Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80412
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊杉(Chuin-Shan Chen)
dc.contributor.authorTung-Huan Suen
dc.contributor.author蘇東垣zh_TW
dc.date.accessioned2022-11-24T03:06:07Z-
dc.date.available2022-01-17
dc.date.available2022-11-24T03:06:07Z-
dc.date.copyright2022-01-17
dc.date.issued2022
dc.date.submitted2022-01-05
dc.identifier.citation[1] T. Kirchdoerfer, M. Ortiz, Data-driven computational mechanics, Comput Method Appl Mech Eng, 304 (2016) 81-101. [2] A. Leygue, M. Coret, J. Réthoré, L. Stainier, E. Verron, Data-based derivation of material response, Comput Method Appl Mech Eng, 331 (2018) 184-196. [3] J.J. de Pablo, N.E. Jackson, M.A. Webb, L.-Q. Chen, J.E. Moore, D. Morgan, R. Jacobs, T. Pollock, D.G. Schlom, E.S. Toberer, J. Analytis, I. Dabo, D.M. DeLongchamp, G.A. Fiete, G.M. Grason, G. Hautier, Y. Mo, K. Rajan, E.J. Reed, E. Rodriguez, V. Stevanovic, J. Suntivich, K. Thornton, J.-C. Zhao, New frontiers for the materials genome initiative, npj Computational Materials, 5 (2019) 41. [4] T. Kirchdoerfer, Data Driven Computing. California Institute of Technology, Pasadena, California, 2018. [5] T. Kirchdoerfer, M. Ortiz, Data Driven Computing with noisy material data sets, Comput Method Appl Mech Eng, 326 (2017) 622-641. [6] J. Ayensa-Jiménez, M.H. Doweidar, J.A. Sanz-Herrera, M. Doblaré, A new reliability-based data-driven approach for noisy experimental data with physical constraints, Comput Method Appl Mech Eng, 328 (2018) 752-774. [7] M.A. Bessa, R. Bostanabad, Z. Liu, A. Hu, D.W. Apley, C. Brinson, W. Chen, Wing K. Liu, A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality, Comput Method Appl Mech Eng, 320 (2017) 633-667. [8] R. Eggersmann, L. Stainier, M. Ortiz, S. Reese, Model-free data-driven computational mechanics enhanced by tensor voting, Comput Method Appl Mech Eng, 373 (2021) 113499. [9] Q. He, J.-S. Chen, A physics-constrained data-driven approach based on locally convex reconstruction for noisy database, Comput Method Appl Mech Eng, 363 (2020) 112791. [10] P. Mordohai, G. Medioni, Dimensionality Estimation, Manifold Learning and Function Approximation using Tensor Voting, J. Mach. Learn. Res., 11 (2010) 411–450. [11] J.A. Lee, M. Verleysen, Nonlinear Dimensionality Reduction, Springer Science and Business Media, 2007. [12] S.T. Roweis, L.K. Saul, Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science, 290 (2000) 2323. [13] L.K. Saul, S.T. Roweis, Think globally, fit locally: unsupervised learning of low dimensional manifolds, J. Mach. Learn. Res., 4 (2003) 119–155. [14] S. Conti, S. Müller, M. Ortiz, Data-Driven Problems in Elasticity, Archive for Rational Mechanics and Analysis, 229 (2018) 79-123. [15] S. Avril, M. Bonnet, A.-S. Bretelle, M. Grédiac, F. Hild, P. Ienny, F. Latourte, D. Lemosse, S. Pagano, E. Pagnacco, F. Pierron, Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements, Exp. Mech., 48 (2008) 381. [16] M. Bonnet, A. Constantinescu, Inverse problems in elasticity, Inverse Problems, 21 (2005) R1-R50. [17] M. Ben Azzouna, P. Feissel, P. Villon, Robust identification of elastic properties using the Modified Constitutive Relation Error, Comput Method Appl Mech Eng, 295 (2015) 196-218. [18] T. Kirchdoerfer, M. Ortiz, Data-driven computing in dynamics, Int J Numer Meth Eng, 113 (2018) 1697-1710. [19] L.T.K. Nguyen, M.A. Keip, A data-driven approach to nonlinear elasticity, Comput Struct, 194 (2018) 97-115. [20] A. Platzer, A. Leygue, L. Stainier, M. Ortiz, Finite element solver for data-driven finite strain elasticity, Comput Method Appl Mech Eng, 379 (2021) 113756. [21] J. Yang, R. Xu, H. Hu, Q. Huang, W. Huang, Structural-Genome-Driven computing for composite structures, Composite Structures, 215 (2019) 446-453. [22] R. Eggersmann, T. Kirchdoerfer, S. Reese, L. Stainier, M. Ortiz, Model-Free Data-Driven inelasticity, Comput Method Appl Mech Eng, 350 (2019) 81-99. [23] M. Amir Siddiq, Data-driven finite element method: Theory and applications, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0 (2020) 0954406220938805. [24] R. Xu, J. Yang, W. Yan, Q. Huang, G. Giunta, S. Belouettar, H. Zahrouni, T.B. Zineb, H. Hu, Data-driven multiscale finite element method: From concurrence to separation, Comput Method Appl Mech Eng, 363 (2020) 112893. [25] J. Mora-Macías, J. Ayensa-Jiménez, E. Reina-Romo, M.H. Doweidar, J. Domínguez, M. Doblaré, J.A. Sanz-Herrera, A multiscale data-driven approach for bone tissue biomechanics, Comput Method Appl Mech Eng, 368 (2020) 113136. [26] K. Karapiperis, L. Stainier, M. Ortiz, J.E. Andrade, Data-Driven multiscale modeling in mechanics, J. Mech. Phys. Solids, 147 (2021) 104239. [27] K. Ciftci, K. Hackl, Data-Driven simulation of inelastic materials using structured data sets, tangent space information and transition rules, in, 2021, pp. arXiv:2101.10730. [28] K. Ciftci, K. Hackl, Data-Driven simulation of inelastic materials using structured data sets and tangential transition rules, PAMM, 20 (2021) e202000241. [29] R. Ibañez, E. Abisset-Chavanne, J.V. Aguado, D. Gonzalez, E. Cueto, F. Chinesta, A Manifold Learning Approach to Data-Driven Computational Elasticity and Inelasticity, Archives of Computational Methods in Engineering, 25 (2016) 47-57. [30] X. He, Q. He, J.-S. Chen, U. Sinha, S. Sinha, Physics-constrained local convexity data-driven modeling of anisotropic nonlinear elastic solids, Data-Centric Engineering, 1 (2020) e19. [31] Q. He, D.W. Laurence, C.-H. Lee, J.-S. Chen, Manifold learning based data-driven modeling for soft biological tissues, Journal of Biomechanics, (2020) 110124. [32] W. Huang, R. Xu, J. Yang, Q. Huang, H. Hu, Data-driven multiscale simulation of FRP based on material twins, Composite Structures, 256 (2021) 113013. [33] J.A. Sanz-Herrera, J. Mora-Macías, J. Ayensa-Jiménez, E. Reina-Romo, M.H. Doweidar, J. Domínguez, M. Doblaré, Data-Driven Computational Simulation in Bone Mechanics, Annals of Biomedical Engineering, 49 (2021) 407-419. [34] K. Karapiperis, M. Ortiz, J.E. Andrade, Data-Driven nonlocal mechanics: Discovering the internal length scales of materials, Comput Method Appl Mech Eng, 386 (2021) 114039. [35] F. Feyel, Multiscale FE2 elastoviscoplastic analysis of composite structures, Comp Mater Sci, 16 (1999) 344-354. [36] F. Feyel, A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua, Comput Method Appl Mech Eng, 192 (2003) 3233-3244. [37] P.J. Leclerc H., Roux S., Hild F. , Integrated Digital Image Correlation for the Identification of Mechanical Properties, Springer, Berlin, 2009. [38] F. Hild, S. Roux, Digital Image Correlation: from Displacement Measurement to Identification of Elastic Properties – a Review, Strain, 42 (2006) 69-80. [39] J. Réthoré, A fully integrated noise robust strategy for the identification of constitutive laws from digital images, Int J Numer Meth Eng, 84 (2010) 631-660. [40] M.A. Sutton, J.-J. Orteu, H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts,Theory and Applications, Springer Publishing Company, Incorporated, 2009. [41] A. Leygue, R. Seghir, J. Réthoré, M. Coret, E. Verron, L. Stainier, Non-parametric material state field extraction from full field measurements, Comput Mech, 64 (2019) 501-509. [42] M. Dalémat, M. Coret, A. Leygue, E. Verron, Measuring stress field without constitutive equation, Mech Mater, 136 (2019) 103087. [43] M. Dalémat, A successful investigation for the model-free identification of the material response : a datadriven approach for elastomer membranes. École centrale de Nantes, 2019. [44] T. Madani, Y. Monerie, S. Pagano, C. Pelissou, B. Wattrisse, Identification of Heterogeneous Elastoplastic Behaviors Using the Constitutive Equation Gap Method, Exp. Mech., 58 (2018) 919-939. [45] M. Greenacre, Correspondence Analysis in Practice, Chapman and Hall/CRC, New York, 2016. [46] L. Stainier, A. Leygue, M. Ortiz, Model-free data-driven methods in mechanics: material data identification and solvers, Comput Mech, 64 (2019) 381-393. [47] J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Mater Design, 56 (2014) 1078-1113. [48] Y. Sutou, T. Omori, J.J. Wang, R. Kainuma, K. Ishida, Characteristics of Cu-Al-Mn-based shape memory alloys and their applications, Mat Sci Eng a-Struct, 378 (2004) 278-282. [49] Y. Sutou, T. Omori, K. Yamauchi, N. Ono, R. Kainuma, K. Ishida, Effect of grain size and texture on pseudoelasticity in Cu-Al-Mn-based shape memory wire, Acta Mater, 53 (2005) 4121-4133. [50] R. Desroches, B. Smith, Shape memory alloys in seismic resistant design and retrofit: A critical review of their potential and limitations, J Earthq Eng, 8 (2004) 415-429. [51] Y. Sutou, T. Omori, R. Kainuma, K. Ishida, Ductile Cu-Al-Mn based shape memory alloys: general properties and applications, Mater Sci Tech-Lond, 24 (2008) 896-901. [52] H.S. Nohouji, M. Hamedi, M. Salehi, Modeling, validation, and testing of a Ti-49.8%Ni shape memory actuator, J Intel Mat Syst Str, 26 (2015) 2196-2204. [53] Y. Sutou, T. Omori, R. Kainuma, K. Ishida, Grain size dependence of pseudoelasticity in polycrystalline Cu–Al–Mn-based shape memory sheets, Acta Mater, 61 (2013) 3842-3850. [54] J.-L. Liu, H.-Y. Huang, J.-X. Xie, The roles of grain orientation and grain boundary characteristics in the enhanced superelasticity of Cu71.8Al17.8Mn10.4 shape memory alloys, Mater Design, 64 (2014) 427-433. [55] J.X. Xie, J.L. Liu, H.Y. Huang, Structure design of high-performance Cu-based shape memory alloys, Rare Metals, 34 (2015) 607-624. [56] N. Babacan, J. Ma, O.S. Turkbas, I. Karaman, B. Kockar, The effects of cold rolling and the subsequent heat treatments on the shape memory and the superelasticity characteristics of Cu73Al16Mn11 shape memory alloy, Smart Mater Struct, 27 (2018) 015028. [57] N. Tuncer, C.A. Schuh, Melt-cast microfibers of Cu-based shape memory alloy adopt a favorable texture for superelasticity, Scripta Materialia, 117 (2016) 46-50. [58] Y. Sutou, T. Omori, R. Kainuma, K. Ishida, N. Ono, Enhancement of superelasticity in Cu-Al-Mn-Ni shape-memory alloys by texture control, Metallurgical and Materials Transactions A, 33 (2002) 2817-2824. [59] T. Omori, T. Kusama, S. Kawata, I. Ohnuma, Y. Sutou, Y. Araki, K. Ishida, R. Kainuma, Abnormal grain growth induced by cyclic heat treatment, Science, 341 (2013) 1500-1502. [60] T. Kusama, T. Omori, T. Saito, S. Kise, T. Tanaka, Y. Araki, R. Kainuma, Ultra-large single crystals by abnormal grain growth, Nat Commun, 8 (2017) 354. [61] R. Kainuma, Recent Progress in Shape Memory Alloys, Mater Trans, 59 (2018) 327-331. [62] N.-H. Lu, C.-H. Chen, Inhomogeneous martensitic transformation behavior and elastocaloric effect in a bicrystal Cu-Al-Mn shape memory alloy, Materials Science and Engineering: A, 800 (2021) 140386. [63] Y. Wu, E. Ertekin, H. Sehitoglu, Elastocaloric cooling capacity of shape memory alloys – Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation, Acta Mater, 135 (2017) 158-176. [64] K. Zhang, G. Kang, Q. Sun, High fatigue life and cooling efficiency of NiTi shape memory alloy under cyclic compression, Scripta Materialia, 159 (2019) 62-67. [65] M.A. Sutton, J.J. Orteu, H. Schreier, Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications, Springer Science Business Media, 2009. [66] J. Olofsson, I.L. Svensson, P. Lava, D. Debruyne, Characterisation and investigation of local variations in mechanical behaviour in cast aluminium using gradient solidification, Digital Image Correlation and finite element simulation, Mater Design, 56 (2014) 755-762. [67] S. Daly, G. Ravichandran, K. Bhattacharya, Stress-induced martensitic phase transformation in thin sheets of Nitinol, Acta Mater, 55 (2007) 3593-3600. [68] S. Daly, A. Miller, G. Ravichandran, K. Bhattacharya, An experimental investigation of crack initiation in thin sheets of nitinol, Acta Mater, 55 (2007) 6322-6330. [69] C.B. Churchill, J.A. Shaw, M.A. Iadicola, Tips and Tricks for Characterizing Shape Memory Alloy Wire: Part 3-Localization and Propagation Phenomena, Exp Techniques, 33 (2009) 70-78. [70] B. Reedlunn, C.B. Churchill, E.E. Nelson, J.A. Shaw, S.H. Daly, Tension, compression, and bending of superelastic shape memory alloy tubes, J. Mech. Phys. Solids, 63 (2014) 506-537. [71] Y. Xiao, P. Zeng, L.P. Lei, H.F. Du, Local Mechanical Response of Superelastic NiTi Shape-Memory Alloy Under Uniaxial Loading, Shape Mem Superelast, 1 (2015) 468-478. [72] J. Fish, G.J. Wagner, S. Keten, Mesoscopic and multiscale modelling in materials, Nature Materials, 20 (2021) 774-786. [73] T.J.R. Hughes, G.R. Feijóo, L. Mazzei, J.-B. Quincy, The variational multiscale method—a paradigm for computational mechanics, Comput Method Appl Mech Eng, 166 (1998) 3-24. [74] V.G. Kouznetsova, M.G.D. Geers, W.A.M. Brekelmans, Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy, Comput Method Appl Mech Eng, 193 (2004) 5525-5550. [75] R. Xu, C. Bouby, H. Zahrouni, T. Ben Zineb, H. Hu, M. Potier-Ferry, A Multiscale Analysis on the Superelasticity Behavior of Architected Shape Memory Alloy Materials, Materials, 11 (2018) 1746. [76] J. Fish, K. Shek, M. Pandheeradi, M.S. Shephard, Computational plasticity for composite structures based on mathematical homogenization: Theory and practice, Comput Method Appl Mech Eng, 148 (1997) 53-73. [77] P. Fatemi Dehaghani, S. Hatefi Ardakani, H. Bayesteh, S. Mohammadi, 3D hierarchical multiscale analysis of heterogeneous SMA based materials, International Journal of Solids and Structures, 118-119 (2017) 24-40. [78] S. Nezamabadi, J. Yvonnet, H. Zahrouni, M. Potier-Ferry, A multilevel computational strategy for handling microscopic and macroscopic instabilities, Comput Method Appl Mech Eng, 198 (2009) 2099-2110. [79] P.R. Budarapu, R. Gracie, S.-W. Yang, X. Zhuang, T. Rabczuk, Efficient coarse graining in multiscale modeling of fracture, Theoretical and Applied Fracture Mechanics, 69 (2014) 126-143. [80] F. Han, F. Roters, D. Raabe, Microstructure-based multiscale modeling of large strain plastic deformation by coupling a full-field crystal plasticity-spectral solver with an implicit finite element solver, Int J Plasticity, 125 (2020) 97-117. [81] J. Yvonnet, Q.C. He, The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains, J. Comput. Phys., 223 (2007) 341-368. [82] I.B.C.M. Rocha, F.P. van der Meer, L.J. Sluys, An adaptive domain-based POD/ECM hyper-reduced modeling framework without offline training, Comput Method Appl Mech Eng, 358 (2020) 112650. [83] Z. Liu, M.A. Bessa, W.K. Liu, Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials, Comput Method Appl Mech Eng, 306 (2016) 319-341. [84] Z. Liu, M. Fleming, W.K. Liu, Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials, Comput Method Appl Mech Eng, 330 (2018) 547-577. [85] Z. Chen, T. Huang, Y. Shao, Y. Li, H. Xu, K. Avery, D. Zeng, W. Chen, X. Su, Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction, Composite Structures, 188 (2018) 25-38. [86] R. Bostanabad, B. Liang, J. Gao, W.K. Liu, J. Cao, D. Zeng, X. Su, H. Xu, Y. Li, W. Chen, Uncertainty quantification in multiscale simulation of woven fiber composites, Comput Method Appl Mech Eng, 338 (2018) 506-532. [87] B.A. Le, J. Yvonnet, Q.-C. He, Computational homogenization of nonlinear elastic materials using neural networks, Int J Numer Meth Eng, 104 (2015) 1061-1084. [88] F. Fritzen, M. Fernández, F. Larsson, On-the-Fly Adaptivity for Nonlinear Twoscale Simulations Using Artificial Neural Networks and Reduced Order Modeling, Frontiers in Materials, 6 (2019). [89] X. Lu, D.G. Giovanis, J. Yvonnet, V. Papadopoulos, F. Detrez, J. Bai, A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites, Comput Mech, 64 (2019) 307-321. [90] K. Wang, W. Sun, A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning, Comput Method Appl Mech Eng, 334 (2018) 337-380. [91] F. Ghavamian, A. Simone, Accelerating multiscale finite element simulations of history-dependent materials using a recurrent neural network, Comput Method Appl Mech Eng, 357 (2019) 112594. [92] A.L. Frankel, R.E. Jones, C. Alleman, J.A. Templeton, Predicting the mechanical response of oligocrystals with deep learning, Comp Mater Sci, 169 (2019) 109099. [93] N.N. Vlassis, R. Ma, W. Sun, Geometric deep learning for computational mechanics Part I: anisotropic hyperelasticity, Comput Method Appl Mech Eng, 371 (2020) 113299. [94] R. Xu, Multiscale modeling of heterogeneous materials : application to Shape Memory Alloys. Université de Lorraine and Université de Wuhan (Chine), 2020. [95] S. Selladurai, A.K. Thittai, Towards quantitative quasi-static ultrasound elastography using a reference layer for liver imaging application: A preliminary assessment, Ultrasonics, 93 (2019) 7-17. [96] C.F. Dietrich, R.G. Barr, A. Farrokh, M. Dighe, M. Hocke, C. Jenssen, Y. Dong, A. Saftoiu, R.F. Havre, Strain Elastography - How To Do It?, Ultrasound Int Open, 03 (2017) E137-E149. [97] C. Hoerig, J. Ghaboussi, M.F. Insana, Data-Driven Elasticity Imaging Using Cartesian Neural Network Constitutive Models and the Autoprogressive Method, IEEE Transactions on Medical Imaging, 38 (2019) 1150-1160. [98] C. Hoerig, J. Ghaboussi, M.F. Insana, Physics-guided machine learning for 3-D quantitative quasi-static elasticity imaging, Physics in Medicine Biology, 65 (2020) 065011. [99] C.L. Lawson, R.J. Hanson, Solving Least Squares Problems, Society for Industrial and Applied Mathematics, 1995. [100] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004. [101] A.E. Hoerl, R.W. Kennard, Ridge Regression: Biased Estimation for Nonorthogonal Problems, Technometrics, 12 (1970) 55-67. [102] T.H. Su, J.G. Jean, C.S. Chen, Manifold learning-based data-driven identification approach for quality enhancement of material databases, (2021) (in preparation). [103] M. Dalémat, M. Coret, A. Leygue, E. Verron, Reliability of the Data-Driven Identification algorithm with respect to incomplete input data, in: Constitutive Models for Rubber XI, Routledge and CRC Press, London, 2019, pp. 311-316. [104] G. Valdés Alonzo, A. Leygue, C. Binetruy, Identification of heterogeneous material response through Data-driven Computational Mechanics, in: International Conference on Adaptive Modeling and Simulation, EL Campello (Alicante), Spain, 2019. [105] G. Valdés-Alonzo, C. Binetruy, B. Eck, A. García-González, A. Leygue, Phase distribution and properties identification of heterogeneous materials: A data-driven approach, Comput Method Appl Mech Eng, (2021) 114354. [106] Y. Kanno, Mixed-integer programming formulation of a data-driven solver in computational elasticity, Optimization Letters, 13 (2019) 1505-1514. [107] Y. Kanno, Simple heuristic for data-driven computational elasticity with material data involving noise and outliers: a local robust regression approach, Japan Journal of Industrial and Applied Mathematics, 35 (2018) 1085-1101. [108] T.-H. Su, N.-H. Lu, C.-H. Chen, C.-S. Chen, Full-field stress and strain measurements revealing energy dissipation characteristics in martensitic band of Cu-Al-Mn shape memory alloy, Materials Today Communications, 24 (2020) 101321. [109] O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, in: N. Navab, J. Hornegger, W.M. Wells, A.F. Frangi (Eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Springer International Publishing, Cham, 2015, pp. 234-241. [110] S.A. Motahari, M. Ghassemieh, Multilinear one-dimensional shape memory material model for use in structural engineering applications, Eng Struct, 29 (2007) 904-913. [111] M.K. Kang, E.H. Kim, M.S. Rim, I. Lee, Engineering Model to Predict Behaviors of Shape Memory Alloy Wire for Vibration Applications, Cmes-Comp Model Eng, 64 (2010) 227-249. [112] X. Xie, Q.H. Kan, G.Z. Kang, F.C. Lu, K.J. Chen, Observation on rate-dependent cyclic transformation domain of super-elastic NiTi shape memory alloy, Mat Sci Eng a-Struct, 671 (2016) 32-47. [113] M.H. Sadd, Formulation and Solution Strategies, in: M.H. Sadd (Ed.) Elasticity, Academic Press, Boston, 2014, pp. 95-117. [114] J. Van Humbeeck, Damping capacity of thermoelastic martensite in shape memory alloys, J Alloy Compd, 355 (2003) 58-64. [115] E. Patoor, D.C. Lagoudas, P.B. Entchev, L.C. Brinson, X.J. Gao, Shape memory alloys, Part I: General properties and modeling of single crystals, Mech Mater, 38 (2006) 391-429. [116] T. Omori, S. Kawata, R. Kainuma, Orientation Dependence of Superelasticity and Stress Hysteresis in Cu–Al–Mn Alloy, Mater Trans, 61 (2020) 55-60. [117] N.-T. Tsou, C.-H. Chen, C.-S. Chen, S.-K. Wu, Classification and analysis of trigonal martensite laminate twins in shape memory alloys, Acta Mater, 89 (2015) 193-204. [118] J. Stoiber, J. Van Humbeeck, R. Gotthardt, Hysteresis Effects During Martensitic Transformation in Cu-Zn-Al Studied by Internal Friction Measurements, Mater Sci Forum, 56-58 (1991) 505-510. [119] Y. Araki, T. Endo, T. Omori, Y. Sutou, Y. Koetaka, R. Kainuma, K. Ishida, Potential of superelastic Cu-Al-Mn alloy bars for seismic applications, Earthq Eng Struct D, 40 (2011) 107-115. [120] W. Abuzaid, Y. Wu, R. Sidharth, F. Brenne, S. Alkan, M. Vollmer, P. Krooss, T. Niendorf, H. Sehitoglu, FeMnNiAl Iron-Based Shape Memory Alloy: Promises and Challenges, Shape Mem Superelast, 5 (2019) 263-277. [121] C.H. Chen, S.K. Wu, Observations of self-accommodated R-phase morphologies in a Ti50.3Ni48.2Fe1.5 shape memory alloy, Mater Charact, 107 (2015) 202-210. [122] C. Cisse, W. Zaki, T. Ben Zineb, A review of constitutive models and modeling techniques for shape memory alloys, Int J Plasticity, 76 (2016) 244-284. [123] T.-H. Su, N.-H. Lu, C.-H. Chen, C.-S. Chen, On the Decrease in Transformation Stress in a Bicrystal Cu-Al-Mn Shape-Memory Alloy during Cyclic Compressive Deformation, Materials, 14 (2021) 4439. [124] D.S. Lieberman, M.S. Wechsler, T.A. Read, Cubic to orthorhombic diffusionless phase change—experimental and theoretical studies of AuCd, J. Appl. Phys., 26 (1955) 473-484. [125] S. Miyazaki, T. Imai, Y. Igo, K. Otsuka, Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys, Metallurgical Transactions A, 17 (1986) 115-120. [126] D.M. Norfleet, P.M. Sarosi, S. Manchiraju, M.F.X. Wagner, M.D. Uchic, P.M. Anderson, M.J. Mills, Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals, Acta Mater, 57 (2009) 3549-3561. [127] R. Delville, B. Malard, J. Pilch, P. Sittner, D. Schryvers, Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires, Int J Plasticity, 27 (2011) 282-297. [128] T. Simon, A. Kröger, C. Somsen, A. Dlouhy, G. Eggeler, On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys, Acta Mater, 58 (2010) 1850-1860. [129] J. Pfetzing-Micklich, R. Ghisleni, T. Simon, C. Somsen, J. Michler, G. Eggeler, Orientation dependence of stress-induced phase transformation and dislocation plasticity in NiTi shape memory alloys on the micro scale, Materials Science and Engineering: A, 538 (2012) 265-271. [130] S. Mohamadnejad, A. Basti, R. Ansari, Analyses of Dislocation Effects on Plastic Deformation, Multiscale Science and Engineering, 2 (2020) 69-89. [131] L.C. Brinson, I. Schmidt, R. Lammering, Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy, J. Mech. Phys. Solids, 52 (2004) 1549-1571. [132] H. Kato, T. Ozu, S. Hashimoto, S. Miura, Cyclic stress–strain response of superelastic Cu–Al–Mn alloy single crystals, Materials Science and Engineering: A, 264 (1999) 245-253. [133] L. Heller, H. Seiner, P. Šittner, P. Sedlák, O. Tyc, L. Kadeřávek, On the plastic deformation accompanying cyclic martensitic transformation in thermomechanically loaded NiTi, Int J Plasticity, 111 (2018) 53-71. [134] H. Kato, K. Sasaki, Transformation-induced plasticity as the origin of serrated flow in an NiTi shape memory alloy, Int J Plasticity, 50 (2013) 37-48. [135] J. Wang, H. Sehitoglu, H.J. Maier, Dislocation slip stress prediction in shape memory alloys, Int J Plasticity, 54 (2014) 247-266. [136] H.M. Paranjape, M.L. Bowers, M.J. Mills, P.M. Anderson, Mechanisms for phase transformation induced slip in shape memory alloy micro-crystals, Acta Mater, 132 (2017) 444-454. [137] C. Yu, G. Kang, Q. Kan, A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals, J. Mech. Phys. Solids, 82 (2015) 97-136. [138] Z. Moumni, A.V. Herpen, P. Riberty, Fatigue analysis of shape memory alloys: energy approach, Smart Mater Struct, 14 (2005) S287-S292. [139] W. Zaki, Z. Moumni, A 3D model of the cyclic thermomechanical behavior of shape memory alloys, J. Mech. Phys. Solids, 55 (2007) 2427-2454. [140] Q. Kan, C. Yu, G. Kang, J. Li, W. Yan, Experimental observations on rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy, Mech Mater, 97 (2016) 48-58. [141] X. Gu, W. Zhang, W. Zaki, Z. Moumni, An extended thermomechanically coupled 3D rate-dependent model for pseudoelastic SMAs under cyclic loading, Smart Mater Struct, 26 (2017) 095047. [142] J. Wang, Z. Moumni, W. Zhang, A thermomechanically coupled finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys, Int J Plasticity, 97 (2017) 194-221. [143] C. Picornell, J. Pons, E. Cesari, Stabilisation of martensite by applying compressive stress in Cu-Al-Ni single crystals, Acta Mater, 49 (2001) 4221-4230. [144] H.C. Lin, S.K. Wu, Determination of heat of transformation in a cold-rolled martensitic tini alloy, Metallurgical Transactions A, 24 (1993) 293-299. [145] S. Miyazaki, T. Kawai, K. Otsuka, Study of fracture in cualni shape memory bicrystals, Le Journal De Physique Colloques, 43 (1982) C4-813-C814-818. [146] A. Creuziger, W.C. Crone, Grain boundary fracture in CuAlNi shape memory alloys, Materials Science and Engineering: A, 498 (2008) 404-411. [147] K. Takezawa, T. Izumi, H. Chiba, S. Sato, Coherency of the transformation strain at the grain boundary and fracture in Cu-Zn-Al alloy, Journal de Physique Colloques, 43 (1982) C4-819-C814-824. [148] A. Tchalla, S. Belouettar, A. Makradi, H. Zahrouni, An ABAQUS toolbox for multiscale finite element computation, Composites Part B: Engineering, 52 (2013) 323-333. [149] Z. Liu, C. Wu, B. Ren, W.K. Liu, R. Grimes, Multiscale Simulations of Material with Heterogeneous Structures Based on Representative Volume Element Techniques, in: Proc. 15th International LS-DYNA® Users Conference, 2018, 1-10.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80412-
dc.description.abstract"數據驅動計算力學(data-driven computational mechanics, DDCM)顛覆傳統的計算力學架構,賦予計算力學在材料大數據時代的重大轉變。透過直接使用應力應變數據資料暨材料數據庫於計算力學架構中,材料組成律的建模需求得以緩解。承襲無材料模型的精神,數據驅動鑑定(data-driven identification, DDI)法為數據驅動計算架構提供了大量的材料數據。DDCM和DDI在許多應用中都展現出相當看好的前景,例如材料數據獲取法、使用全域應力應變測量法於材料特性分析以及以數據驅動的多尺度模擬計算方法。在本論文中,我們致力於以數據驅動無組成律模型的方法來擴展上述應用之範疇。 關於材料數據獲取法方面,我們將流形學習技術中的局部凸空間重建法融入到DDI方法中,建立了局部凸形數據驅動鑑定(Local-convexity data-driven identification, LCDDI)法。並透過線彈性、複合彈性材料與彈塑性材料的三個數值案例來驗證LCDDI方法的有效性。與DDI方法相比,LCDDI可以減少一個數量級的機械應力誤差以及減少60%以上的材料數據誤差。 在材料特性分析方面,我們首次將DDI方法應用於銅基形狀記憶合金以研究其超彈性行為。在第一個應用DDI於銅鋁錳單晶形狀記憶合金的案例,我們結合DDI方法與數位影像相關法(digital image correlation, DIC)來鑑定銅鋁錳單金形狀記憶合金的局部能量耗散特性;關於第二個應用DDI於銅鋁錳雙晶形狀記憶合金的案例,我們首次使用DIC+DDI方法探討兩個不同晶粒方向的雙晶,在循環負載次數增加下,非均勻的轉變應力場與應變場的變化;以及造成轉變應力下降即功能性疲勞的可能原因。 在多尺度模擬方面,我們呈現局部凸形數據驅動(LCDD)多尺度模擬法在準確性和效率方面的潛力。與其他的數據驅動多尺度有限元素法相比,結果顯示,LCDD多尺度法可以大幅降低準備離線數據庫的計算成本,這是因為該方法只需要相對少的材料數據點的數據庫即可達到相同的精度。 本研究展現了無組成律的計算方法在許多方面的潛力,例如高品質材料數據獲取法、全域應力應變測量法(DIC+DDI)於超彈性材料的特性分析以及高效率數據驅動多尺度模擬法。最後,在這項研究工作,我們討論並給出關於上述方面的結果總結以及未來展望"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:06:07Z (GMT). No. of bitstreams: 1
U0001-0501202214385700.pdf: 9375270 bytes, checksum: 6964364a8a21b01296f0d8ab916e0798 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 # 誌謝 i 中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES xi LIST OF TABLES xxi Chapter 1 Introduction 1 1.1 Backgrounds 1 1.2 Objectives 4 1.3 Organization of the dissertation 4 Chapter 2 Literature Reviews 7 2.1 Data-driven computational mechanics 7 2.1.1 Elementary example: bar and spring 7 2.1.2 Noisy materials data sets 11 2.1.3 State of the art in DDCM 14 2.1.4 Applications of DDCM to multiscale simulation 15 2.2 Data-based derivation of material response 17 2.2.1 Data-driven identification (DDI) method 18 2.2.2 State of the art in DDI 20 2.2.3 Application of DDI to real experimental data 21 2.3 Potential applications 22 2.3.1 Material characterization of Cu-based shape memory alloys 22 2.3.2 Data-driven multiscale method 25 2.3.3 Quantitative quasi-static ultrasound elastography 27 2.4 Chapter summary 28 Chapter 3 Data-Driven Model-Free Methods in Computational Mechanics and Material Data Identification 31 3.1 Distance-minimizing data-driven (DMDD) computing 31 3.1.1 Distance-minimizing data-driven problem 31 3.1.2 Data-driven solver 33 3.1.3 Solution procedure 36 3.2 Local-convexity data-driven (LCDD) computing 37 3.2.1 Locally convex construction 37 3.2.2 Solving non-negative least squares 39 3.2.3 Solution procedure 41 3.3 Distance-minimizing data-driven identification (DMDDI) 41 3.3.1 Data-driven identification method 41 3.3.2 Distance-minimizing iterative material stress solver 46 3.4 Local-convexity data-driven identification (LCDDI) 48 3.4.1 Locally convex construction 49 3.4.2 Local convexity-preserving iterative material stress solver 51 3.4.3 Solution procedure for homogeneous and heterogenous elastic materials 53 Chapter 4 Numerical Verification of Data-Driven Identification Approaches 55 4.1 Methods 55 4.2 Example 1: elastic materials 56 4.2.1 Problem setup 56 4.2.2 Results 57 4.3 Example 2: composite materials 65 4.3.1 Problem setup 65 4.3.2 Results 66 4.4 Example 3: elastoplastic materials 72 4.4.1 Problem setup 73 4.4.2 Results 74 4.5 Discussion 80 4.5.1 Treatment of oversampling 80 4.5.2 Importance sampling 81 4.5.3 Full-domain analysis 82 4.6 Summary and concluding remarks 83 Chapter 5 Full-Field Stress and Strain Measurements Revealing Energy Dissipation Characteristics in Martensitic Band of CuAlMn Shape Memory Alloy 85 5.1 Materials and methods 86 5.1.1 Experimental method 86 5.1.2 Full-field stress and strain measurements (DIC+DDI) 87 5.2 Results 88 5.2.1 Material properties 88 5.2.2 Mechanical responses 90 5.2.3 Martensitic phase transformation 94 5.2.4 Dissipation energy 97 5.3 Discussion 101 5.4 Conclusions 105 Chapter 6 On the Decrease in Transformation Stress in a Bicrystal Cu-Al-Mn Shape-Memory Alloy during Cyclic Compressive Deformation 107 6.1 Materials and methods 107 6.1.1 Experimental method 107 6.1.2 Full-field stress and strain measurements (DIC+DDI) 109 6.2 Results 111 6.2.1 Cyclic superelastic behaviors of Cu-Al-Mn bicrystal sample 111 6.2.2 Correlations between residual strain and transformation stress 113 6.3 Discussion 118 6.4 Conclusions 125 Chapter 7 Data-driven Multiscale Finite Element Computation 127 7.1 Methods 127 7.1.1 Classical multiscale finite element method 127 7.1.2 Data-driven multiscale finite element method 129 7.1.3 Local-convexity data-driven computing for anisotropic elastic solids 132 7.2 Example 1: Isotropic composite cantilever beam 133 7.2.1 Problem setup 133 7.2.2 Results 136 7.3 Example 2: Multi-layer anisotropic composite cantilever beam 140 7.3.1 Problem setup 140 7.3.2 Results 143 7.4 Concluding remarks 144 Chapter 8 Conclusion and Perspectives 147 8.1 Contributions 147 8.2 Results summary 148 8.3 Future perspectives 151 Bibliography 153
dc.language.isoen
dc.subject數據驅動多尺度有限元素法zh_TW
dc.subject數據驅動計算力學zh_TW
dc.subject數據驅動鑑定法zh_TW
dc.subject材料數據獲取zh_TW
dc.subject材料數據庫品質zh_TW
dc.subject流形學習法zh_TW
dc.subject局部凸空間數據驅動鑑定法zh_TW
dc.subject全域非接觸式應力應變測量法zh_TW
dc.subject數位影像相關法zh_TW
dc.subject銅鋁錳形狀記憶合金zh_TW
dc.subject超彈性力學行為zh_TW
dc.subject能量消散zh_TW
dc.subject轉變應力zh_TW
dc.subject功能性疲勞zh_TW
dc.subjectTransformation stressen
dc.subjectData-driven multiscale finite element method (Data-driven FE2)en
dc.subjectFunctional fatigueen
dc.subjectData-driven computational mechanics (DDCM)en
dc.subjectData-driven identification (DDI)en
dc.subjectMaterial data acquisitionen
dc.subjectMaterial database qualityen
dc.subjectManifold learningen
dc.subjectLocal convexity data-driven identification (LCDDI)en
dc.subjectFull-field non-contact stress and strain measurementsen
dc.subjectDigital image correlation (DIC)en
dc.subjectCu-Al-Mn shape memory alloys (SMA)en
dc.subjectSuperelasticityen
dc.subjectEnergy dissipationen
dc.title以數據驅動的計算彈性固體力學及其應用zh_TW
dc.titleData-Driven Computational Elastic Solid Mechanics and its Applicationsen
dc.date.schoolyear110-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳志軒(Hsin-Tsai Liu),洪宏基(Chih-Yang Tseng),陳正宗,陳東陽
dc.subject.keyword數據驅動計算力學,數據驅動鑑定法,材料數據獲取,材料數據庫品質,流形學習法,局部凸空間數據驅動鑑定法,全域非接觸式應力應變測量法,數位影像相關法,銅鋁錳形狀記憶合金,超彈性力學行為,,能量消散,轉變應力,功能性疲勞,數據驅動多尺度有限元素法,zh_TW
dc.subject.keywordData-driven computational mechanics (DDCM),Data-driven identification (DDI),Material data acquisition,Material database quality,Manifold learning,Local convexity data-driven identification (LCDDI),Full-field non-contact stress and strain measurements,Digital image correlation (DIC),Cu-Al-Mn shape memory alloys (SMA),Superelasticity,Energy dissipation,Transformation stress,Functional fatigue,Data-driven multiscale finite element method (Data-driven FE2),en
dc.relation.page170
dc.identifier.doi10.6342/NTU202200014
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-01-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-0501202214385700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
9.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved