請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80426完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧信嘉(Hsin-Chia Lu) | |
| dc.contributor.author | Cheng-Han Yu | en |
| dc.contributor.author | 游承翰 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:06:25Z | - |
| dc.date.available | 2022-01-17 | |
| dc.date.available | 2022-11-24T03:06:25Z | - |
| dc.date.copyright | 2022-01-17 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-12-28 | |
| dc.identifier.citation | [1] A.Gohil, H. Modi, and S. Patel, ”5G technology of mobile communication:a survey,” International Conference on Intelligent Systems and Signal Processing (ISSP), Gujarat, March 2013, pp. 288-292. [2] 科技新報, ”未來 5G 應用解密:什麼技術讓 5G 網速提高?高網速又有哪些應用?”, Available: https://technews.tw/2017/12/19/far-spread-talk-about-5g-applications/ [3] 科技新報, ”Intel 推出號稱世界第一的 5G 數據晶片,搶食 5G 通訊的車聯網、無人機和智慧城市大餅”, Available: http://technews.tw/2017/01/05/intel-rolls-out-self-claim-first-5g-modem-chip-for-iov-drone-and-smart-city/ [4] R. Thandaish. Prabu, M. Benisha, V. Thulasi. Bai, and V. Yokesh, 'Millimeter wave for 5G mobile communication application,' in 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), February 2016, pp. 236-240. [5] National. Instruments. (2019). Millimeter wave: band battle. [Online]. Available: https://www.ni.com/zh-tw/innovations/white-papers/16/mmwave--the-battle-of-the-bands.html [6] M. Fakharzadeh, M.-R. Nezhad-Ahmadi, B. Biglarbegian, J. Ahmadi-Shokouh, and S. Safavi-Naeini, 'CMOS phased array transceiver technology for 60 GHz wireless applications,' IEEE Transactions on Antennas and Propagation, vol. 58, no. 4, pp. 1093-1104, January 2010. [7] Chunyuan Zhou, He Qian, and Zhiping Yu, “A lumped elements varactor-loaded transmission-line phase shifter at 60GHz,” in 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), November 2010, pp. 656-658. [8] Hyo-Sung Lee and Byun-Wook Min, “W-band CMOS 4-bit phase shifter for high power and phase compression points,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no.1, pp. 1-5, January 2015. [9] W. Li, Y. Chiang, J. Tsai, H. Yang, J. Cheng and T. Huang, '60-GHz 5-bit phase shifter with integrated VGA phase-error compensation,' IEEE Transactions on Microwave Theory and Techniques,vol. 61, no. 3, pp. 1224-1235, March 2013. [10] J. H. Tsai, C. K. Liu, and J. Y. Lin, 'A 12 GHz 6-bit switch-type phase shifter MMIC,' 2014 44th European Microwave Conference, October 2014, pp. 1916-1919. [11] F. Ellinger, R. Vogt, and W. Bachtold, 'Ultracompact reflective-type phase shifter MMIC at C-band with 360° phase-control range for smart antenna combining,' IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 481-486, April 2002. [12] H. Zarei, C. T. Charles, and D. J. Allstot, 'Reflective-type phase shifters for multiple-antenna transceivers,' IEEE Trans. Circuits and System, vol. 54, no. 8, pp. 1647-1656, August 2007. [13] L. Y. Huang, Y. T. Lin, and C. N. Kuo, 'A 38 GHz low-loss reflection-type phase shifter,' 2017 IEEE 17th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), January 2017, pp. 54-56. [14] Y. Chang, Z. Ou, H. Alsuraisry, A. Sayed and H. Lu, 'A 28-GHz Low-Power Vector-Sum Phase Shifter Using Biphase Modulator and Current Reused Technique,' IEEE Microwave and Wireless Components Letters, vol. 28, no. 11, pp. 1014-1016, November 2018. [15] I. S. Song, J. G. Lee, G. Yoon, and C. S. Park, 'A low power LNA-phase shifter with vector sum method for 60 GHz beamforming receiver,' IEEE Microwave and Wireless Components Letters, vol. 25, no. 9, pp. 612-614, July 2015. [16] T. Yu and G. M. Rebeiz, 'A 22~24 GHz 4-element CMOS phased array with on-chip coupling characterization,' IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 2134-2143, September 2008. [17] T. Yu and G. M. Rebeiz, 'A 24 GHz 6-bit CMOS phased-array receiver,' IEEE Microwave and Wireless Components Letters, vol. 18, no. 6, pp. 422-424, June 2008. [18] Pen-Jui Peng, “Design of phase shifter for microwave and millimeter-wave applications,” Graduate Institute of Communication Engineering, Master Thesis, National Taiwan University, June 2010. [19] B. Razavi, RF Microelectronics, 2nd ed. Paul Boger, 2011. [20] Y.-T. Chang, Y.-N. Chen, and H.-C. Lu, 'A 38 GHz low power variable gain LNA using PMOS current-steering device and Gm-boost technique,' 2018 Asia-Pacific Microwave Conference (APMC), November 2018, pp. 654-656. [21] F. Akbar and A. Mortazawi, 'A frequency tunable 360° analog CMOS phase shifter with an adjustable amplitude,' IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 12, pp. 1427-1431, December 2017. [22] G. Shin ,Jae. Kim and Hyun Oh., 'Low insertion loss, compact 4-bit phase shifter in 65 nm CMOS for 5G Applications,' IEEE Microwave and Wireless Components Letters, vol. 26, no. 1, pp. 37-39, January 2016, doi: 10.1109/LMWC.2015.2505624. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80426 | - |
| dc.description.abstract | 本論文提出一個由0-π可變增益放大器所實現之Ka頻段主動式向量和式相移器,可應用於5G毫米波頻段通訊系統。 此相移器主要由90°正交耦合器、0-π可變增益放大器及功率整合器所組成,電路一開始經由正交耦合器將訊號分為兩路相差90°的IQ訊號,接著透過0-π可變增益放大器將兩路IQ訊號切換成±I/±Q訊號,並將此±I/±Q訊號當做基本元素,控制不同的增益,最後透過功率整合器合成出所需要的相位移訊號。其中0-π可變增益放大器以吉伯特細胞電路作為主體進行改良,使電路能夠進行0°/180°的相位切換,並搭配電流導向技術來切換增益,其可調增益範圍為+6 dB~-9.7 dB,進而能夠使向量和式相移器合成出不同相位。 此電路採用台積電90 nm CMOS 製程來實現,可實現等效5位元解析度,在28 GHz量測之均方根相位誤差為0.52°,均方根增益誤差為0.11dB,平均|S21|為-1.41 dB,直流功耗最大為19.2 mW。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:06:25Z (GMT). No. of bitstreams: 1 U0001-2712202117342400.pdf: 4725473 bytes, checksum: cfdcf84cffcc9773777275d56fb7f963 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 ii ABSTRACT iii 圖目錄 vi 表目錄 x Chapter 1 簡介 1 1.1 研究動機與背景 1 1.2 文獻回顧 4 1.3 論文貢獻 6 1.4 章節重點介紹 6 Chapter 2 相移器與可變增益放大器電路介紹 8 2.1 簡介 8 2.2 相移器設計重要參數 8 2.2.1 均方根相位誤差(RMS phase error) 8 2.2.2 均方根增益誤差(RMS amplitude error) 8 2.3 相移器電路介紹 9 2.3.1 傳輸線式相移器 9 2.3.2 開關式相移器 11 2.3.3 反射式相移器 18 2.3.4 向量和式相移器 20 2.4 可變增益放大器電路簡介 21 2.4.1 偏壓調控增益放大器 21 2.4.2 N型電流導向可變增益放大器 23 2.4.3 P型電流導向可變增益放大器 25 Chapter 3 0-π可變增益放大器電路設計 28 3.1 電路介紹 28 3.2 設計流程 30 3.2.1 設計流程 30 3.2.2 電晶體尺寸挑選 32 3.2.3 阻抗匹配 36 3.2.4 電流導向可變增益放大器 43 3.3 電路佈局 52 3.4 整體電路模擬 53 Chapter 4 主動式向量和式相移器電路設計 61 4.1 電路介紹 61 4.2 設計流程 63 4.3 被動部份電路設計 65 4.3.1 正交耦合器設計 65 4.3.2 功率整合器設計 67 4.4 電路佈局 70 4.5 相移器整體模擬 70 Chapter 5 量測結果 78 5.1 量測環境 78 5.2 0-π可變增益放大器量測結果 80 5.3 主動式向量和式相移器量測結果 85 Chapter 6 結論 94 參考文獻 95 | |
| dc.language.iso | zh-TW | |
| dc.subject | 均方根增益誤差 | zh_TW |
| dc.subject | 5G毫米波通訊 | zh_TW |
| dc.subject | Ka頻帶 | zh_TW |
| dc.subject | 向量和式相移器 | zh_TW |
| dc.subject | 可變增益放大器 | zh_TW |
| dc.subject | 電流導向技術 | zh_TW |
| dc.subject | 均方根相位誤差 | zh_TW |
| dc.subject | 5G millimeter wave communication system | en |
| dc.subject | RMS gain error | en |
| dc.subject | RMS phase error | en |
| dc.subject | current-steering technology | en |
| dc.subject | variable gain amplifier | en |
| dc.subject | vector sum phase shifter | en |
| dc.subject | Ka band | en |
| dc.title | 使用0-π可變增益放大器實現Ka頻段主動式向量和式相移器 | zh_TW |
| dc.title | A Ka Band Active Vector-Sum Phase Shifter Using 0-π Variable Gain Amplifier | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張譽騰(Hsin-Tsai Liu),蔡政翰(Chih-Yang Tseng),楊濠瞬 | |
| dc.subject.keyword | 5G毫米波通訊,Ka頻帶,向量和式相移器,可變增益放大器,電流導向技術,均方根相位誤差,均方根增益誤差, | zh_TW |
| dc.subject.keyword | 5G millimeter wave communication system,Ka band,vector sum phase shifter,variable gain amplifier,current-steering technology,RMS phase error,RMS gain error, | en |
| dc.relation.page | 96 | |
| dc.identifier.doi | 10.6342/NTU202104583 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-12-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2712202117342400.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
