 28. R. Ross, J. A. Glomset, The pathogenesis of atherosclerosis (first of two parts). N Engl J Med 295, 369-377 (1976). 29. P. O. Bonetti, L. O. Lerman, A. Lerman, Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 23, 168-175 (2003). 30. C. Weber, H. Noels, Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17, 1410-1422 (2011). 31. S. Mundi et al., Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review. Cardiovasc Res 114, 35-52 (2018). 32. P. F. Davies, Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 6, 16-26 (2009). 33. M. A. Gimbrone, Jr., G. Garcia-Cardena, Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res 118, 620-636 (2016). 34. P. F. Davies, Flow-mediated endothelial mechanotransduction. Physiol Rev 75, 519-560 (1995). 35. J. Y. Shyy, S. Chien, Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91, 769-775 (2002). 36. N. Baeyens, C. Bandyopadhyay, B. G. Coon, S. Yun, M. A. Schwartz, Endothelial fluid shear stress sensing in vascular health and disease. J Clin Invest 126, 821-828 (2016). 37. U. Forstermann, W. C. Sessa, Nitric oxide synthases: regulation and function. Eur Heart J 33, 829-837, 837a-837d (2012). 38. K. Nishida et al., Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest 90, 2092-2096 (1992). 39. M. E. Davis, H. Cai, G. R. Drummond, D. G. Harrison, Shear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways. Circ Res 89, 1073-1080 (2001). 40. W. C. Sessa, eNOS at a glance. J Cell Sci 117, 2427-2429 (2004). 41. C. Farah, L. Y. M. Michel, J. L. Balligand, Nitric oxide signalling in cardiovascular health and disease. Nat Rev Cardiol 15, 292-316 (2018). 42. R. Kietadisorn, R. P. Juni, A. L. Moens, Tackling endothelial dysfunction by modulating NOS uncoupling: new insights into its pathogenesis and therapeutic possibilities. Am J Physiol Endocrinol Metab 302, E481-495 (2012). 43. H. A. Chawsheen, Q. Ying, H. Jiang, Q. Wei, A critical role of the thioredoxin domain containing protein 5 (TXNDC5) in redox homeostasis and cancer development. Genes Dis 5, 312-322 (2018). 44. D. C. Sullivan et al., EndoPDI, a novel protein-disulfide isomerase-like protein that is preferentially expressed in endothelial cells acts as a stress survival factor. J Biol Chem 278, 47079-47088 (2003). 45. E. Horna-Terron, A. Pradilla-Dieste, C. Sanchez-de-Diego, J. Osada, TXNDC5, a newly discovered disulfide isomerase with a key role in cell physiology and pathology. Int J Mol Sci 15, 23501-23518 (2014). 46. N. J. Bulleid, Disulfide bond formation in the mammalian endoplasmic reticulum. Cold Spring Harb Perspect Biol 4, (2012). 47. Y. Sato et al., Synergistic cooperation of PDI family members in peroxiredoxin 4-driven oxidative protein folding. Sci Rep 3, 2456 (2013). 48. P. E. Pace, A. V. Peskin, M. H. Han, M. B. Hampton, C. C. Winterbourn, Hyperoxidized peroxiredoxin 2 interacts with the protein disulfide- isomerase ERp46. Biochem J 453, 475-485 (2013). 49. B. Knoblach et al., ERp19 and ERp46, new members of the thioredoxin family of endoplasmic reticulum proteins. Mol Cell Proteomics 2, 1104-1119 (2003). 50. R. Kojima et al., Radically different thioredoxin domain arrangement of ERp46, an efficient disulfide bond introducer of the mammalian PDI family. Structure 22, 431-443 (2014). 51. R. Mo et al., High TXNDC5 expression predicts poor prognosis in renal cell carcinoma. Tumour Biol 37, 9797-9806 (2016). 52. X. Chang et al., Investigating a pathogenic role for TXNDC5 in tumors. Int J Oncol 43, 1871-1884 (2013). 53. H. K. Charlton et al., ERp46 binds to AdipoR1, but not AdipoR2, and modulates adiponectin signalling. Biochem Biophys Res Commun 392, 234-239 (2010). 54. C. Turano, S. Coppari, F. Altieri, A. Ferraro, Proteins of the PDI family: unpredicted non-ER locations and functions. J Cell Physiol 193, 154-163 (2002). 55. W. C. Duivenvoorden, A. Paschos, S. N. Hopmans, R. C. Austin, J. H. Pinthus, Endoplasmic reticulum protein ERp46 in renal cell carcinoma. PLoS One 9, e90389 (2014). 56. L. Zhang, Y. Hou, N. Li, K. Wu, J. Zhai, The influence of TXNDC5 gene on gastric cancer cell. J Cancer Res Clin Oncol 136, 1497-1505 (2010). 57. X. Chang et al., Identification of proteins with increased expression in rheumatoid arthritis synovial tissues. J Rheumatol 36, 872-880 (2009). 58. J. Li et al., TXNDC5 contributes to rheumatoid arthritis by down-regulating IGFBP1 expression. Clin Exp Immunol 192, 82-94 (2018). 59. Q. Lu et al., TXNDC5 protects synovial fibroblasts of rheumatoid arthritis from the detrimental effects of endoplasmic reticulum stress. Intractable Rare Dis Res 9, 23-29 (2020). 60. L. L. Camargo et al., Endo-PDI is required for TNFalpha-induced angiogenesis. Free Radic Biol Med 65, 1398-1407 (2013). 61. Y. C. Shih et al., Endoplasmic Reticulum Protein TXNDC5 Augments Myocardial Fibrosis by Facilitating Extracellular Matrix Protein Folding and Redox-Sensitive Cardiac Fibroblast Activation. Circ Res 122, 1052-1068 (2018). 62. D. Nam et al., Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol 297, H1535-1543 (2009). 63. S. Kumar, D. W. Kang, A. Rezvan, H. Jo, Accelerated atherosclerosis development in C57Bl6 mice by overexpressing AAV-mediated PCSK9 and partial carotid ligation. Lab Invest 97, 935-945 (2017). 64. D. Wu et al., HIF-1alpha is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium. Elife 6, (2017). 65. D. Kim, B. Langmead, S. L. Salzberg, HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12, 357-360 (2015). 66. H. Li et al., The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079 (2009). 67. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014). 68. G. Dai et al., Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci U S A 101, 14871-14876 (2004). 69. Y. Tang, A. Harrington, X. Yang, R. E. Friesel, L. Liaw, The contribution of the Tie2+ lineage to primitive and definitive hematopoietic cells. Genesis 48, 563-567 (2010). 70. I. Sorensen, R. H. Adams, A. Gossler, DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. Blood 113, 5680-5688 (2009). 71. P. J. Kuhlencordt et al., Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation 104, 448-454 (2001). 72. B. S. Oemar et al., Reduced endothelial nitric oxide synthase expression and production in human atherosclerosis. Circulation 97, 2494-2498 (1998). 73. D. Predescu, S. Predescu, J. Shimizu, K. Miyawaki-Shimizu, A. B. Malik, Constitutive eNOS-derived nitric oxide is a determinant of endothelial junctional integrity. Am J Physiol Lung Cell Mol Physiol 289, L371-381 (2005). 74. M. Averna et al., Functional role of HSP90 complexes with endothelial nitric-oxide synthase (eNOS) and calpain on nitric oxide generation in endothelial cells. J Biol Chem 283, 29069-29076 (2008). 75. G. I. Mazaira, C. Daneri-Becerra, N. R. Zgajnar, C. M. Lotufo, M. D. Galigniana, Gene expression regulation by heat-shock proteins: the cardinal roles of HSF1 and Hsp90. Biochem Soc Trans 46, 51-65 (2018). 76. R. Gomez-Pastor, E. T. Burchfiel, D. J. Thiele, Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol 19, 4-19 (2018). 77. K. M. Parmar et al., Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest 116, 49-58 (2006). 78. S. SenBanerjee et al., KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 199, 1305-1315 (2004). 79. R. J. Dekker et al., KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium. Blood 107, 4354-4363 (2006). 80. S. Gory et al., The vascular endothelial-cadherin promoter directs endothelial-specific expression in transgenic mice. Blood 93, 184-192 (1999). 81. V. Garcia, W. C. Sessa, Endothelial NOS: perspective and recent developments. Br J Pharmacol 176, 189-196 (2019). 82. G. Garcia-Cardena et al., Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392, 821-824 (1998). 83. D. Fulton, J. P. Gratton, W. C. Sessa, Post-translational control of endothelial nitric oxide synthase: why isn't calcium/calmodulin enough? J Pharmacol Exp Ther 299, 818-824 (2001). 84. S. Dimmeler et al., Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601-605 (1999). 85. D. Fulton et al., Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399, 597-601 (1999). 86. K. A. Pritchard, Jr. et al., Heat shock protein 90 mediates the balance of nitric oxide and superoxide anion from endothelial nitric-oxide synthase. J Biol Chem 276, 17621-17624 (2001). 87. A. Ghosh, D. J. Stuehr, Soluble guanylyl cyclase requires heat shock protein 90 for heme insertion during maturation of the NO-active enzyme. Proc Natl Acad Sci U S A 109, 12998-13003 (2012). 88. J. P. Gratton et al., Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1. J Biol Chem 275, 22268-22272 (2000). 89. W. Chen et al., Endothelial nitric oxide synthase dimerization is regulated by heat shock protein 90 rather than by phosphorylation. PLoS One 9, e105479 (2014). 90. J. Li, J. Labbadia, R. I. Morimoto, Rethinking HSF1 in Stress, Development, and Organismal Health. Trends Cell Biol 27, 895-905 (2017). 91. T. Uchiyama et al., HSF1 and constitutively active HSF1 improve vascular endothelial function (heat shock proteins improve vascular endothelial function). Atherosclerosis 190, 321-329 (2007). 92. Q. Fu et al., Involvement of heat shock factor 1 in statin-induced transcriptional upregulation of endothelial thrombomodulin. Circ Res 103, 369-377 (2008). 93. S. Dayalan Naidu, A. T. Dinkova-Kostova, Regulation of the mammalian heat shock factor 1. FEBS J 284, 1606-1627 (2017). 94. S. Parakh et al., ERp57 is protective against mutant SOD1-induced cellular pathology in amyotrophic lateral sclerosis. Hum Mol Genet 27, 1311-1331 (2018). 95. M. K. Ko, E. P. Kay, PDI-mediated ER retention and proteasomal degradation of procollagen I in corneal endothelial cells. Exp Cell Res 295, 25-35 (2004). 96. S. O. Lee et al., Protein disulphide isomerase is required for signal peptide peptidase-mediated protein degradation. EMBO J 29, 363-375 (2010). 97. Z. Lin et al., Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res 96, e48-57 (2005). 98. R. T. Huang et al., Experimental Lung Injury Reduces Kruppel-like Factor 2 to Increase Endothelial Permeability via Regulation of RAPGEF3-Rac1 Signaling. Am J Respir Crit Care Med 195, 639-651 (2017). 99. K. M. Parmar et al., Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. J Biol Chem 280, 26714-26719 (2005). 100. S. Sen-Banerjee et al., Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells. Circulation 112, 720-726 (2005). 101. C. K. Cheng et al., Pharmacological basis and new insights of resveratrol action in the cardiovascular system. Br J Pharmacol 177, 1258-1277 (2020). 102. D. Wang et al., Vasculoprotective Effects of Pomegranate (Punica granatum L.). Front Pharmacol 9, 544 (2018). 103. S. Kawashima, M. Yokoyama, Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol 24, 998-1005 (2004). 104. M. Ozaki et al., Overexpression of endothelial nitric oxide synthase accelerates atherosclerotic lesion formation in apoE-deficient mice. J Clin Invest 110, 331-340 (2002). 105. H. Das et al., Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes. Proc Natl Acad Sci U S A 103, 6653-6658 (2006). 106. P. Sangwung et al., KLF2 and KLF4 control endothelial identity and vascular integrity. JCI Insight 2, e91700 (2017). 107. A. C. Chadwick, K. Musunuru, CRISPR-Cas9 Genome Editing for Treatment of Atherogenic Dyslipidemia. Arterioscler Thromb Vasc Biol 38, 12-18 (2018). 108. H. Zhao et al., In Vivo AAV-CRISPR/Cas9-Mediated Gene Editing Ameliorates Atherosclerosis in Familial Hypercholesterolemia. Circulation 141, 67-79 (2020). 109. D. Wilbie, J. Walther, E. Mastrobattista, Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing. Acc Chem Res 52, 1555-1564 (2019). 110. M. P. Hirakawa, R. Krishnakumar, J. A. Timlin, J. P. Carney, K. S. Butler, Gene editing and CRISPR in the clinic: current and future perspectives. Biosci Rep 40, (2020). 111. L. Denby, S. A. Nicklin, A. H. Baker, Adeno-associated virus (AAV)-7 and -8 poorly transduce vascular endothelial cells and are sensitive to proteasomal degradation. Gene Ther 12, 1534-1538 (2005). 112. Y. Yang et al., A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 34, 334-338 (2016). 113. P. Colella et al., Efficient gene delivery to the cone-enriched pig retina by dual AAV vectors. Gene Ther 21, 450-456 (2014). 114. P. Colella, G. Ronzitti, F. Mingozzi, Emerging Issues in AAV-Mediated In Vivo Gene Therapy. Mol Ther Methods Clin Dev 8, 87-104 (2018). 115. M. Thomas et al., Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc Natl Acad Sci U S A 102, 5679-5684 (2005). 116. Y. T. Chen et al., Endoplasmic reticulum protein TXNDC5 promotes renal fibrosis by enforcing TGF-beta signaling in kidney fibroblasts. J Clin Invest 131, (2021).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80447-
dc.description.abstract基本原理 動脈彎曲和分叉處的擾流會激活內皮細胞,進而造成動脈粥狀硬化。目前動脈粥狀硬化的藥物治療主要是針對風險因素的控制,例如糖尿病、高血壓、高血脂等的慢性疾病的控制跟治療,而非血管本身。此外,這些治療對於動脈粥狀硬化的改善仍不盡理想。因此,這樣的缺口,也凸顯了釐清和靶向內皮中引起動脈粥狀硬化的新型機械敏感性機制的重要性。 實驗目標 探討內質網蛋白Thioredoxin Domain Containing 5 (TXNDC5)在動脈粥狀硬化致病過程中的角色,釐清TXNDC5於內皮機械傳導路徑中的分子機制,並針對此機制結合奈米醫學的技術去剔除內皮中的TXNDC5,以達成治療動脈粥狀硬化的目標。 實驗方法和結果 TXNDC5分別在人類及小鼠的動脈粥狀硬化病灶中,被發現其蛋白表現量顯著增加。首先,我們利用三種新型小鼠疾病模式來證明TXNDC5高度表達於受擾流刺激下的血管內皮細胞中。再者,針對性地剔除小鼠內皮細胞中的TXNDC5可顯著的減少動脈粥狀硬化的發生。機制上,我們闡明內皮細胞中的TXNDC5 透過破壞eNOS蛋白的穩定性,導致內皮功能的失常,進而造成動脈粥狀硬化的發生。TXNDC5 可增加熱休克反應(heat shock response)中重要的轉錄因子HSF1的泛素化(ubiquitination)以及蛋白酶體(proteasome)媒介的降解,導致其下游蛋白HSP90表現量減少,最終致使eNOS蛋白的穩定性下降。為了要證實TXNDC5是可作為治療動脈粥狀硬化的標的,我們整合奈米微粒及內皮特異性啟動子 (CDH5) 驅動的 CRISPR/Cas9 系統,來標靶性剔除內皮細胞中的Txndc5,結果證實此策略顯著增加eNOS蛋白的表現並減少ApoE-/-小鼠動脈粥狀硬化的發生。 結論 本研究藉由細胞和動物實驗,闡述血液擾流誘導的內皮TXNDC5 在動脈粥狀硬化中的詳細機轉。此外,我們藉由CRISPR技術設計一個奈米醫學平台,在體內有效且特異性地剔除內皮細胞中的Txndc5,從而減少動脈粥狀硬化發生,以此建立一個經由靶向內皮機械敏感的途徑作為治療動脈粥狀硬化的概念,並期望其作為未來的治療方針。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:06:51Z (GMT). No. of bitstreams: 1
U0001-0812202108541700.pdf: 11546461 bytes, checksum: 9f09f1a465d871ef4c7c478f88fab8d9 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"誌謝 1 中文摘要 3 ABSTRACT 5 CONTENTS 7 LIST OF FIGURES 10 Chapter 1 Introduction 12 1.1 Atherosclerosis 12 1.1.1 Epidemiology of atherosclerotic cardiovascular disease 12 1.1.2 Mechanism of atherosclerosis 12 1.1.3 Contribution of hemodynamic flow on atherosclerosis 14 1.1.4 Functions of flow-sensitive endothelial nitric oxide synthase (eNOS) 15 1.2 Thioredoxin domain containing 5 (TXNDC5) 16 1.2.1 PDI function of TXNDC5 16 1.2.2 TXNDC5 and human diseases 16 1.2.3 TXNDC5 in endothelial cells 17 1.3 Aim of the study 17 Chapter 2 Material and Methods 18 2.1 Generation of Txndc5-/- mice, Txndc5fl/fl mice, and cell type-specific Txndc5 conditional knockout mice 18 2.2 Generation of cell type-specific fluorescence reporter mice 20 2.3 Partial carotid artery ligation (PCAL) 20 2.4 AAV9-PCSK9 mouse model 21 2.5 Intimal RNA isolation from carotid arteries 21 2.6 Plaque lesion analysis of aorta, aortic sinuses and carotid arteries 21 2.7 Immunofluorescence staining 22 2.8 En face staining 23 2.9 Human aortic endothelial cell (HAEC) culture 23 2.10 Athero-relevant cone plate flow system 23 2.11 siRNA transfection of HAEC 23 2.12 Lentiviral transduction of HAEC 24 2.13 mRNA transfection of HAEC 24 2.14 RNA extraction and qRT-PCR 25 2.15 Immunoblot analysis 25 2.16 Cycloheximide protein stability assay 26 2.17 Co-immunoprecipitation for TXNDC5-interacting proteins and ubiquitination of HSF1 26 2.18 TXNDC5 promoter luciferase reporter assay 26 2.19 Nitric oxide production assay 27 2.20 Transendothelial electrical resistance 27 2.21 RNA sequencing and pathway enrichment analysis 27 2.22 Re-analysis of publicly available microarray datasets 28 2.23 Statistical analysis 28 2.24 Graphical abstract creation 28 Chapter 3 Results 29 3.1 TXNDC5 is induced in the endothelium exposed to DF and upregulated in atherosclerotic lesions 29 3.2 Global and endothelium-specific deletion of Txndc5 significantly reduces atherosclerosis in vivo 31 3.3 Disturbed flow-induced TXNDC5 downregulates eNOS protein in vascular endothelium 33 3.4 TXNDC5 destabilizes eNOS protein by reducing HSP90 in endothelial cells 35 3.5 TXNDC5 suppresses HSP90 expression via ubiquitin-dependent HSF1 degradation in the endothelium 36 3.6 Endothelial TXNDC5 is transcriptionally repressed by flow-sensitive transcription factor KLF2 38 3.7 Endothelial Txndc5 deletion achieved by a targeted nanomedicine platform significantly reduces atherosclerosis in ApoE-/- mice 39 Chapter 4 Discussion 41 4.1 Mechano-sensitive endothelial TXNDC5 is a novel target for atherosclerosis 41 4.2 The novel mechanism by which TXNDC5 regulates eNOS protein stability 41 4.3 Novel link of heat shock factor 1 to atherosclerosis via mechano-sensitive TXNDC5 42 4.4 Advantage of targeting TXNDC5 to treat atherosclerosis 43 4.5 The advantage of nanoparticle-based treatment targeting vascular endothelium 45 REFERENCE 47 FIGURES 53 Figure 1. Generation of Txndc5fl/fl mice using CRISPR/Cas9-based genome editing. 53 Figure 2. Experimental scheme of partial carotid ligation and AAV9-PCSK9 atherogenic models. 54 Figure 3. TXNDC5 is induced in the endothelium exposed to disturbed flow. 55 Figure 4. TXNDC5 expression is significantly upregulated in endothelial cells exposed to disturbed flow and in atherosclerotic lesions. 58 Figure 5. Global deletion of disturbed flow-induced Txndc5 significantly reduces atherosclerosis in vivo. 61 Figure 6. No change of plasma lipid profile or inflammatory markers by Txndc5 deletion in ApoE-/- mice. 62 Figure 7. Endothelial deletion of disturbed flow-induced Txndc5 significantly reduces atherosclerosis in vivo. 64 Figure 8. Disturbed flow upregulates endothelial TXNDC5 to increase protein degradation of endothelial nitric oxide synthase (eNOS). 68 Figure 9. TXNDC5-mediated endothelial dysfunction and atherosclerosis are eNOS/nitric oxide-dependent. 70 Figure 10. TXNDC5 downregulates HSP90 to destabilize eNOS protein in endothelial cells. 73 Figure 11. RNA sequencing analysis identifies heat shock response regulated by TXNDC5 depletion. 74 Figure 12. TXNDC5 downregulates eNOS by transcriptional regulation of HSP90. 76 Figure 13. TXNDC5 downregulates HSF1 protein expression without affecting its transcripts. 77 Figure 14. TXNDC5 increases ubiquitin-dependent HSF1 degradation to decrease HSP90 and eNOS in vascular endothelium. 80 Figure 15. Efficiency of KLF2 overexpression and its binding sites at TXNDC5 promoter region. 81 Figure 16. Endothelial TXNDC5 is transcriptionally suppressed by KLF2. 82 Figure 17. In vivo administration of nanoparticles carrying an endothelium-specific Txndc5-targeting CRISPR/Cas9 vecteor deletes endothelial TXNDC5 and ameliorates disturbed flow-induced carotid atherosclerosis. 84 Figure 18. Proposed athero-relevant mechano-transduction mechanisms mediated by TXNDC5 in vascular endothelium. 85 Table 1. Primer list 86 Table 2. Antibody list 88 Table 3. List of dysregulated genes in TXNDC5-depleted HAEC exposed to disturbed flow. 89"
dc.language.isoen
dc.subject奈米醫學zh_TW
dc.subject內皮型一氧化氮合成酶zh_TW
dc.subject動脈硬化zh_TW
dc.subject剪應力zh_TW
dc.subject內皮細胞zh_TW
dc.subjectTXNDC5en
dc.subjectAtherosclerosisen
dc.subjectendothelial cellen
dc.subjectshear stressen
dc.subjectnanomedicineen
dc.subjectendothelial nitric oxide synthaseen
dc.title透過靶向血管內皮細胞的機械敏感性蛋白TXNDC5以穩定eNOS並改善動脈粥狀硬化zh_TW
dc.titleTargeting mechano-sensitive endothelial TXNDC5 to stabilize eNOS and reduce atherosclerosis in vivoen
dc.date.schoolyear110-1
dc.description.degree博士
dc.contributor.author-orcid0000-0002-0678-2264
dc.contributor.advisor-orcid楊鎧鍵(0000-0002-9128-9166)
dc.contributor.oralexamcommittee高憲立(Hsin-Tsai Liu),裘正健(Chih-Yang Tseng),黃柏勳,劉秉彥,陳文彬
dc.subject.keyword動脈硬化,剪應力,內皮細胞,內皮型一氧化氮合成酶,奈米醫學,zh_TW
dc.subject.keywordAtherosclerosis,TXNDC5,shear stress,endothelial cell,endothelial nitric oxide synthase,nanomedicine,en
dc.relation.page92
dc.identifier.doi10.6342/NTU202104521
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-12-09
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
U0001-0812202108541700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
11.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved