Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80440
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃升龍(Sheng-Lung Huang)
dc.contributor.authorRajendran Soundararajanen
dc.contributor.author桑德揚zh_TW
dc.date.accessioned2022-11-24T03:06:43Z-
dc.date.available2022-01-17
dc.date.available2022-11-24T03:06:43Z-
dc.date.copyright2022-01-17
dc.date.issued2021
dc.date.submitted2021-12-17
dc.identifier.citation1. A. M. Zysk, F.T. Nguyen, A.L. Oldenburg, D. L. Marks, and S. A. Boppart, 'Optical coherence tomography : A review of clinical development from bench to bedside,' J. Biomed. Opt., 12(5), 051403 (1-21) (2007). 2. E. Bo, Y. Luo, S. Chen, X. Liu, N. Wang, X. Ge, X. Wang, S. Chen, S. Chen, J. Li, and L. Liu, 'Depth-of-focus extension in optical coherence tomography via multiple aperture synthesis,' Optica, 4(7), 701-706 (2017). 3. T.-S. Ho, P. Yeh, C.-C. Tsai, K.-Y. Hsu, and S.-L. Huang, 'Spectroscopic measurement of absorptive thin films by spectral-domain optical coherence tomography,' Opt. Express, 22(5), 5675-5683 (2014). 4. A. Dubois, 'Spectroscopic polarization-sensitive full-field optical coherence tomography,' Opt. Express, 20(9), 9962–9977 (2012). 5. D. Huang, E.A. Swanson, C.P. Charles, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J. G. Fujimoto 'Optical coherence tomography,' Science, 254(5035), 1178–1181 (1991). 6. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, 'In vivo optical coherence tomography,' Am. J. Ophthalmol. 116(1), 113–114 (1993). 7. J. G. Fujimoto, 'Optical coherence tomography for ultrahigh resolution in vivo imaging,' Nat. Biotechnol. 21(11), 1361–1367 (2003). 8. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, 'Optical biopsy and imaging using optical coherence tomography,' Nat. Med. 1(9), 970–972 (1995). 9. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, 'Optical coherence tomography - Principles and applications,' Reports Prog. Phys. 66, 239–303 (2003). 10. J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, 'Optical coherence tomography of the human skin,' J. Am. Acad. Dermatol. 37(6), 958–963 (1997). 11. T. Gambichler, V. Jaedicke, and S. Terras, 'Optical coherence tomography in dermatology: Technical and clinical aspects,' Arch. Dermatol. Res. 303, 457–473 (2011). 12. W. Drexler, 'Ultrahigh-resolution optical coherence tomography,' J. Biomed. Opt. 9, 47–74 (2004). 13. W. Drexler and J. G. Fujimoto, 'Optical coherence tomography (Technology and applications),' 2nd Edition, Springer International Publishing Switzerland, (2015). 14. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, 'Full-field optical coherence microscopy,' Opt. Lett., 23(4), 244–246 (1998). 15. A. Dubois, L. Vabre, A. Boccara, and E. Beaurepaire, 'High-resolution full-field optical coherence tomography with a Linnik microscope,' 41(4), 805–812 (2002). 16. L. Vabre, A. Dubois, and A. C. Boccara, 'Thermal-light full-field optical coherence tomography,' Opt. Lett., 27(7), 530-532 (2002). 17. A. Latrive and A. C. Boccara, 'In vivo and in situ cellular imaging full-field optical coherence tomography with a rigid endoscopic probe,' Biomed. Opt. Express, 52, 2897–2904 (2011). 18. A. Federici, H. S. Gutierrez da Costa, J. Ogien, A. K. Ellerbee, and A. Dubois, 'Wide-field, full-field optical coherence microscopy for high-axial-resolution phase and amplitude imaging,' Appl. Opt. 54(27), 8212–8220 (2015). 19. A. Dubois, 'Spectroscopic polarization-sensitive full-field optical coherence tomography,' Opt. Express 20(9), 9962-9977 (2012). 20. E. Dalimier, and D. Salomon, 'Full-Field optical coherence tomography : A new technology for 3D high-resolution skin imaging,' Dermatology, 224, 84–92 (2012). 21. J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, 'Functional optical coherence tomography : Principles and progress,' Phys. Med. Biol. 60, R211-237 (2015). 22. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J.G. Fujimoto, 'Spectroscopic optical coherence tomography,' Opt. Lett. 25(2), 111–113 (2000). 23. G. Latour, J. Moreau, M. Elias, and J. Frigerio, 'Micro-spectrometry in the visible range with full-field optical coherence tomography for single absorbing layers,' Opt. Commun. 283, 4810–4815 (2010). 24. A. Morin and J. Frigerio, 'Aperture effect correction in spectroscopic full-field optical coherence tomography,' Appl. Optics, 51(16), 3431–3438 (2012). 25. C. Xu, D. L. Marks, M. N. Do, and S. A. Boppart, 'Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm,' Opt. Express 12(20), 4790-4803 (2004). 26. C. Xu, P. S. Carney, and S. A. Boppart, 'Wavelength-dependent scattering in spectroscopic optical coherence tomography,' Opt. Express 13(14), 5450-5462 (2005). 27. A. Dubois, J. Moreau, and C. Boccara, 'Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,' Opt. Express 16(21), 17082–17091 (2008). 28. R. R. Alfano, S. G. Demos, and S. K. Gayen, 'Advances in optical imaging of biomedical media,' Ann. N. Y. Acad. Sci. 820(112), 248–271 (1997). 29. A. P. Dhawan, B. D’Alessandro, and X. Fu, 'Optical imaging modalities for biomedical applications,' IEEE Rev. Biomed. Eng. 3, 69–92 (2010). 30. W. Drexler and J. G. Fujimoto, 'Optical coherence tomography,' Springer-Verlag Berlin Heidelberg (2008). 31. E. A. Swanson and J. G. Fujimoto, 'The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact [invited],' Biomed. Opt. Express 8(3), 1638–1664 (2017). 32. D. Huang, E.A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, H. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, 'Optical coherence tomography,' Science 254(5035), 1178–1181 (1991). 33. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, 'Optical coherence tomography today: Speed, contrast, and multimodality,' J. Biomed. Opt. 19(7), 071412 (2014). 34. Z. Hosseinaee, J. A. Tummon Simmons, and P. H. Reza, 'Dual-modal photoacoustic imaging and optical coherence tomography [review],' Front. Phys. 8, 616618 (1–19) (2021). 35. Gordon S. Kino and S. S. C. Chim, 'Correlation microscope,' Appl. Opt. 29(26), 3775–3783 (1990). 36. A. Dobroiu, H. Sakai, H. Ootaki, M. Sato, and N. Tanno, 'Coaxial Mirau interferometer,' Opt. Lett. 27(13), 1153–1155 (2002). 37. J. M. Schmitt, 'Optical coherence tomography (OCT): A review,' IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999). 38. B. C. Wilson and S. L. Jacques, 'Optical reflectance and transmittance of tissues: Principles and applications,' IEEE J. Quantum Electron. 26(12), 2186–2199 (1990). 39. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, 'Optical coherence tomography - principles and applications,' Reports Prog. Phys. 66(2), 239–303 (2003). 40. C. Ash, G. Town, P. Bjerring, and S. Webster, 'Evaluation of a novel skin tone meter and the correlation between Fitzpatrick skin type and skin color,' Photonics Lasers Med. 4(2), 177–186 (2015). 41. A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, 'A thermal light source technique for optical coherence tomography,' Opt. Commun. 185(1-3), 57–64 (2000). 42. A. Unterhuber, B. Považay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, C. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, 'Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,' Phys. Med. Biol. 49(7), 1235–1246 (2004). 43. M. A. Choma, K. Hsu, and J. A. Izatt, 'Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,' J. Biomed. Opt. 10(4), 044009 (2005). 44. K. Seevakan and S. Bharanidharan, 'Different types of crystal growth methods,' Int. J. Pure Appl. Math. 119(12), 5743–5758 (2018). 45. E. Sorokin, 'Solid-state materials for few-cycle pulse generation and amplification,' Springer-Verlag Berlin Heidelberg (2004). 46. https://meroli.web.cern.ch/lecture_cmos_vs_ccd_pixel_sensor.html. 47. https://thinklucid.com/tech-briefs/understanding-digital-image-sensors/. 48. https://www.princetoninstruments.com/learn/camera-fundamentals/full-well-capacity-pixel-saturation. 49. https://www.edmundoptics.com.tw/knowledge-center/application-notes/imaging/ understanding-camera-sensors-for-machine-vision-applications/. 50. https://www.flir.com/discover/iis/machine-vision/how-to-evaluate-camera-sensitivity/. 51. J. V Migacz, D. M. Schwartz, and J. S. Werner, 'Challenges and advantages in wide-field optical coherence tomography angiography imaging of the human retinal and choroidal vasculature at 1.7-MHz A-scan rate,' J. Biomed. Opt. 22(10), 106018 (2017). 52. Y. K. Yong, S. O. R. Moheimani, B. J. Kenton, and K. K. Leang, 'Invited review article: High-speed flexure-guided nanopositioning: mechanical design and control issues,' Rev. Sci. Instrum. 83, 121101 (2012). 53. Y. Liu, J. Shan, and U. Gabbert, 'Feedback/feedforward control of hysteresis-compensated piezoelectric actuators for high-speed scanning applications,' Smart Mater. Struct. 24(1), 015012 (2015). 54. C. Zhou, C. Feng, Y. N. Aye, and W. T. Ang, 'A digitized representation of the modified Prandtl–Ishlinskii hysteresis model for modeling and compensating piezoelectric actuator hysteresis,' Micromachines 12(8), 942 (2021). 55. S. Bashash and N. Jalili, 'A polynomial-based linear mapping strategy for feedforward compensation of hysteresis in piezoelectric actuators,' J. Dyn. Syst. Meas. Control. Trans. ASME 130(3), 031008 (2008). 56. D. Damjanovic, 'Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics,' Reports Prog. Phys. 61, 1267–1324 (1998). 57. W. Wang, J. Wang, Z. Chen, R. Wang, K. Lu, Z. Sang, and B. Ju, 'Research on asymmetric hysteresis modeling and compensation of piezoelectric actuators with PMPI model,' Micromachines 11(4), 357 (2020). 58. H. Xie, M. Rakotondrabe, and S. Ŕgnier, 'Characterizing piezoscanner hysteresis and creep using optical levers and a reference nanopositioning stage,' Rev. Sci. Instrum. 80(4), 046102 (2009). 59. D. An, H. Li, Y. Xu, and L. Zhang, 'Compensation of hysteresis on piezoelectric actuators based on tripartite PI model,' Micromachines 9(2), 44 (2018). 60. G. Y. Gu, L. M. Zhu, C. Y. Su, H. Ding, and S. Fatikow, 'Modeling and control of piezo-actuated nanopositioning stages: A survey,' IEEE Trans. Autom. Sci. Eng. 13(1), 313–332 (2016). 61. J. Gan and X. Zhang, 'A review of nonlinear hysteresis modeling and control of piezoelectric actuators,' AIP Adv. 9, 040702 (2019). 62. J. Gan, X. Zhang, and H. Wu, 'Tracking control of piezoelectric actuators using a polynomial-based hysteresis model,' AIP Adv. 6, 065204 (2016). 63. Y. Qin, R. Soundararajan, R. Jia, and S. L. Huang, 'Direct inverse linearization of piezoelectric actuator’s initial loading curve and its applications in full-field optical coherence tomography (FF-OCT),' Mech. Syst. Signal Process. 148, 107147 (2021). 64. Y. Qin, X. Zhao, and L. Zhou, 'Modeling and identification of the rate-dependent hysteresis of piezoelectric actuator using a modified Prandtl-Ishlinskii model,' Micromachines 8, 114 (2017). 65. M. Rakotondrabe, 'Classical Prandtl-Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoactuators,' American Control Conference, 1646–1651 (2012). 66. M. Rakotondrabe, C. Clévy, and P. Lutz, 'Complete open loop control of hysteretic, creeped, and oscillating piezoelectric cantilevers,' IEEE Trans. Autom. Sci. Eng. 7(3), 440–450 (2009). 67. N. Bosschaart, T. G. van Leeuwen, M. C. G. Aalders, and D. J. Faber, 'Quantitative comparison of analysis methods for spectroscopic optical coherence tomography,' Biomed. Opt. Express 4(11), 2570-2584 (2013). 68. T. S. Kim, S.-J. Jang, N. Oh, Y. Kim, T. Park, J. Park, and W.-Y. Oh, 'Dual-wavelength band spectroscopic optical frequency domain imaging using plasmon-resonant scattering in metallic nanoparticles,' Opt. Lett. 39(10), 3082-3085 (2014). 69. H. S. Nam and H. Yoo, 'Spectroscopic optical coherence tomography: A review of concepts and biomedical applications,' Appl. Spectrosc. Rev. 53(2-4), 91–111 (2018). 70. M. Kraszewski, M. Trojanowski, and M. R. Strąkowski, 'Quantitative comparison of analysis methods for spectroscopic optical coherence tomography: Comment,' Biomed. Opt. Express 5(9), 3023-3033 (2014). 71. U. Morgner, W. Drexler, F. X. K¨artner, X. D. Li, C. Pitris, E. P. Ippen, and J G. Fujimoto, 'Spectroscopic optical coherence tomography,' Opt. Lett. 25(2), 111–113 (2000). 72. B. Boashash and P. J. Black, 'An Efficient Real-Time implementation of the Wigner-Ville distribution,' IEEE Trans. Acoust. 35(11), 1611–1618 (1987). 73. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, 'Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,' Opt. Lett. 25(11), 820-822 (2000). 74. F. Robles, R. N. Graf, and A. Wax, 'Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,' Opt. Express 17(8), 6799-6812 (2009). 75. J. R. Maher, V. Jaedicke, M. Medina, H. Levinson, M. A. Selim, W. J. Brown, and A. Wax, 'In vivo analysis of burns in a mouse model using spectroscopic optical coherence tomography,' Opt. Lett. 39(19), 5594-5597 (2014). 76. C. Xu, D. L. Marks, M. N. Do, and S. A. Boppart, 'Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm,' Opt. Express 12(20), 4790-4803 (2004). 77. F. E. Robles and A. Wax, 'Measuring morphological features using light-scattering spectroscopy and Fourier-domain low-coherence interferometry,' Opt. Lett. 35(3), 360-362 (2010). 78. V. P. Ryabukho, D. V. Lyakin, A. A. Grebenyuk, and S. S. Klykov, 'Wiener-Khintchin theorem for spatial coherence of optical wave field,' J. Opt. 15, 025405 (2013). 79. A. L. Oldenburg, C. Xu, and S.A. Boppart, 'Spectroscopic optical coherence tomography and microscopy,' IEEE J. Sel. Top. Quantum Electron. 13(6), 1629–1640 (2007). 80. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, 'Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,' Opt. Lett. 28(16), 1436-1438 (2003). 81. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, 'Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,' J. Biomed. Opt. 13(3), 034003 (2008). 82. C. P. Fleming, J. Eckert, E. F. Halpern, J. A. Gardecki, and G. J. Tearney, 'Depth resolved detection of lipid using spectroscopic optical coherence tomography,' 4(8), 1269-1284 (2013). 83. C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, 'Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography,' Opt. Lett. 29(14), 1647-1649 (2004). 84. E. C. Cho, L. Au, Q. Zhang, and Y. Xia, 'The effects of size, shape, and surface functional group of gold nanostructures on their adsorption and internalization by cells,' small 6(4), 517–522 (2010). 85. H. Cang, T. Sun, Z.-Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, 'Gold nanocages as contrast agents for spectroscopic optical coherence tomography,' Opt. Lett. 30(22), 3048-3050 (2005). 86. A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, 'Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,' J. Mater. Chem. 19, 6407 (2009). 87. R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, 'Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview,' Langmuir 21, 10644–10654 (2005). 88. Y. Zhao, J. R. Maher, J. Kim, M. A. Selim, H. Levinson, and A. Wax, 'Evaluation of burn severity in vivo in a mouse model using spectroscopic optical coherence tomography,' Biomed. Opt. Express 6(9), 3339-3345 (2015). 89. R. N. Graf and A. Wax, 'Nuclear morphology measurements using Fourier domain low coherence interferometry,' Opt. Express 13(12), 4693-4698 (2005). 90. F. E. Robles, Y. Zhu, J. Lee, S. Sharma, and A. Wax, 'Detection of early colorectal cancer development in the azoxymethane rat carcinogenesis model with Fourier domain low coherence interferometry,' Biomed. Opt. Express 1(2), 736-745 (2010). 91. G. Hong, A. L. Antaris, and H. Dai, 'Near-infrared fluorophores for biomedical imaging,' Nat. Biomed. Eng. 1, 0010 (2017). 92. J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Välisuo, 'A Review of indocyanine green fluorescent imaging in surgery,' Int. J. Biomed. Imaging 2012, 1–26 (2012). 93. N. Topaloglu, M. Gulsoy, and S. Yuksel, 'Antimicrobial photodynamic therapy of resistant bacterial strains by indocyanine green and 809-nm diode laser,' Photomed. Laser Surg. 31(4), 155–162 (2013). 94. M. Sadoqi, P. Riseborough, and S. Kumar, 'Analytical models for time resolved fluorescence spectroscopy in tissues,' Phys. Med. Biol. 46(10), 2725–2743 (2001). 95. B. Yuan, N. Chen, and Q. Zhu, 'Emission and absorption properties of indocyanine green in Intralipid solution,' J. Biomed. Opt. 9(3), 497–503 (2004). 96. C.-C. Tsai, C.-K. Chang, K.-Y. Hsu, T.-S. Ho, M.-Y. Lin, J.-W. Tjiu, and S.-L. Huang, 'Full-depth epidermis tomography using a Mirau-based full-field optical coherence tomography,' Biomed. Opt. Express 5(9), 3001–3010 (2014). 97. B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. F. Fercher, and W. Drexler, 'Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography,' Opt. Express 12(8), 1677-1688 (2004). 98. https://courses.lumenlearning.com/suny-wmopen-biology2/chapter/structure-and function -of-skin/. 99. https://opentextbc.ca/anatomyandphysiologyopenstax/chapter/layers-of-the-skin/. 100. https://www.nursingtimes.net/clinical-archive/dermatology/skin-1-the-structure-and-functions-of-the-skin-25-11-2019/. 101. https://www.differencebetween.com/difference-between-papillary-and-reticular-layer/. 102. T. Bourlai, 'Face recognition across the imaging spectrum', Springer Nature 1–383 (2016). 103. T. Igarashi, K. Nishino, and S. K. Nayar, 'The appearance of human skin: A survey', Foun. Tren. in Comp. Graph. Vision 3(1), 1–95 (2007). 104. S. L. Jacques, 'Optical properties of biological tissues: A review,' Phys. Med. Biol. 58(14), 5007–5008 (2013). 105. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, 'Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,' J. Phys. D. Appl. Phys. 38, 2543–2555 (2005). 106. G. Zonios and A. Dimou, 'Light scattering spectroscopy of human skin in vivo,' Opt. Express 17(3), 1256-1267 (2009). 107. Y. Shimojo, T. Nishimura, H. Hazama, T. Ozawa, and K. Awazu, 'Measurement of absorption and reduced scattering coefficients in Asian human epidermis, dermis, and subcutaneous fat tissues in the 400- to 1100-nm wavelength range for optical penetration depth and energy deposition analysis,' J. Biomed. Opt. 25(4), 045002 (2020). 108. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, 'Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,' Phys. Med. Biol. 43, 2465–2478 (1998). 109. J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, 'Optical coherence tomography of the human skin,' J. Am. Acad. Dermatol. 37(6), 958–963 (1997). 110. U. Morgner, W. Drexler, F. X. K¨artner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, 'Spectroscopic optical coherence tomography,' Opt. Lett. 25(2), 111–113 (2000). 111. K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, 'In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,' J. Biomed. Opt. 17(6), 066012 (2012). 112. J. Strasswimmer, M. C. Pierce, B. H. Park, V. Neel, and J. F. de Boer, 'Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma,' J. Biomed. Opt. 9(2), 292–298 (2004). 113. M. Ulrich, T. Von Braunmuehl, H. Kurzen, T. Dirschka, C. Kellner, E. Sattler, C. Berking, J. Welzel, and U. Reinhold, 'The sensitivity and specificity of optical coherence tomography for the assisted diagnosis of nonpigmented basal cell carcinoma: An observational study,' Br. J. Dermatol. 173(2), 428–435 (2015). 114. J. Olsen, L. Themstrup, N. De Carvalho, M. Mogensen, G. Pellacani, and G. B. E. Jemec, 'Diagnostic accuracy of optical coherence tomography in actinic keratosis and basal cell carcinoma,' Photodiagnosis Photodyn. Ther. 16, 44–49 (2016). 115. O. Markowitz, M. Schwartz, E. Feldman, A. Bienenfeld, A. K. Bieber, J. Ellis, U. Alapati, M. Lebwohl, and D. M. Siegel, 'Evaluation of optical coherence tomography as a means of identifying earlier stage basal cell carcinomas while reducing the use of diagnostic biopsy,' J. Clin. Aesthet. Dermatol. 8(10), 14–20 (2015). 116. M. A. L. M. Boone, A. Marneffe, M. Suppa, M. Miyamoto, I. Alarcon, R. Hofmann-Wellenhof, J. Malvehy, G. Pellacani, and V. Del Marmol, 'High-definition optical coherence tomography algorithm for the discrimination of actinic keratosis from normal skin and from squamous cell carcinoma,' J. Eur. Acad. Dermatology Venereol. 29(8), 1606–1615 (2015). 117. A. Marneffe, M. Suppa, M. Miyamoto, V. Del Marmol, and M. Boone, 'Validation of a diagnostic algorithm for the discrimination of actinic keratosis from normal skin and squamous cell carcinoma by means of high-definition optical coherence tomography,' Exp. Dermatol. 25(9), 684–687 (2016). 118. V. de Giorgi, M. Stante, D. Massi, L. Mavilia, P. Cappugi, and P. Carli, 'Possible histopathologic correlates of dermoscopic features in pigmented melanocytic lesions identified by means of optical coherence tomography,' Exp. Dermatol. 14(1), 56–59 (2005). 119. L. Themstrup, S. Ciardo, M. Manfredi, M. Ulrich, G. Pellacani, J. Welzel, and G. B. E. Jemec, 'In vivo, micro-morphological vascular changes induced by topical brimonidine studied by dynamic optical coherence tomography,' J. Eur. Acad. Dermatology Venereol. 30(6), 974–979 (2016). 120. L. Themstrup, G. Pellacani, J. Welzel, J. Holmes, G. B. E. Jemec, and M. Ulrich, 'In vivo microvascular imaging of cutaneous actinic keratosis, Bowen’s disease and squamous cell carcinoma using dynamic optical coherence tomography,' Int. J. Lab. Hematol. 38(1), 42–49 (2016). 121. C. Salvini, D. Massi, A. Cappetti, M. Stante, P. Cappugi, P. Fabbri, and P. Carli, 'Application of optical coherence tomography in non-invasive characterization of skin vascular lesions,' Ski. Res. Technol. 14(1), 89–92 (2008). 122. S. Zhao, Y. Gu, P. Xue, J. Guo, T. Shen, T. Wang, N. Huang, L. Zhang, H. Qiu, X. Yu, and X. Wei, 'Imaging port wine stains by fiber optical coherence tomography,' J. Biomed. Opt. 15(3), 036020 (2010). 123. V. Sigsgaard, L. Themstrup, P. Theut Riis, J. Olsen, and G. B. Jemec, 'In vivo measurements of blood vessels’ distribution in non-melanoma skin cancer by dynamic optical coherence tomography — a new quantitative measure?,' Ski. Res. Technol. 24(1), 123–128 (2017). 124. J. Welzel, M. Bruhns, and H. H. Wolff, 'Optical coherence tomography in contact dermatitis and psoriasis,' Arch. Dermatol. Res. 295(2), 50–55 (2003). 125. I. L. Shlivko, G. A. Petrova, M. V. Zor’kina, O. E. Tchekalkina, M. S. Firsova, D. O. Ellinsky, P. D. Agrba, V. A. Kamensky, and E. V. Donchenko, 'Complex assessment of age-specific morphofunctional features of skin of different anatomic localizations,' Ski. Res. Technol. 0, 1–8 (2012). 126. P. Gong, S. Es’haghian, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, 'Optical coherence tomography angiography for longitudinal monitoring of vascular changes in human cutaneous burns,' Exp. Dermatol. 25(9), 722–724 (2016). 127. K. Kunzi-Rapp, C. C. Dierickx, B. Cambier, and M. Drosner, 'Minimally invasive skin rejuvenation with erbium: YAG laser used in thermal mode,' Lasers Surg. Med. 38(10), 899–907 (2006). 128. A. Knüttel, S. Bonev, and W. Knaak, 'New method for evaluation of in vivo scattering and refractive index properties obtained with optical coherence tomography,' J. Biomed. Opt. 9(2), 265–273 (2004). 129. L. M. C. Vasquez-Pinto, E. P. Maldonado, M. P. Raele, M. M. Amaral, and A. Z. de Freitas, 'Optical coherence tomography applied to tests of skin care products in humans - a case study,' Ski. Res. Technol. 21(1), 90–93 (2015). 130. S.-C. Wang, T.-I. Yang, D.-Y. Jheng, C.-Y. Hsu, T.-T. Yang, T.-S. Ho, and S.-L. Huang, 'Broadband and high-brightness light source: glass-clad Ti:sapphire crystal fiber,' Opt. Lett. 40(23), 5594–5597 (2015). 131. K. -Y. Hsu, D. -Y. Jheng, Y. -H. Liao, T. -S. Ho, C. -C. Lai, and S. -L. Huang, 'Diode-laser-pumped glass-clad Ti:Sapphire crystal-fiber-based broadband light source,' IEEE Photonics Technol. Lett. 24(10), 854–856 (2012). 132. C. -L. Tsai, J. -C. Chen, and W. -J. Wang, 'Near-infrared absorption property of biological soft tissue constituents,' J. Med. Biol. Eng. 21(1), 7–14 (2001). 133. J. Walther, M. Gaertner, P. Cimalla, A. Burkhardt, L. Kirsten, S. Meissner, and E. Koch, 'Optical coherence tomography in biomedical research,' Anal. Bioanal. Chem. 400(9), 2721–2743 (2011). 134. C. Xu, P. S. Carney, and S. A. Boppart, 'Wavelength-dependent scattering in spectroscopic optical coherence tomography,' Opt. Express 13(14), 5450–5462 (2005). 135. I. B. A. B. D. E. L. Adek, A. R. M. Iyazawa, L. Arina, T. Z. U. E. I. S. Hen, S. H. M. Akita, P. R. M. Ukherjee, A. N. L. Ichtenegger, S. A. M. Atsusaka, and Y. Oshiaki, 'Three-dimensional dynamics optical coherence tomography for tumor spheroid evaluation,' 12(11), 6844–6863 (2021). 136. M. Ulrich, L. Themstrup, N. De Carvalho, M. Manfredi, C. Grana, S. Ciardo, R. Kästle, J. Holmes, R. Whitehead, G. B. E. Jemec, G. Pellacani, and J. Welzel, 'Dynamic optical coherence tomography in dermatology,' Dermatology 232(3), 298–311 (2016). 137. J. Scholler, K. Groux, O. Goureau, J. A. Sahel, M. Fink, S. Reichman, C. Boccara, and K. Grieve, 'Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids,' Light Sci. Appl. 9(140), 1–9 (2020). 138. C. X. Li, C. B. Shen, K. Xue, X. Shen, Y. Jing, Z. Y. Wang, F. Xu, R. S. Meng, J. Bin Yu, Y. Cui, and L. S. Guo, 'Artificial intelligence in dermatology: Past, present, and future,' Chin. Med. J. (Engl). 132(17), 2017–2020 (2019). 139. T. M. Jørgensen, A. Tycho, M. Mogensen, P. Bjerring, and G. B. E. Jemec, 'Machine-learning classification of non-melanoma skin cancers from image features obtained by optical coherence tomography,' Ski. Res. Technol. 14(3), 364–369 (2008). 140. T. Marvdashti, L. Duan, S. Z. Aasi, J. Y. Tang, and A. K. Ellerbee Bowden, 'Classification of basal cell carcinoma in human skin using machine learning and quantitative features captured by polarization sensitive optical coherence tomography,' Biomed. Opt. Express 7(9), 3721–3735 (2016). 141. A. De, A. Sarda, S. Gupta, and S. Das, 'Use of artificial intelligence in dermatology,' Indian J. Dermatol. 65(5), 352–357 (2020). 142. C. J. Ho, M. Calderon-Delgado, C. C. Chan, M. Y. Lin, J. W. Tjiu, S. L. Huang, and H. H. Chen, 'Detecting mouse squamous cell carcinoma from submicron full-field optical coherence tomography images by deep learning,' J. Biophotonics 14(1), 1–12 (2021).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80440-
dc.description.abstract從基於 Mirau 的高解析全域式光學同調斷層掃描 (FF-OCT) 中提取的背向散射光譜數據,在生物醫學中具有潛在的應用。高品質的自製摻鈦藍寶石單纖衣晶體光纖寬帶光源在 OCT 成像中以高速成像提供了對體內皮膚組織的更深穿透,具有細胞解析度。 驅動 Mirau 干涉儀的壓電轉換器 (PZT) 的磁滯非線性在 OCT 掃描期間表現出位移不準確。這種不準確性顯著影響了從 OCT 系統中提取的深度相關頻譜。由有效的前饋補償,實現了 PZT 磁滯的高階線性化。實驗結果表明,多項式算子參數少、建模精度高、輸入輸出關係平滑,優於 Prandtl-Ishlinskii (PI)模型。因此,在 FF-OCT 系統中實施多項式磁滯模型,以實現超高 PZT精準定位,從而可以準確獲得背向散射光譜。 FF-OCT 系統的性能通過對體外靛氰綠 (ICG) 著色顆粒和非著色微米球的成像進行了測試和驗證。光譜信號是通過短時傅立葉變換(STFT)從原始干涉信號中獲得的,在780 nm 的波長窗口,4-µm樣本長度之光譜解析度為 54.42 nm。來自 ICG 顆粒的背向散射光譜隨著濃度的增加表現出最大強度和藍移,而微米球導致強度低於 ICG。由ICG 和微米球光譜的比較結果,驗證了這種光譜分析方法。 為進一步驗證此光譜分析於活體前臂皮膚的三維斷層掃描應用,本研究提取了不同深度的皮膚組織的光譜特徵。由於複雜的皮膚解剖結構和色素吸收,本研究發現體內皮膚的反向散射光譜顯示出與深度相關的光譜偏移和帶寬變化。 具有高速、高對比度之細胞解析度三維斷層掃描成像和光譜提取能力的OCT 成像有助於識別組織成分的分子/化學成分和光學特性,由體內深層組織反向散射的這種高速光譜採集,未來可應用於臨床環境中的疾病診斷。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:06:43Z (GMT). No. of bitstreams: 1
U0001-1612202114224200.pdf: 7481605 bytes, checksum: 240477538427cad53dc3a475e5173b5c (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsAbstract III Table of Contents V List of Figures IX List of Tables XIII Chapter 1 Introduction 1 1.1 Motivation 4 1.2 Research objectives 5 1.3 Aim and dissertation organization 5 Chapter 2 Optical Coherence Tomography 7 2.1 Development of OCT 8 2.1.1 Time-domain OCT 10 2.1.2 Fourier-domain OCT 11 2.2 Principle and theory 13 2.3 Mirau interferometer 18 2.4 OCT light sources 21 2.4.1 Co-drawing laser-heated pedestal growth (LHPG) system 25 2.4.2 Titanium-doped sapphire single crystal fiber 28 2.5 OCT detectors 31 2.5.1 CCD vs. CMOS 31 2.5.2 CMOS camera 32 2.5.3 High-speed CMOS camera in FF-OCT imaging 37 2.6 Full-field optical coherence tomography 40 2.6.1 Experimental setup 41 2.6.2 OCT signal extraction and image processing 42 2.7 Performance factors in OCT 45 2.7.1 Axial and lateral resolution 45 2.7.2 Lateral resolution and depth of focus 47 2.7.3 Interference efficiency 48 2.7.4 Signal-to-noise ratio (SNR) 49 2.7.5 Noise considerations 50 Chapter 3 Nonlinear Hysteresis Compensation of Piezoelectric Transducer 52 3.1 Nonlinear hysteresis of piezoelectric transducer 53 3.2 Hysteresis compensation models: Overview 54 3.2.1 The classical PI model 56 3.2.2 Polynomial model 58 3.3 Piezoelectric transducer’s hysteresis calibration 59 3.4 Feedforward linearization of the initial loading curve 60 3.4.1 Direct inverse method of Prandtl-Ishlinskii’s model 62 3.4.2 Polynomial hysteresis compensation model 65 3.4.3 Comparison between PI model and polynomial model 66 3.5 Implementation of hysteresis compensation models in FF-OCT system 68 3.5.1 PI model implementation 68 3.5.2 Polynomial model implementation 69 Chapter 4 Spectroscopic Optical Coherence Tomography and Data Validation 71 4.1 Time-frequency analysis 72 4.1.1 Short-time Fourier transform (STFT) 72 4.1.2 Wavelet transform 73 4.1.3 Wigner-Ville distribution (WV) 73 4.1.4 Dual window method 74 4.2 Principle of SOCT 75 4.3. Applications of SOCT 78 4.4 Materials and methods 82 4.4.1 Fluorophores in NIR imaging (650 - 900 nm) 82 4.4.2 Indocyanine green (ICG) 84 4.4.3 Microspheres 86 4.5 Spectroscopic full-field OCT data extraction and processing 87 4.6 In vitro spectroscopic data validation 89 Chapter 5 Spectroscopic Full-field Optical Coherence Tomography in Dermatology 95 5.1 Skin structure and biology 96 5.2 Optical properties of skin 105 5.3 OCT applications in dermatology 109 5.4 Full-field OCT imaging of in vivo skin 113 5.5 Spectroscopic measurements of in vivo human skin 116 5.6 Depth-dependent backscattered signal analysis 120 Chapter 6 Conclusion and Future Work 122 Bibliography 125 Appendix 137 I. MATLAB codes for PZT hysteresis compensation 137 i. Polynomial hysteresis: Function and parameter’s identification 137 ii. PI model parameter’s identification 139 II. MATLAB codes for Spectroscopic FF-OCT signal analysis 140 i. A-scan to 4-point image conversion 140 ii. Spectroscopic analysis using STFT 142
dc.language.isoen
dc.subject光學同調斷層掃描zh_TW
dc.subject前饋磁滯補償zh_TW
dc.subject壓電轉換器zh_TW
dc.subject光譜學zh_TW
dc.subject磁滯zh_TW
dc.subject皮膚科zh_TW
dc.subject斷層影像處理zh_TW
dc.subject傅立葉變換zh_TW
dc.subjectfeedforward hysteresis compensationen
dc.subjectOptical coherence tomographyen
dc.subjectpiezoelectric transduceren
dc.subjecthysteresisen
dc.subjectdermatologyen
dc.subjecttomographic image processingen
dc.subjectFourier transformen
dc.subjectspectroscopyen
dc.title光譜全場光學相干斷層掃描:深度相關的人體皮膚後向散射光譜zh_TW
dc.titleSpectroscopic Full-field Optical Coherence Tomography: Depth-dependent Human Skin Backscattering Spectraen
dc.date.schoolyear110-1
dc.description.degree博士
dc.contributor.oralexamcommittee林晃巖(Hsin-Tsai Liu),李穎玟(Chih-Yang Tseng),徐世祥,李翔傑
dc.subject.keyword光學同調斷層掃描,光譜學,傅立葉變換,斷層影像處理,皮膚科,磁滯,壓電轉換器,前饋磁滯補償,zh_TW
dc.subject.keywordOptical coherence tomography,spectroscopy,Fourier transform,tomographic image processing,dermatology,hysteresis,piezoelectric transducer,feedforward hysteresis compensation,en
dc.relation.page143
dc.identifier.doi10.6342/NTU202104538
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-12-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1612202114224200.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved