請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80406完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志傑(Chih-Chieh Chen) | |
| dc.contributor.author | Yu-Mei Huang | en |
| dc.contributor.author | 黃玉玫 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:05:58Z | - |
| dc.date.available | 2022-02-15 | |
| dc.date.available | 2022-11-24T03:05:58Z | - |
| dc.date.copyright | 2022-02-15 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-12 | |
| dc.identifier.citation | APEX (2019). Method for determination of PM10/PM2.5 emissions operator's manual, APEX instrument INC., http://www.apexinst.com/wp-content/uploads/2015/03/PM_10-2.5-Operators-Manual.pdf Apte, J. S., Marshall, J. D., Cohen, A. J., Brauer, M. (2015). Addressing global mortality from ambient PM2.5. Environmental Science Technology 49:8057-8066. ASTM (1995). Standard method for evaluation of air assay media by the monodisperse dop (dioctyl phthalate) smoke test, American Society for Testing and Materials. Bäumer, D., Vogel, B., Versick, S., Rinke, R., Möhler, O., Schnaiter, M. (2008). Relationship of visibility, aerosol optical thickness and aerosol size distribution in an ageing air mass over south-west germany. Atmospheric Environment 42:989-998. Bell, M. L., Levy, J. K., Lin, Z. (2008). The effect of sandstorms and air pollution on cause-specific hospital admissions in Taipei, Taiwan. Occupational and environmental medicine 65:104-111. Bin, H., Lin, Z., Yang, Y., Fei, L., Cai, L., Linjun, Y. (2017). PM2.5 and SO3 collaborative removal in electrostatic precipitator. Powder Technology 318:484-490. Brewer, E., Li, Y., Finken, B., Quartucy, G., Muzio, L., Baez, A., Garibay, M. and Jung, H. (2015). PM2.5 and Ultrafine Particulate Matter Emissions from Natural Gas-Fired Turbine for Power Generation. Atmospheric Environment 131:141-149. Cao, R., Tan, H., Xiong, Y., Mikulčić, H., Vujanović, M., Wang, X., Duić, N. (2017). Improving the removal of particles and trace elements from coal-fired power plants by combining a wet phase transition agglomerator with wet electrostatic precipitator. Journal of Cleaner Production 161:1459-1465. Chang, M. C. O., Chow, J. C., Watson, J. G., Hopke, P. K., Yi, S.-M., England, G. C. (2004). Measurement of ultrafine particle size distributions from coal-, oil-, and gas-fired stationary combustion sources. Journal of the Air Waste Management Association 54:1494-1505. Chen, C.-C. and Huang, S.-H. (1999). Shift of aerosol penetration in respirable cyclone samplers. American Industrial Hygiene Association Journal 60:720-729. Chen, C.-C., Huang, S.-H., Lin, W.-Y., Shih, T.-S., Jeng, F.-T. (1999). The virtual cyclone as a personal respirable sampler. Aerosol Science and Technology 31:422-432. Chen, J. (2020). Forward Ultra-Low Emission for Power Plants Via Wet Electrostatic Precipitators and Newly Developed Demisters: Filterable and Condensable Particulate Matters. Atmospheric Environment 225: 117372. Chen, W.L. (2013). Source Analysis and Mitigation Strategy of PM2.5 over Metropolitan Taichung in 2013, Environmental Protection Bureau, Taichung City, Taiwan. Chen, W.L. (2014). Promotion Project of Emission Inventory Development and Reduction Measures of Fine Particulate Matters, Environmental Protection Bureau, Taichung City, Taiwan. Chen, W.L. (2015). PM2.5 Control Plan of Taichung City in 2015, Environmental Protection Bureau, Taichung City, Taiwan. Chen, W.L. (2016). Sampling Analysis of Fine Particulate Matter (PM2.5) of Taichung City in 2016, Environmental Protection Bureau, Taichung City, Taiwan. Chen, Y.-S., Hsu, C.-J., Hsiau, S.-S., Ma, S.-M. (2017). Clean coal technology for removal dust using moving granular bed filter. Energy 120:441-449. Cheng, T., Zheng, C., Yang, L., Wu, H., Fan, H. (2019). Effect of selective catalytic reduction denitrification on fine particulate matter emission characteristics. Fuel 238:18-25. Chi, K.H. and Chang, M.B. (2016). Emission Characteristics and Control Efficiency of PM2.5 and Polycyclic Aromatic Hydrocarbons Emitted from Coal Combustion Processes, Taiwan. Choi, W., Yoo, E., Seol, E., Kim, M. and Song, H.H. (2020). Greenhouse Gas Emissions of Conventional and Alternative Vehicles: Predictions Based on Energy Policy Analysis in South Korea. Applied Energy 265: 114754. Corio, L.A. and Sherwell, J. (2000). In-Stack Condensible Particulate Matter Measurements and Issues. J Air Waste Manag Assoc 50: 207-218. DeWees, W. G., Steinsberger, S. C., Plummer, G. M., Lay, L. T., McAlister, G. D., Shigehara, R. T. (1989). Laboratory and field evaluation of the epa method 5 impinger catch for measuring condensable matter from stationary source, in Proceedings of the 1989 EPA/A WMA International Symposium on Measurement of Toxic and related Air Pollutants, U.S. Environmental Protection Agency: Research Triangle Park, North Carolina, Pittsburg, PA. Di Natale, F., Carotenuto, C., D’Addio, L., Jaworek, A., Krupa, A., Szudyga, M., Lancia, A. (2015). Capture of fine and ultrafine particles in a wet electrostatic scrubber. Journal of Environmental Chemical Engineering 3:349-356. Du, Q., Cui, Z., Dong, H., Gao, J., Li, D., Yu, J. and Liu, Y. (2019). Field Measurements on the Generation and Emission Characteristics of PM2.5 Generated by Industrial Layer Burning Boilers. Journal of the Energy Institute 92: 1251-1261. England, G. C., Zielinska, B., Loos, K., Crane, I., Ritter, K. (2000). Characterizing PM2.5 emission profiles for stationary sources: Comparison of traditional and dilution sampling techniques. Fuel Processing Technology 65–66:177-188. Feng, Y., Li, Y. and Cui, L. (2018). Critical Review of Condensable Particulate Matter. Fuel 224: 801-813. Feng, Y., Li, Y., Zhang, X., Su, S., Zhang, Z., Gan, Z. and Dong, Y. (2021). Comparative Study on the Characteristics of Condensable Particulate Matter Emitted from Three Kinds of Coal. Environmental Pollution 270: 116267. Feng, Y., Li, Y., Zhang, X., Zhang, Z., Dong, Y. and Ma, C. (2020). Characteristics of Condensable Particulate Matter Discharging from a One-Dimensional Flame Furnace Firing Lignite. Fuel 277: 118198. Ferge, T., Maguhn, J., Felber, H., Zimmermann, R. (2004). Particle collection efficiency and particle re-entrainment of an electrostatic precipitator in a sewage sludge incineration plant. Environmental Science Technology 38:1545-1553. Fierz, M., Houle, C., Steigmeier, P., Burtscher, H. (2011). Design, calibration, and field performance of a miniature diffusion size classifier. Aerosol Science and Technology 45:1-10. Flesch, J. P., Norris, C. H., Nugent, A. E. (1967). Calibrating particulate air samplers with monodisperse aerosols.: Application to the andersen cascade impactor. American Industrial Hygiene Association Journal 28:507-516. Geiger, A. and Cooper, J. (2010). Overview of airborne metals regulations, exposure limits, health effects, and contemporary research. US Environmental Protection Agency. Accessed on August 25:2015. Guo, B.-Y., Yu, A.-B., Guo, J. (2014). Numerical modeling of electrostatic precipitation: Effect of gas temperature. Journal of Aerosol Science 77:102-115. Gao, X., Li, Y., Garcia-Perez, M. and Wu, H. (2012). Roles of Inherent Fine Included Mineral Particles in the Emission of PM10 During Pulverized Coal Combustion. Energy Fuels 26: 6783-6791. Gao, X., Li, Y., Garcia-Perez, M. and Wu, H. (2012). Roles of Inherent Fine Included Mineral Particles in the Emission of PM10 During Pulverized Coal Combustion. Energy Fuels 26: 6783-6791. Gussman, R. A., Kenny, L. C., Labickas, M., Norton, P. (2002). Design, calibration, and field test of a cyclone for pm 1 ambient air sampling. Aerosol Science and Technology 36:361-365. Habre, R., Zhou, H., Eckel, S. P., Enebish, T., Fruin, S., Bastain, T., Rappaport, E., Gilliland, F. (2018). Short-term effects of airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma. Environment International 118:48-59. Hinds, W. C. (1999). Aerosol technology chapter 16 optical properties. A Wiley interscience publication. Hoffmann, T. L. (1997). An extended kernel for acoustic agglomeration simulation based on the acoustic wake effect. Journal of Aerosol Science 28:919-936. Hu, K., Guo, Y., Hu, D., Du, R., Yang, X., Zhong, J., Fei, F., Chen, F., Chen, G., Zhao, Q., Yang, J., Zhang, Y., Chen, Q., Ye, T., Li, S., Qi, J. (2018). Mortality burden attributable to pm1 in zhejiang province, china. Environment International 121:515-522. Hu, Z., Wang, X., Zhang, L., Yang, S., Ruan, R., Bai, S., Zhu, Y., Wang, L., Mikulčić, H. and Tan, H. (2020). Emission Characteristics of Particulate Matters from a 30 mw Biomass-Fired Power Plant in China. Renewable Energy 155: 225-236. Huang, R., Luo, L., Zhou, X., Pan, D. and Yang, L. (2017). Aerosol Formation by Heterogeneous Reactions in Ammonia-Based WFGD Systems. Journal of Aerosol Science 114: 1-12. Huang, R., Wu, H. and Yang, L. (2020). Investigation on Condensable Particulate Matter Emission Characteristics in Wet Ammonia-Based Desulfurization System. Journal of Environmental Sciences 92: 95-105. Huang, R., Yu, R., Wu, H., Pan, D., Zhang, Y. and Yang, L. (2016). Investigation on the Removal of So3 in Ammonia-Based WFGD System. Chemical Engineering Journal 289: 537-543. Huang, Y.-M., Huang, S.-H., Lin, C.-W. and Chen, C.-C. (2021a). Investigation on Fine Particulate Matters Emission of Power Plants, In Chinese Environmental Analytic Society, 2021 Annual meetings, On-line. Huang, Y.-M., Huang, S.-H., Lin, C.-W., Yang, H.-H. and Chen, C.-C. (2021b). Evaluation of Bias in the Measurement of Condensable Particulate Matter with Method 202. Aerosol and Air Quality Research 21: 200149. John Richards, T. H., and David Goshaw (2005). Optimized method 202 sampling train to minimize the biases associated with method 202 measurement of condensable particulate matter emissions in Air Waste Management Association Hazardous Waste Combustion Specialty Conference St. Louis, Missouri Iveson, S. M., Litster, J. D., Hapgood, K., Ennis, B. J. (2001). Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review. Powder Technology 117:3-39. Jaworek, A., Marchewicz, A., Sobczyk, A. T., Krupa, A., Czech, T. (2018). Two-stage electrostatic precipitators for the reduction of PM2.5 particle emission. Progress in Energy and Combustion Science 67:206-233.Karthik, K. R. G., Baikie, T., Mohan Dass, E. T., Huang, Y. Z., Guet, C. (2017). Understanding the southeast asian haze. Environmental Research Letters 12:084018. Kikkawa, H., Shimohira, W., Nagayasu, T., Kiyosawa, M., Nagai, Y., Kagawa, S. (2015). Highly-efficient removal of toxic trace elements and particulate matter in flue gas emitted from coal-fired power plants by air quality control system (AQCS). Mitsubishi Heavy Industries Technical Review 52:89. Miller, B. (2015). 1 - introduction, in Fossil fuel emissions control technologies, Butterworth-Heinemann, 1-45. Kim, H.-J., Kim, M., Han, B., Woo, C. G., Zouaghi, A., Zouzou, N., Kim, Y.-J. (2019). Fine particle removal by a two-stage electrostatic precipitator with multiple ion-injection-type prechargers. Journal of Aerosol Science 130:61-75. Iveson, S. M., Litster, J. D., Hapgood, K., Ennis, B. J. (2001). Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review. Powder Technology 117:3-39. Jaworek, A., Krupa, A., Czech, T. (2007). Modern electrostatic devices and methods for exhaust gas cleaning: A brief review. Journal of Electrostatics 65:133-155. Jaworek, A., Marchewicz, A., Sobczyk, A. T., Krupa, A., Czech, T. (2018). Two-stage electrostatic precipitators for the reduction of pm2.5 particle emission. Progress in Energy and Combustion Science 67:206-233. Jaworek, A., Sobczyk, A. T., Krupa, A., Marchewicz, A., Czech, T., Śliwiński, L. (2019). Hybrid electrostatic filtration systems for fly ash particles emission control. A review. Separation and Purification Technology 213:283-302. Karthik, K. R. G., Baikie, T., Mohan Dass, E. T., Huang, Y. Z., Guet, C. (2017). Understanding the southeast asian haze. Environmental Research Letters 12:084018. Kenny, L. C., Merrifield, T., Mark, D., Gussman, R., Thorpe, A. (2004). The ddevelopment and designation testing of a new usepa-approved fine particle inlet: A study of the usepa designation process. Aerosol Science and Technology 38:15-22. Kim, H.-J., Kim, M., Han, B., Woo, C. G., Zouaghi, A., Zouzou, N., Kim, Y.-J. (2019). Fine particle removal by a two-stage electrostatic precipitator with multiple ion-injection-type prechargers. Journal of Aerosol Science 130:61-75. Kim, J. (2008). Transport routes and source regions of Asian dust observed in Korea during the past 40 years (1965–2004). Atmospheric Environment 42:4778-4789. Kim, K.-H., Kabir, E., Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International 74:136-143. Knutson, E. O. and Whitby, K. T. (1975). Aerosol classification by electric mobility: Apparatus, theory, and applications. Journal of Aerosol Science 6:443-451. Lamancusa, C., Parvez, F., Wagstrom, K. (2017). Spatially resolved intake fraction estimates for primary and secondary particulate matter in the united states. Atmospheric Environment 150:229-237. Latif, M. T., Othman, M., Idris, N., Juneng, L., Abdullah, A. M., Hamzah, W. P., Khan, M. F., Nik Sulaiman, N. M., Jewaratnam, J., Aghamohammadi, N., Sahani, M., Xiang, C. J., Ahamad, F., Amil, N., Darus, M., Varkkey, H., Tangang, F., Jaafar, A. B. (2018). Impact of regional haze towards air quality in malaysia: A review. Atmospheric Environment 177:28-44. Lebel, L. S., Piro, M. H., MacCoy, R., Clouthier, A., Chin, Y.-S. (2016). Concept for a cyclonic spray scrubber as a fission product removal system for filtered containment venting. Nuclear Engineering and Design 297:60-71. Li, J., Qi, Z., Li, M., Wu, D., Zhou, C., Lu, S., Yan, J. and Li, X. (2017). Physical and Chemical Characteristics of Condensable Particulate Matter from an Ultralow-Emission Coal-Fired Power Plant. Energy Fuels 31: 1778-1785. Li, X., Zhou, C., Li, J., Lu, S. and Yan, J. (2019). Distribution and Emission Characteristics of Filterable and Condensable Particulate Matter before and after a Low-Low Temperature Electrostatic Precipitator. Environ Sci Pollut Res Int. 26: 12798-12806. Li, Z., Jiang, J., Ma, Z., Wang, S. and Duan, L. (2015). Effect of Selective Catalytic Reduction (SCR) on Fine Particle Emission from Two Coal-Fired Power Plants in China. Atmospheric Environment 120: 227-233. Liang, Y., Li, Q., Ding, X., Wu, D., Wang, F., Otsuki, T., Cheng, Y., Shen, T., Li, S. and Chen, J. (2020). Forward Ultra-Low Emission for Power Plants Via Wet Electrostatic Precipitators and Newly Developed Demisters: Filterable and Condensable Particulate Matters. Atmospheric Environment 225: 117372. Likens, G. E., Driscoll, C. T., Buso, D. C. (1996). Long-term effects of acid rain: Response and recovery of a forest ecosystem. Science 272:244-246. Lin, C.-W., Chen, T.-J., Huang, S.-H., Kuo, Y.-M., Gui, H.-Q., Chen, C.-C. (2018). Effect of aerosol loading on separation performance of PM2.5 cyclone separators. Aerosol and Air Quality Research 18:1366-1374. Lin, S.C. (2017). Annual 106 Analysis of Fine Particles Matters (Pm2.5) Emission from Air Pollution Sources in Hualien County and Control Plan, Environmental Protection Bureau, Haulien County, Taiwan. Lin, S.L. (2015). Inspection Administration of Dioxins and Heavy Metals and Measurement of Fine Suspended Particles (2014~2015), Environmental Protection Bureau, Kaihsiung City Government, Taiwan. Lipsky, E., Stanier, C. O., Pandis, S. N., Robinson, A. L. (2002). Effects of sampling conditions on the size distribution of fine particulate matter emitted from a pilot-scale pulverized-coal combustor. Energy Fuels 16:302-310. Lipsky, E. M., Pekney, N. J., Walbert, G. F., O'Dowd, W. J., Freeman, M. C., Robinson, A. (2004). Effects of dilution sampling on fine particle emissions from pulverized coal combustion. Aerosol Science and Technology 38:574-587. Liu, J.-z., Fan, H.-y., Zhou, J.-h., Cao, X.-y., Cen, K.-f. (2003). Experimental studies on the emission of pm10 and pm2. 5 from coal-fired boiler. Proceedings of the CSEE 1:031. Liu, J., Wang, J., Cheng, J., Zhang, Y., Wang, T. and Pan, W.-P. (2020). Distribution and Emission of Speciated Volatile Organic Compounds from a Coal-Fired Power Plant with Ultra-Low Emission Technologies. Journal of Cleaner Production 264: 121686. Liu, S., Zhang, Z., Wang, Y., Hu, Y., Liu, W., Chen, C., Mei, Y. and Sun, H. (2019). Pm2.5 Emission Characteristics of Coal-Fired Power Plants in Beijing-Tianjin-Hebei Region, China. Atmospheric Pollution Research 10: 954-959. Liu, X., Xu, Y., Fan, B., Lv, C., Xu, M., Pan, S., Zhang, K., Li, L., Gao, X. (2016a). Field measurements on the emission and removal of PM2.5 from coal-fired power stations: 2. Studies on two 135 MW circulating fluidized bed boilers respectively equipped with an electrostatic precipitator and a hybrid electrostatic filter precipitator. Energy Fuels 30:5922-5929. Liu, X., Xu, Y., Zeng, X., Zhang, Y., Xu, M., Pan, S., Zhang, K., Li, L., Gao, X. (2016b). Field measurements on the emission and removal of PM2.5 from coal-fired power stations: 1. Case study for a 1000 MW ultrasupercritical utility boiler. Energy Fuels 30:6547-6554. Lu, C.M., Dat, N.D., Lien, C.K., Chi, K.H. and Chang, M.B. (2019). Characteristics of Fine Particulate Matter and Polycyclic Aromatic Hydrocarbons Emitted from Coal Combustion Processes. Energy Fuels 33: 10247-10254. Lu, P., Wu, J., Pan, W. P. (2010). Particulate matter emissions from a coal-fired power plant, in Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on, 1-4. Marple, V. A., Rubow, K. L., Behm, S. M. (1991). A microorifice uniform deposit impactor (moudi): Description, calibration, and use. Aerosol Science and Technology 14:434-446. Meier, R., Clark, K., Riediker, M. (2013). Comparative testing of a miniature diffusion size classifier to assess airborne ultrafine particles under field conditions. Aerosol Science and Technology 47:22-28. Mertens, J., Bruns, R., Schallert, B., Faniel, N., Khakharia, P., Albrecht, W., Goetheer, E., Blondeau, J., Schaber, K. (2015). Effect of a gas–gas-heater on H2SO4 aerosol formation: Implications for mist formation in amine based carbon capture. International Journal of Greenhouse Gas Control 39:470-477. Miller, B. (2015). 1- Introduction, in Fossil Fuel Emissions Control Technologies, Butterworth-Heinemann,, pp. 1-45. Misaka, T., Akasaka, A., Yabuta, H., Oura, T., Hirano, T., Yamazaki, M., Asano, H. (1998). Recent applications of moving electrode type electrostatic precipitator, in Seventh International Conference on Electrostatic Precipitation, Kyongju, Korea, 20-25. Pan, D., Gu, C., Zhang, D., Zeng, F. (2019). Removal characteristics of sulfuric acid aerosols in the wet electrostatic precipitator system. Energy Fuels 33:7813-7818. Pei, B. (2015). Determination and Emission of Condensable Particulate Matter from Coal-Fired Power Plants. Environ. Sci. 36: 1544-1549. Peng, Y., Sui, Z., Zhang, Y., Wang, T., Norris, P., Pan, W.-P. (2019). The effect of moisture on particulate matter measurements in an ultra-low emission power plant. Fuel 238:430-439. Qi, Z., Li, J., Wu, D., Xie, W., Li, X. and Liu, C. (2017). Particulate Matter Emission Characteristics and Removal Efficiencies of a Low-Low Temperature Electrostatic Precipitator. Energy Fuels 31: 1741-1746. Ramanathan, V., Crutzen, P. J., Lelieveld, J., Mitra, A. P., Althausen, D., Anderson, J., Andreae, M. O., Cantrell, W., Cass, G. R., Chung, C. E., Clarke, A. D., Coakley, J. A., Collins, W. D., Conant, W. C., Dulac, F., Heintzenberg, J., Heymsfield, A. J., Holben, B., Howell, S., Hudson, J., Jayaraman, A., Kiehl, J. T., Krishnamurti, T. N., Lubin, D., McFarquhar, G., Novakov, T., Ogren, J. A., Podgorny, I. A., Prather, K., Priestley, K., Prospero, J. M., Quinn, P. K., Rajeev, K., Rasch, P., Rupert, S., Sadourny, R., Satheesh, S. K., Shaw, G. E., Sheridan, P., Valero, F. P. J. (2001). Indian ocean experiment: An integrated analysis of the climate forcing and effects of the great indo-asian haze. Journal of Geophysical Research: Atmospheres 106:28371-28398. Ramanathan, V., Ramana, M. V., Roberts, G., Kim, D., Corrigan, C., Chung, C., Winker, D. (2007). Warming trends in asia amplified by brown cloud solar absorption. Nature 448:575-578. Richard, J., H., T. and Goshaw, D. (2005). Optimized Method 202 Sampling Train to Minimize the Biases Associated with Method 202 Measurement of Condensable Particulate Matter Emissions, In Air Waste Management Association Hazardous Waste Combustion Specialty Conference, St. Louis, Missouri. Ruan, R., Liu, H., Tan, H., Yang, F., Li, Y., Duan, Y., Zhang, S., Lu, X. (2019). Effects of apcds on pm emission: A case study of a 660 MW coal-fired unit with ultralow pollutants emission. Applied Thermal Engineering 155:418-427. Rubin, E.S., Davison, J.E. and Herzog, H.J. (2015). The Cost of CO2 Capture and Storage. International Journal of Greenhouse Gas Control 40: 378-400. Rubow, K. L., Marple, V. A., Olin, J., McCawley, M. A. (1987). A personal cascade impactor: Design, evaluation and calibration. American Industrial Hygiene Association Journal 48:532-538. Sahu, D., Kannan, G. M., Vijayaraghavan, R. (2014). Size-dependent effect of zinc oxide on toxicity and inflammatory potential of human monocytes. Journal of Toxicology and Environmental Health, Part A 77:177-191. Sánchez-Soberón, F., Rovira, J., Mari, M., Sierra, J., Nadal, M., Domingo, J. L., Schuhmacher, M. (2015). Main components and human health risks assessment of PM10, PM2.5, and PM1 in two areas influenced by cement plants. Atmospheric Environment 120:109-116. Schmelz, W., Hochman, G. and Miller, K. (2020). Total Cost of Carbon Capture and Storage Implemented at a Regional Scale: Northeastern and Midwestern United States. Interface focus: a theme supplement of Journal of the Royal Society interface 10. Seppälä, T. and Skroch, R. (2011). Ion blast precipitator, in XII international conference. Shapiro, M. and Galperin, V. (2005). Air classification of solid particles: A review. Chemical Engineering and Processing: Process Intensification 44:279-285. Shrimpton, J. S. and Crane, R. (2001). Small electrocyclone performance. Chemical engineering technology 24:951-955. Shuangchen, M., Jin, C., Kunling, J., Lan, M., Sijie, Z., Kai, W. (2017). Environmental influence and countermeasures for high humidity flue gas discharging from power plants. Renewable and Sustainable Energy Reviews 73:225-235. Sloane, C. S., Watson, J., Chow, J., Pritchett, L., Willard Richards, L. (1991). Size-segregated fine particle measurements by chemical species and their impact on visibility impairment in denver. Atmospheric Environment. Part A. General Topics 25:1013-1024. Song, J., Lu, S., Wu, Y., Zhou, C., Li, X. and Li, J. (2020). Migration and Distribution Characteristics of Organic and Inorganic Fractions in Condensable Particulate Matter Emitted from an Ultralow Emission Coal-Fired Power Plant. Chemosphere 243: 125346. Sui, Z., Zhang, Y., Peng, Y., Norris, P., Cao, Y., Pan, W.-P. (2016). Fine particulate matter emission and size distribution characteristics in an ultra-low emission power plant. Fuel 185:863-871. Sun, K., Yan, Y., Jiang, J., Deng, L. (2019). Optimization design of flue gas temperature for low-low temperature electrostatic precipitator. Journal of Physics: Conference Series 1300:012097. Tan, S.-C., Li, J., Che, H., Chen, B., Wang, H. (2017). Transport of east asian dust storms to the marginal seas of china and the southern north pacific in spring 2010. Atmospheric Environment 148:316-328. Tomitatsu, K., Kato, M., Ueda, Y., Nagata, C. (2014). Development of advanced electrostatic fabric filter. Int. J. Plasma Environ. Sci. Technol. 8:37-44. Torczynski, J. R. and Rader, D. J. (1997). The virtual cyclone: A device for nonimpact particle separation. Aerosol Science and Technology 26:560-573. Tsai, C.-J., Shiau, H.-G., Lin, K.-C., Shih, T.-S. (1999). Effect of deposited particles and particle charge on the penetration of small sampling cyclones. Journal of Aerosol Science 30:313-323. Tsai, Y. I. and Cheng, M. T. (1999). Visibility and aerosol chemical compositions near the coastal area in central taiwan. Science of The Total Environment 231:37-51. Turner, J. R. and Hering, S. V. (1987). Greased and oiled substrates as bounce-free impaction surfaces. Journal of Aerosol Science 18:215-224. URG (2019). Urg-2000-30egn-1-tc,http://www.urgcorp.com/products/inlets/teflon-coated-aluminum-cyclones/urg-2000-30egn-1-tc Valavanidis, A., Fiotakis, K., Vlachogianni, T. (2008). Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. Journal of Environmental Science and Health, Part C 26:339-362. Wada, M., Tsukada, M., Namiki, N., Szymanski, W. W., Noda, N., Makino, H., Kanaoka, C., Kamiya, H. (2016). A two-stage virtual impactor for in-stack sampling of PM2.5 and PM10 in flue gas of stationary sources. Aerosol and Air Quality Research 16:36-45. Wang, A., Song, Q., Tu, G., Wang, H., Yue, Y., Yao, Q. (2014). Influence of flue gas cleaning system on characteristics of PM2.5 emission from coal-fired power plants. International Journal of Coal Science Technology 1:4-12. Wang, C., Liu, X., Li, D., Si, J., Zhao, B. and Xu, M. (2015). Measurement of Particulate Matter and Trace Elements from a Coal-Fired Power Plant with Electrostatic Precipitators Equipped the Low Temperature Economizer. Proceedings of the Combustion Institute 35: 2793-2800. Wang, G., Deng, J., Ma, Z., Hao, J. and Jiang, J. (2018). Characteristics of Filterable and Condensable Particulate Matter Emitted from Two Waste Incineration Power Plants in China. Science of The Total Environment 639: 695-704. Wang, H., Song, Q., Yao, Q., Chen, C.-H. (2008). Experimental study on removal effect of wet flue gas desulfurization system on fine particles from a coal-fired power plant. Proceedings-Chinese Society of electrical engineering 28:1. Wang, K., Yang, L., Li, J., Sheng, Z., He, Q. and Wu, K. (2020). Characteristics of Condensable Particulate Matter before and after Wet Flue Gas Desulfurization and Wet Electrostatic Precipitator from Ultra-Low Emission Coal-Fired Power Plants in China. Fuel 278: 118206. Wang, S., Zhu, F., Wang, H., Zuo, Y., Sun, X., Zhao, X., Chen, H., Liu, G. (2011). Fine particle emission characteristics from coal-fired power plants based on field tests. Acta Scientiae Circumstantiae 31:630-635. Wang, Y., Cheng, K., Tian, H.-Z., Yi, P. and Xue, Z.-G. (2017). Emission Characteristics and Control Prospects of Primary PM2.5 from Fossil Fuel Power Plants in China. Aerosol and Air Quality Research 16: 3290-3301. Watanabe, T., Tochikubo, F., Koizurni, Y., Tsuchida, T., Hautanen, J., Kauppinen, E. I. (1995). Submicron particle agglomeration by an electrostatic agglomerator. Journal of Electrostatics 34:367-383. Weichenthal, S., Olaniyan, T., Christidis, T., Lavigne, E., Hatzopoulou, M., Van Ryswyk, K., Tjepkema, M., Burnett, R. (2019). Within-city spatial variations in ambient ultrafine particle concentrations and incident brain tumors in adults. Epidemiology Publish Ahead of Print. Wu, B., Tian, H., Hao, Y., Liu, S., Liu, X., Liu, W., Bai, X., Liang, W., Lin, S., Wu, Y., Shao, P., Liu, H., Zhu, C. (2018). Effects of wet flue gas desulfurization and wet electrostatic precipitators on emission characteristics of particulate matter and its ionic compositions from four 300 MW level ultralow coal-fired power plants. Environmental Science Technology 52:14015-14026. Xie, Y., Dai, H., Dong, H., Hanaoka, T., Masui, T. (2016). Economic impacts from PM2.5 pollution-related health effects in china: A provincial-level analysis. Environmental Science Technology 50:4836-4843. Xing, Z. (2016). Emission standards and control of PM2.5 from coal-fired power plant, IEA clean coal centre. Xu, H., Luo, Z., Wang, T., Wang, P., Gao, X., Shi, Z., Cen, K. (2004). Studies on the characteristics of aerosol and trace metals emitted from a cfb coal-fired power plant. Acta Scientiae Circumstantiae 24:515-519. Xu, J., Lyu, Y., Zhuo, J., Xu, Y., Zhou, Z. and Yao, Q. (2021). Formation and Emission Characteristics of VOCs from a Coal-Fired Power Plant. Chinese Journal of Chemical Engineering. Xu, Y., Liu, X., Zhang, P., Guo, J., Han, J., Zhou, Z. and Xu, M. (2016a). Role of Chlorine in Ultrafine Particulate Matter Formation During the Combustion of a Blend of High-Cl Coal and Low-Cl Coal. Fuel 184: 185-191. Xu, Y., Liu, X., Zhang, Y., Sun, W., Zhou, Z., Xu, M., Pan, S. and Gao, X. (2016b). Field Measurements on the Emission and Removal of PM2.5from Coal-Fired Power Stations: 3. Direct Comparison on the Pm Removal Efficiency of Electrostatic Precipitators and Fabric Filters. Energy Fuels 30: 5930. Yang, H.-H., Arafath, S. M., Wang, Y.-F., Wu, J.-Y., Lee, K.-T., Hsieh, Y.-S. (2018). Comparison of coal- and oil-fired boilers through the investigation of filterable and condensable PM2.5 sample analysis. Energy Fuels 32:2993-3002. Yang, H.-H., Lee, K.-T., Hsieh, Y.-S., Luo, S.-W., Li, M.-S. (2014). Filterable and condensable fine particulate emissions from stationary sources. Aerosol and Air Quality Research 14:7. Yang, Y., Hou, Q., Zhou, C., Liu, H., Wang, Y., Niu, T. (2008). Sand/dust storm processes in northeast asia and associated large-scale circulations. Atmospheric Chemistry and Physics 8:25-33. Yang, Z., Zheng, C., Chang, Q., Wan, Y., Wang, Y., Gao, X., Cen, K. (2017). Fine particle migration and collection in a wet electrostatic precipitator. Journal of the Air Waste Management Association 67:498-506. Yang, Z., Zheng, C., Liu, S., Guo, Y., Liang, C., Wang, Y., Hu, D., Gao, X. (2018a). A combined wet electrostatic precipitator for efficiently eliminating fine particle penetration. Fuel Processing Technology 180:122-129. Yao, S., Cheng, S., Li, J., Zhang, H., Jia, J. and Sun, X. (2019). Effect of Wet Flue Gas Desulfurization (WFGD) on Fine Particle (PM2.5) Emission from Coal-Fired Boilers. J Environ Sci (China) 77: 32-42. Yi, H., Hao, J., Duan, L., Li, X. and Guo, X. (2006). Characteristics of Inhalable Particulate Matter Concentration and Size Distribution from Power Plants in China. J Air Waste Manag Assoc 56: 1243-1251. Yi, H., Hao, J., Duan, L., Tang, X., Ning, P., Li, X. (2008). Fine Particle and Trace Element Emissions from an Anthracite Coal-Fired Power Plant Equipped with a Bag-House in China. Fuel 87: 2050-2057. Ylätalo, S.I. and Hautanen, J. (1998). Electrostatic Precipitator Penetration Function for Pulverized Coal Combustion. Aerosol Science and Technology 29: 17-30. Yongjun, X., Guohui, H., Yunpeng, Z., Qian, W. (2018). Field study on the formation and emission characteristics of PM2.5 in coal fired power plant unit. IOP Conference Series: Earth and Environmental Science 153:062073. Yuan, C., Wang, Z., Cheng, H., Liang, S., Hu, Y., Dong, X. and Wu, J. (2021). Characteristics of Water-Soluble Ions in Condensable Particulate Matter Emitted from Stationary Sources in Wuhan. Fuel 295: 120626. Zhang, R., Wu, H., Si, X., Zhao, L. and Yang, L. (2018). Improving the Removal of Fine Particulate Matter Based on Heterogeneous Condensation in Desulfurized Flue Gas. Fuel Processing Technology 174: 9-16. Zhang, Y., Ding, Z., Xiang, Q., Wang, W., Huang, L., Mao, F. (2019). Short-term effects of ambient pm1 and pm2.5 air pollution on hospital admission for respiratory diseases: Case-crossover evidence from shenzhen, china. International Journal of Hygiene and Environmental Health:113418. Zhao, H., He, Y., Shen, J. (2018). Effects of temperature on electrostatic precipitators of fine particles and so3. Aerosol and Air Quality Research 18:2906-2911. Zhao, Y., Wang, S., Nielsen, C. P., Li, X., Hao, J. (2010). Establishment of a database of emission factors for atmospheric pollutants from chinese coal-fired power plants. Atmospheric Environment 44:1515-1523. Zhao, Z., Dong, H. and Guo, X. (2020). Size Distributions, Microstructures, and Elemental Compositions of Pm2.5 from Two Coal-Fired Fluidized-Bed Boilers Equipped with Fabric Filters. Energy Fuels 34: 4899-4908. Zhang, X., Li, Y., Zhang, Z., Nie, M., Wang, L. and Zhang, H. (2021). Adsorption of Condensable Particulate Matter from Coal-Fired……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80406 | - |
| dc.description.abstract | "固定污染源排放管道所產生之原生性粒狀物 (Particulate Matter, PM)可細分為可過濾性微粒 (FPM, Filterable Particulate Matter),及可凝結性微粒 (CPM, Condensable Particulate Matter),其中小於2.5 µm微粒為近年較受注目的污染物。固定污染源因排放量大、濃度高以及毒性高之特性,成為政府優先管控對象,以降低對環境及民眾的影響。然而在近幾年研究亦發現,現有粒狀物排放清單及管理政策並未完整納入固定污染源排放管道的CPM及微粒粒徑的影響。本研究方法共有三個部分探討,以建構完整的粒狀物管理架構。本研究第一部分探討冷凝法(US EPA Method 202)方法誤差,第二部分探討臺灣火力電廠粒狀物排放現況,第三部分探討粒狀物防制策略。 可靠的量測方法是管理的基礎,依本研究研究結果顯示,使用Method 202量測CPM時,除了常被討論的正向誤差外,還會受到氮氣迫淨、採樣時間、樣品分析方法以及系統設計造成結果的誤差。實驗中量測SO2於水中的吸附與脫附曲線,並改變衝擊瓶形式、凝結水體積、氧氣濃度以及等待時間,藉此評估SO2造成的正向誤差。負向誤差則是藉著評估靜電、CPM種類、溶劑體積、燒杯大小以及濾紙握持器的設計來達成。研究中也設計強迫換氣系統用來減少樣品乾燥時間。結果顯示氮氣迫淨無法完全移除水吸附的SO2,且改良式衝擊瓶無法增加SO2的回收效率,因為SO2與水在冷凝管中即已反應。而停留時間、凝結水體積與氧氣濃度的增加皆會增加SO2造成的正向誤差,因此應盡量減少採樣與等待時間。使用不良導電的容器在秤重前,應使用中和器,以避免靜電造成影響。在負向誤差方面,蒸氣壓較高且粒徑較小的CPM在迫淨時會因揮發而造成低估,而回收時的溶劑體積增加能夠增加回收效率。進行CPM樣品轉移時,燒杯越小則能夠減少殘留在燒杯內的CPM質量。約有4 %的CPM微粒可穿透過濾紙與握持器間的空隙,應將使用墊片避免洩漏。本研究設計之加速乾燥腔可來減少90%以上的乾燥時間,則僅需1.5~2.5小時即可完成乾燥且有98.5 %以上之有機樣品回收。CPM另一種量測方法 (稀釋法)則有設備過大及採樣參數如稀釋倍數等的問題待驗證。由研究結果顯示,冷凝法的正向誤差雖無法避免,但造成正向誤差的氣狀物如二氧化硫,排放標準已較以往嚴格,而且本研究也提供減少方法誤差的建議,因此,Method 202仍為目前量測CPM較佳的方法。 近年來,火力電廠排放的細微粒受到民眾的重視,多認為燃料是最主要的影響因素,而實際上,高效率的空污防制設備 (Air Pollution Control Device, APCD)能夠有效降低排放濃度,減少大氣污染,重要性更甚於燃料。而現行法規排放濃度與APCD僅能考慮FPM,未考量CPM,造成粒狀物排放量的低估。本研究探討電廠排放管道的FPM與CPM的排放特性,評估空污防制設備對PM質量濃度的影響,及評估CPM對PM排放量的影響,並納入發電成本考量,評估火力電廠的選擇。研究對象包含燃氣 (G)、燃煤 (C1~C4)及燃油 (O)電廠,結果發現CPM與FPM2.5、FPM10及FPMT比值4.5~93.2倍、3.3~77.7倍及2.2~7.9倍,表示CPM質量濃度排放量皆高於FPM。由成分來看,主要為硫酸根離子及氯離子是FPM2.5與CPM,SO2與CPM質量濃度有高度相關性 (R=0.77),低排氣溫度有較低的CPM濃度,代表溫度與SO2是影響CPM質量濃度的主要因素。 從粒徑的角度來看,燃煤電廠廢氣中的細微粒以FPM2.5為主,FPM2.5/FPMT比值約介於0.4~0.7,燃氣電廠細懸浮微粒比例為0.4,燃油電廠細懸浮微粒比例最低為0.1。燃煤電廠大多具Electricstatic Precipitator (ESP) or Baghouse (BH),顯示其去除大粒徑的效果較佳。經過測試,燃煤電廠BH防制設備最易穿透粒徑約 40 ~ 70 nm。 比較燃氣電廠(G) 與安裝較佳防制效率粒狀物防制設備的新式燃煤電廠(C1),前者CPM平均排放濃度略高於後者,兩者FPM2.5平均排放濃度相近,顯示廢氣排放濃度與電廠的防制設備有較高的關係,安裝粒狀物收集效率較佳防制設備的燃煤電廠排放濃度與燃氣電廠相近,甚至更佳,由臺灣的發電成本來看,燃氣電廠成本約燃煤電廠1.5倍,若加入溫室氣體減量成本,燃氣電廠仍略高於燃煤電廠,顯示加入防制設備效率及溫室氣體排放等考量後,燃煤電廠仍為較佳的選項,即對於火力電廠評估,不應僅由燃料做為唯一考量。 相較於燃氣電廠,燃煤電廠被認為其管道排放的粒狀物對空氣品質細懸浮微粒的影響較劇。近年研究提出不同看法,以往僅考量FPM的排放量,未考量CPM的排放量,若同時考量FPM及CPM,燃氣電廠與具良好空污防制設備的燃煤電廠的粒狀物排放量差異不大。由於天然氣在運輸及保存上,仍有其限制,燃煤電廠仍為重要的發電設施。由於以往燃煤電廠的粒狀物防制設備,只能管制FPM質量濃度,未考量粒狀物在粒狀物防制設備前後粒徑分佈對收集效率的影響,但研究顯示最易穿透粒徑才能呈現粒狀物防制設備真實防制效率;也未考量非預期洩漏量(Unexpected Leakage),如氣狀物防制設備操作過程中,可能產生的粒狀物,也未考量CPM的控制及廢氣特性的影響(如SO2及水份等)。溫度是控制CPM產生最重要的參數,而由於粒狀物的特性,氣狀物防制設備操作也可能是另一個產生源,粒狀物防制設備若未在防制設備配置最後面,將可能影響管末粒狀物排放濃度。為了減少CPM,降溫宜在粒狀物防制設備之前,而由於其他氣狀物防制設備在操作過程可能產生的粒狀物,粒狀物防制設備宜在最末端。由於污染源粒徑分佈改變,即會改變粒狀物防制設備收集效率,因此,未來宜增加相關研究,才能評估最佳的防制設備配置及操作。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:05:58Z (GMT). No. of bitstreams: 1 U0001-1102202216192400.pdf: 4081204 bytes, checksum: b517b854765855aa6a0308cb46c8eabc (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | "中文摘要 i 英文摘要 v 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 3 第二章 文獻回顧 5 2.1 粒徑特性 5 2.2 大氣中PM2.5排放來源 7 2.3 排放管道PM形成機制與粒徑分布 8 2.4 排放管道FPM及CPM採樣方法 10 2.5 粒狀物粒徑量測 17 2.6 燃煤及燃氣電廠碳排放分析 17 2.7 研究問題分析 18 第三章 研究材料及方法 21 3.1研究架構 21 3.2實驗材料及方法 21 3.2.1正向誤差來源驗證 21 3.2.2負向誤差來源驗證 24 3.2.3 樣品調理時間改善 27 3.3 現場採樣調查 29 3.3.1採樣計畫 29 3.3.2 採樣方法及成分項目 29 3.3.3 袋式集塵器粒徑效能分析 30 3.4 防制策略探討 31 第四章 研究結果與討論 33 4.1 Method 202誤差探討 33 4.1.1 正向誤差來源 33 4.1.2 負向誤差來源 36 4.1.3 樣品乾燥時間改進 39 4.2 臺灣火力電廠排放現況 40 4.2.1 PM濃度分析 40 4.2.2 OC/EC, 陰陽離及及金屬元素成分分析結果 42 4.2.3 CPM濃度的影響因子 43 4.2.4 防制設備前後粒徑分布 44 4.3 燃煤電廠防制策略探討 44 4.3.1 管道中粒狀物傳輸 49 4.3.2燃煤電廠防制設備配置 50 4.3.3電廠常見粒狀物防制設備防制效率 51 4.3.4 氣狀物防制設備對廢氣中粒狀物的影響 53 4.3.5 溫度對廢氣中粒狀物的影響 54 4.3.6 粒狀物防制策略 55 第五章 結論與建議 59 5.1 結論 59 5.2 建議 61 參考文獻 103" | |
| dc.language.iso | zh-TW | |
| dc.subject | 粒徑分布 | zh_TW |
| dc.subject | 可凝結性微粒 | zh_TW |
| dc.subject | Method 202 | zh_TW |
| dc.subject | 最易穿透粒徑 | zh_TW |
| dc.subject | 可過濾性微粒 | zh_TW |
| dc.subject | Condensable Particulate Matter | en |
| dc.subject | Particle size distribution | en |
| dc.subject | Method 202 | en |
| dc.subject | Most penetrating particle size | en |
| dc.subject | Filterable Particulate Matter | en |
| dc.title | 固定源懸浮微粒的量測與管理 | zh_TW |
| dc.title | Particulate Matter Measurement and Management of Stationary Sources | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.advisor-orcid | 陳志傑(0000-0002-9050-3749) | |
| dc.contributor.oralexamcommittee | 鄭福田(Chi-Chun Chou),林文印(Hsin-Min Lu),蔡詩偉,張章堂,李婉甄 | |
| dc.subject.keyword | 可過濾性微粒,可凝結性微粒,Method 202,最易穿透粒徑,粒徑分布, | zh_TW |
| dc.subject.keyword | Filterable Particulate Matter,Condensable Particulate Matter,Method 202,Most penetrating particle size,Particle size distribution, | en |
| dc.relation.page | 122 | |
| dc.identifier.doi | 10.6342/NTU202200570 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-02-13 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | zh_TW |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1102202216192400.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
